ORGANIC REACTIONS **Editors** BITTMAN CIGANEK CURRAN DENMARK HEGEDUS JOYCE MARTINELLI **McCOMBIE OVERMAN** J. PRESS L. PRESS RAJANBABU RIGBY ROUSH SMITH WIPF

Volume 56

Organic Reactions, Volume 56

Larry E. Overman (Editor-in-Chief) ISBN: 978-0-471-39568-3 696 pages October 2000

Organic Reactions is a comprehensive series of volumes devoted to important synthetic reactions. For each volume, the authors are world-renowned experts with extensive hands-on experience in the field. The subjects are presented from the preparative viewpoint, and particular attention is given to limitations, interfering influences, effects of structure, and the selection of experimental techniques.

Each chapter includes detailed procedures illustrating the significant modifications of the chemical reaction, as well as tables listing all the pertinent examples of the reaction. The topics discussed in Volume 56 are the Hydroformylation reaction and the Vilsmeier reactions of non-aromatic compounds. Each reaction is presented with information about the reaction conditions, products, and yields where available, and is fully referenced to the primary literature.

Table of Contents

THE HYDROFORMYLATION REACTION	. 1
CONTENTS	. 1
ACKNOWLEDGMENTS	. 2
INTRODUCTION	. 2
MECHANISM	. 4
SCOPE AND LIMITATIONS	. 13
COMPARISON WITH OTHER METHODS	. 27
EXPERIMENTAL CONDITIONS	. 34
EXPERIMENTAL PROCEDURES	. 35
TABULAR SURVEY	. 40
REFERENCES	.332
THE VILSMEIER REACTION OF NON-AROMATIC COMPOUNDS	.355
CONTENTS	355
INTRODUCTION	.356
SCOPE AND LIMITATIONS	.357
COMPARISON WITH OTHER METHODS	402
EXPERIMENTAL CONDITIONS	402
EXPERIMENTAL PROCEDURES	403
TABULAR SURVEY	407
REFERENCES	645
CUMULATIVE CHAPTER TITLES BY VOLUME	661

CHAPTER 1

THE HYDROFORMYLATION REACTION

Iwao Ojima, Chung-Ying Tsai, Maria Tzamarioudaki, and Dominique Bonafoux

Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York

CONTENTS

															PAGE
ACKNOWLEDGMENTS .			•	•											2
INTRODUCTION															2
MECHANISM .													•		4
Cobalt-Catalyzed Hy	/drofo	rmylat	tion												4
Rhodium-Catalyzed	Hydro	formy	lation	,											7
Asymmetric Hydrofe	ormyla	tion		•											10
SCOPE AND LIMITATIONS				•					•						13
Simple Olefins .					•						•				13
Dienes and Polyenes	• •				-									•	15
Functionalized Olefi	ns.				•										16
Functionalized Al	kenes				•		•			•			-		16
Functional Group-	Direct	ted Hy	ydrofoi	rmyi	latior	ι.		•							16
Alkenyl and Alky	nyl Al	cohols	s.								•				18
Alkenyl Esters					•										19
α, β -Unsaturated H	Esters.	•		•									•		19
Vinyl Ethers .		Ē								•			•		20
Halogenated Alke	nes .			•		-	•	-		•	•	•			20
Alkenylamines an	d Alke	enylan	nides	•				•		•		•		•	21
Miscellaneous		•	•	•	•			•		•	•		•	·	23
Asymmetric Hydrof	ormyla	tion		•				•	•	•			•	٠	24
COMPARISON WITH OTHER	METH	ODS .		•					•				•		27
Hydrocarbohydroxy	lation	and H	ydroca	ırba	lkoxy	latio	on.								28
Asymmetric Hydroc	arbohy	ydroxy	ylation	and	l Hyd	lroca	ırball	koxyl	latior	۱.	•				30
Formylation of Halid	les and	d Trif	lates	•	•	•		•							31
Silylformylation of A	Alkyne	es.												•	33
EXPERIMENTAL CONDITIO	NS .	•	٠	•	•	•		•	•	•	•	•	•	•	34

Organic Reactions, Vol. 56, Edited by Larry E. Overman et al. ISBN 0-471-39568-4 © 2000 Organic Reactions, Inc. Published by John Wiley & Sons, Inc.

Experimental Procedures					35
Cyclohexanecarboxaldehyde [Hydroformylation of an Alkene under	Clas	sica	1		
Homogeneous Conditions]					35
(7,7-Dimethylnorborn-2 <i>R</i> -yl)acetaldehyde [Hydroformylation of an .	Alke	ne u	nder		
Homogeneous Conditions]					36
6-Oxoheptanal					36
(S)-2-(6-Methoxy-2-naphthyl)propanal [Asymmetric Hydroformylat	ion d	of a			
Vinylarene under Homogeneous Conditions]					36
(S)-2-(4-Isobutylphenyl)propanal [Asymmetric Hydroformylation of	f a V	inyla	irene		
under Homogeneous Conditions].					37
(S)-2-Acetoxypropanal [Asymmetric Hydroformylation of a Vinyl E	ester	unde	er		
Homogeneous Conditions]					38
<i>exo</i> -Norbornanecarboxaldehyde [Asymmetric Hydroformylation of	an A	lken	e usi	ng	
a Cross-Linked Polymer-Supported Catalyst under Heterogeneous	s Cor	ditic	ons]		38
<i>n</i> -Heptanal and 2-Methylhexanal [Hydroformylation of an Alkene u	ising	Wat	er-		
Soluble Complexes as Catalytic Precursors in a Two-Phase Syster	n				39
<i>n</i> -Nonanal and 2-Methyloctanal [Fluorous Biphase Hydroformylatic	on of	an			
Alkene using Recycle Catalyst					39
(E,Z)-3-Pentenal and 4-Pentenal [Hydroformylation of an Alkene C	ataly	zed	by		
Mesitylene-Solvated Rhodium Atoms]					40
TABULAR SURVEY					40
Table I. Hydroformylation of Unfunctionalized Alkenes					46
Table II. Hydroformylation of Dienes and Polyenes					138
Table III. Hydroformylation of Unsaturated Alcohols					151
Table IV. Hydroformylation of Unsaturated Aldehydes and Ketones					160
Table V. Hydroformylation of Unsaturated Esters					162
Table VI. Hydroformylation of Unsaturated Ethers and Acetals.					179
Table VII. Hydroformylation of Unsaturated Halogen Compounds					194
Table VIII. Hydroformylation of Unsaturated Nitrogen Compounds					198
Table IX. Hydroformylation of Other Functionalized Alkenes					222
Table X. Asymmetric Hydroformylation.					240
Table XI. Hydroformylation of Alkynes.					327
References					332

ACKNOWLEDGMENTS

The authors would like to thank National Science Foundation, National Institutes of Health (NIGMS), and Mitsubishi Chemical Corporation for generous support of their research in this area.

INTRODUCTION

The reaction of 1-alkenes with carbon monoxide and hydrogen in the presence of a catalyst gives the corresponding homologous aldehydes (Eq. 1). The discov-

$$R \rightarrow H_2 + CO \xrightarrow{\text{metal catalyst}} R \rightarrow CHO + CHO + R (Eq. 1)$$

ery of this reaction was made by Roelen in 1938 using $Co_2(CO)_8$ as the catalyst at high temperature (120–170°) and high pressure of carbon monoxide/hydrogen (200–300 bar).^{1,2} This reaction has been called the "Oxo reaction", "Roelen reaction" or "hydroformylation".^{3,4} Hydroformylation is a general term indicating that both a hydrogen and a formyl group are introduced to unsaturated bonds, especially olefins.

Later this reaction was developed as an industrial process, i.e., the Oxo Process, for the production of alkanals from 1-alkenes using a cobalt or rhodium catalyst.^{3,4} Most noteworthy is the conversion of propene to butanal, which can be subsequently hydrogenated to 1-butanol or converted to 2-ethylhexanol by self-aldol condensation.^{3,4} 2-Ethylhexanol, a crucial intermediate for the production of ester-type plasticizers, is the most important bulk chemical produced by the Oxo Process.^{3,4} A variety of transition metal catalysts other than $Co_2(CO)_8$ have been investigated, including phosphine complexes of cobalt and hydridocobalt clusters. Platinum and ruthenium complexes show reasonably good catalytic activities, but modified cobalt catalysts are still much more advantageous. However, various rhodium complexes. Although the price of rhodium is higher than cobalt, reactions using rhodium catalysts require lower temperature (50–80°) and pressure (10–50 atm).

Other important commercial applications of hydroformylation include the production of long-chain alcohols from C_5 - C_{17} isomeric linear alkenes.^{3–5} These longchain alcohols serve as intermediates for lubricants, plasticizers and detergents.⁵ The hydroformylation of ethene to propanal is another important Oxo Process.⁵

Excellent reviews appeared in 1970s⁶⁻⁹, 1980s^{3,4,10-15} and 1990s.¹⁶⁻¹⁹ An exhaustive review of the Oxo Processes of 1-alkenes and other hydroformylation reactions appeared in 1980 and covered all aspects of the hydroformylation reaction from its discovery to 1978.³

In this chapter, the authors put clear emphasis on the scope of the hydroformylation reaction in organic synthesis. In this context, there is a relevant review in 1987 of the hydroformylation of functionalized alkenes.⁵ The hydroformylation reaction now can be performed under very mild conditions using a variety of functionalized alkenes.²⁰ Reactions in aqueous biphase,²¹⁻²³ supercritical carbon dioxide²⁴⁻³⁰ or fluorous biphase^{31,32} have recently emerged in response to separation and environmental issues. In fact, a highly efficient Oxo Process using a watersoluble rhodium catalyst, $HRh(CO)(TPPTS)_3$ [TPPTS = $P(C_6H_4SO_3Na-m]$, in aqueous biphasic conditions has been commercialized by Ruhrchemie/Rhône-Poulenc for the production of butanal.^{21–23} Asymmetric hydroformylation of prochiral olefins catalyzed by enantiopure rhodium complexes has been developed to the level that practical applications appear possible.³³⁻⁴² Although the reactions of formaldehyde, oxiranes, and others with carbon monoxide and hydrogen in the presence of transition metal catalyst could be considered as variations of hydroformylation, this chapter only deals with hydroformylation of carbon-carbon multiple bonds.

MECHANISM

Extensive mechanistic studies have been performed on the cobalt-catalyzed hydroformylation of olefins. Studies of the mechanism of hydroformylations catalyzed by rhodium and platinum complexes, which were developed later, greatly benefited from the accumulated knowledge on the cobalt counterpart. The rapid advances in organometallic chemistry in the 1960s and 1970s also made significant contributions to the detailed understanding of the individual steps involved in this reaction. Direct observation of reactive intermediates by high pressure IR spectroscopy helped confirm catalytic cycles proposed on the basis of kinetics. Deuterium labeling provides important information about a possible equilibrium between the starting olefin, intermediates, and products, which is useful for the determination of the rate-determining step.^{4,43-51} ¹H, ¹³C, and ³¹P NMR spectroscopies (and ¹⁹⁵Pt NMR for platinum catalysts) have been extensively used for direct observation and structural characterization of reactive intermediates.^{34,52–62} Theoretical studies on the energy analysis of possible intermediates in the catalytic cycle have been advanced to give more insight into and better understanding of the mechanism of hydroformylation.⁶³⁻⁶⁶

These mechanistic studies have established the crucial unit processes involved in the hydroformylation of olefins, although some mechanistic details await further investigation.^{3,4,64} It has been shown that there are three crucial unit processes: (1) reaction of a hydrido-metal species with an olefin to form an alkylmetal species, (2) alkyl migration to a carbonyl ligand of the metal, i.e., net carbon monoxide insertion to the alkyl-metal bond ("migratory insertion"), forming an acyl-metal species, and (3) hydrogenolysis of the acyl-metal species, giving an aldehyde and regenerating the hydrido-metal species.

Cobalt-Catalyzed Hydroformylation

The generally accepted mechanism for the hydroformylation of olefins catalyzed by $\text{Co}_2(\text{CO})_8$ was first proposed by Heck and Breslow⁶⁷ and is depicted in Scheme 1 for the formation of a linear aldehyde. The proposed mechanism includes the generation of HCo(CO)₄ from Co₂(CO)₈ and hydrogen as the first step, followed by the three crucial unit processes mentioned above. Instead of hydrogenolysis of the acyl-cobalt species, RCH₂CH₂CO-Co(CO)₄, reductive cleavage of the acyl-cobalt species with HCo(CO)₄ is also possible to regenerate Co₂(CO)₈.

A series of carefully designed model reactions, simulations, analogies with stoichiometric reactions, kinetic and IR spectroscopic studies at the same temperature and pressure as those of the industrial Oxo Process confirmed the validity of the Heck-Breslow mechanism with some modifications.^{3,4} For instance, IR spectroscopic studies under industrial Oxo Process conditions have revealed the virtually complete conversion of $Co_2(CO)_8$ (1) to $HCo(CO)_4$ (2).⁶⁸ Although the formation of alkyl- and acyl-cobalt carbonyl complexes can be observed in model reactions, no alkyl-cobalt complexes have been detected under the conditions of the industrial process, i.e., only acyl-Co(CO)₄ 8 is observed.⁶⁹⁻⁷¹

Scheme 1

In the Heck-Breslow mechanism, formal reductive cleavage of the acyl-Co complex 8 with molecular hydrogen or $HCo(CO)_4$ (2) is proposed. However, it is more than likely that the actual acyl-Co complex that reacts with molecular hydrogen is the coordinatively unsaturated (16-electron) acyl-Co(CO)₃ 7, and the oxidative adduct 10 is formed from 7, which then reductively eliminates to give aldehyde and $HCo(CO)_3$ (3) (Scheme 1).^{4,43}

With regard to the two possible mechanisms for the formation of aldehyde from the acyl-Co complex 8, it is still not certain which one is operating under catalytic conditions although either one can take place under stoichiometric conditions. Supporting evidence for the hydrogenolysis route^{72,73} as well as the bimolecular route involving HCo(CO)₄ (2)⁷⁴⁻⁷⁷ has been presented.

Although Scheme 1 shows only the formation of a linear aldehyde, a mixture of linear (major) and branched (minor) aldehydes is obtained in the hydroformylation of 1-alkenes (Scheme 2). The regioselectivity of this reaction should be determined at the alkyl-Co complex formation step ($4 \rightarrow 5$ or 6) and/or the subsequent acyl-Co complex formation step ($6 \rightarrow 7$ or 8). The *stoichiometric* hydroformylation of 1-propene in the absence of free carbon monoxide gives 70% branched aldehyde (CH₃)₂CHCHO and 30% linear aldehyde CH₃(CH₂)₂CHO,^{3,78-80} which appears to be consistent with the Markownikow rule since HCo(CO)₃ is a strong acid. This result indicates that regioselectivity is determined at the alkyl-Co

complex formation step $(4 \rightarrow 5)$ under these conditions. However, the stoichiometric reaction *in the presence of* free carbon monoxide as well as the *catalytic* reaction exhibit reversed regioselectivity, i.e., the reactions give 70% linear aldehyde and 30% branched aldehyde.^{3,81} The results clearly indicate that acyl-Co complex formation ($6 \rightarrow 8$) is the regioselectivity-determining step, i.e., the migratory insertion should be easier for the linear alkyl-Co(CO) complex than that for the branched counterpart mainly for steric reasons ($k_1 co > k_b co$). Under optimized conditions (110°, 150 bars, H₂:CO = 1), a linear/branched aldehyde ratio of 4/1 is achieved in the hydroformylation of 1-propene.³

One factor that complicates the mechanistic understanding of this reaction is the fact that the olefin-Co, alkyl-Co and acyl-Co complexes are in equilibrium. The existence of equilibrium among these intermediate complexes is consistent with the observations of (1) olefin isomerization^{3,82–87} and (2) virtually statistical isotope scrambling on using 1,1,2-trideuterio-1-propene,^{79,80} 6,6,6-trideuterio-1hexene⁷⁹ or 1-[¹⁴C]-propene.⁸¹ Isomerization and isotope scrambling are suppressed at high carbon monoxide pressures (>100 bars) and temperatures up to 140°.^{3,4,6,84} This fact clearly indicates that vacant coordination sites are necessary for the observed isomerization and isotope scrambling. These observations are also consistent with kinetic studies.^{3,88,89}

When the enantiomerically enriched alkene (S)-3-methyl-1-hexene is employed, 3-ethyl-1-hexanal is formed with 70% retention of configuration together with 4-methyl-1-heptanal and 2,3-dimethyl-1-hexanal, in spite of the fact that the precursor of this product should be achiral 2-ethyl-1-pentene generated through isomerization of (S)-3-methyl-1-hexene.^{82,90-92} In order to accommodate this result, a 1,2-hydrogen shift mechanism has been proposed that does not include a true σ carbon-Co bond and is faster than the dissociation of olefin from the olefin-Co complex, which appears to be generally accepted.^{3,4,6,90}

A variety of ligand-modified cobalt catalysts have been investigated³ and a commercial process known as the Shell Process was developed^{3,93–95}. The Shell Process uses tributylphosphine as the modifier, which generates $HCo(CO)_3PBu_3$ as the active catalyst species^{68,96} and is substantially more stable than $HCo(CO)_4$. This process gives a higher linear/branched ratio (7.3/1, i.e., 88% linear and 12% branched for the reaction of 1-propene), but the products are alcohols and not aldehydes, and ca. 15% of 1-propene is hydrogenated to propane. These

characteristics may be ascribed to steric and electronic effects of the bulky and electron-donating phosphine ligand.

Rhodium-Catalyzed Hydroformylation

Mechanistic studies of rhodium-catalyzed hydroformylation of olefins have shown that the basic feature of the catalyst cycle is more or less the same as that of the cobalt-catalyzed reaction.^{3,4} When unmodified rhodium carbonyls, e.g., $Rh_4(CO)_{12}$ and $Rh_6(CO)_{16}$, are used as catalysts, there is an equilibrium among $Rh_4(CO)_{12}$, $Rh_6(CO)_{16}$, and $HRh(CO)_n$ (n = 3 or 4) in the presence of carbon monoxide and hydrogen, which complicates the mechanistic study.^{3,4} Nevertheless, $HRh(CO)_n$ (n = 3) is postulated as the active catalyst species,^{3,4,9} and the formation of $HRh(CO)_4$ is observed by FT-IR analysis.⁹⁷

Although the unmodified rhodium carbonyl catalyst $HRh(CO)_n$ shows high activity, it gives a low regioselectivity and tends to hydrogenate or isomerize olefins,³ i.e., this catalyst is not practically useful.

Most mechanistic studies on ligand-modified rhodium catalysts have been performed using HRh(CO)(PPh₃)₃,^{3,4} which was introduced as a hydroformylation catalyst in 1968.^{98,99} These extensive mechanistic studies on the basis of IR, ¹H and ³¹P NMR spectroscopies have revealed that HRh(CO)₂(PPh₃)₂ (**11**) (an 18electron species, generated by losing one triphenylphosphine ligand from HRh(CO)(PPh₃)₃ and acquiring one carbon monoxide ligand) is a key active catalyst species, which readily reacts with ethylene at 25°.⁹⁹ Two mechanisms, an associative pathway and a dissociative pathway, were proposed,^{3,6,99,100} depending on the concentration of the catalyst (Scheme 3, only the formation of a linear aldehyde is shown for clarity).

According to the proposed mechanisms, the associative pathway (A) dominates at catalyst concentrations $>6 \times 10^{-3}$ mol/L, while the dissociative pathway

Scheme 3

(**D**) that includes the generation of a more active catalyst species, $HRh(CO)_2(PPh_3)$ (**12**), through loss of another triphenylphosphine ligand becomes predominant at concentrations $<6 \times 10^{-3}$ mol/L.⁹⁹ The fact that carbon monoxide and excess triphenylphosphine inhibit the reaction⁹⁹ strongly suggests formation of the pentacoordinated acyl-Rh species **16** (18-electron species) that does not react with molecular hydrogen because of the lack of a vacant coordination site for molecular hydrogen to undergo oxidative addition.^{4,43} Under the industrial reaction conditions producing *n*-butanal from propene with high selectivity, the use of a large excess of triphenylphosphine is required, which certainly favors the associative pathway. In the associative pathway, it was originally assumed that coordination of an olefin to HRh(CO)₂(PPh₃)₂ (**11**) would take place to generate a hexacoordinated 20-electron π -olefin-Rh species.^{4,101} However, this appears to be unlikely based on the generally accepted 18-electron rule.^{43,102} Thus, a modified mechanism that can accommodate these points has been proposed as shown in Scheme 4.⁴³ In this mechanism, (1) coordinatively unsaturated HRh(CO)(PPh_3)₂

(18) (16-electron species) is generated from 11, and 18 is the active catalyst, (2) 18 forms the π -olefin-Rh complex 19 (18-electron species), (3) 19 gives the alkyl-Rh complex 20 (16-electron species), (4) carbon monoxide coordinates to 20 to form the saturated alkyl-Rh complex 21, (5) a migratory insertion takes place to give the unsaturated acyl-Rh complex 17, (6) oxidative addition of molecular hydrogen to 17 gives the acyl-Rh dihydride complex 22 (18-electron species), and (7) a reductive elimination takes place to give an aldehyde and regenerate 18.

Although Scheme 4 shows only linear alkyl-Rh and acyl-Rh intermediates (20-*l*, 21-*l*, 17-*l*, and 22-*l*), the branched counterparts of these intermediates (20-*b*, 21-*b*, 17-*b*, and 22-*b*) as well as branched aldehyde $R(CH_3)CHCHO$ should be formed when the alkyl-Rh complex formation step yields the branched alkyl-Rh intermediate, $R(CH_3)CH-Rh(CO)(PPh_3)_2$ (20-*b*), that follows the same subsequent steps as those discussed above (see also Scheme 2). The fact that excess

triphenylphosphine decreases the reaction rate, but increases the linear/branched ratio of the resulting aldehyde and suppresses hydrogenation and rearrangement of olefin, indicates that the regioselectivity of the reaction is determined in the step that forms the alkyl-Rh complex from the π -olefin-complex 19.⁴³

For reductive cleavage of acyl-Rh complex 17, it is generally accepted that molecular hydrogen is the hydrogen donor as shown in Scheme 4. However, this step could be effected alternatively by another hydrido-Rh complex, $HRh(CO)_2(PPh_3)_2$, in a manner similar to that discussed for the cobalt-catalyzed reaction. With regard to this possibility, intriguing results have been reported: (a) silica-bonded rhodium complexes are found to be inactive when these complexes are completely site isolated, whereas these complexes become active when the site isolation is such that only a pair of rhodium complexes are close enough to undergo the bimolecular reductive cleavage of an acyl-Rh complex by a hydrido-Rh complex;¹⁰³ (b) a homogeneous binuclear rhodium complex with a specially designed tetraphosphine ligand, that places two rhodium metals in an appropriate space so that the bimolecular reductive cleavage is feasible, shows exceptional acceleration of the reaction rate.^{104,105} Although these findings cannot eliminate the generally accepted reductive cleavage step with molecular hydrogen, it is strongly indicated that bimolecular reductive cleavage involving two rhodium species is operative under certain reaction conditions.

Ab initio molecular orbital studies on the whole catalytic cycle of hydroformylation of ethylene catalyzed by $HRh(CO)_2(PH_3)_2$ has been performed,^{63,64} which points out the significance of the coordinating solvent, ethylene in this case, and identifies the oxidative addition of molecular hydrogen to the pentacoordinate acyl-Rh complex ($17 \rightarrow 22$) as the rate-determining step. In fact, this step is the only endothermic process in the catalytic cycle.

As discussed above, kinetic studies on the effect of partial pressures of hydrogen and carbon monoxide on the reaction rate indicate that the oxidative addition of molecular hydrogen to the Rh complexes with phosphine^{3,43} or diphosphite⁵⁵ ligands is the slowest step in the whole process. Further mechanistic studies, however, have revealed that the rate-determining step of the reaction depends on the nature of the ligand employed, and in some cases alkene insertion into the Rh-H bond becomes the slowest step as observed for the Rh-BINAPHOS-catalyzed reactions.⁵¹ It has also been shown that alkene insertion to the Rh-H bond is irreversible for the formation of linear alkyl-Rh species in general, while this step may become reversible for the formation of branched alkyl-Rh species, depending on the reaction conditions and the nature of the alkene.⁵¹

It has been shown that hydrometalation of the olefin (step 3: $19 \rightarrow 20$) proceeds by complete *cis* addition, and the subsequent migratory insertion of carbon monoxide (step 4: $21 \rightarrow 17$) takes place with retention of configuration.^{4,43-45,106} Thus, the hydroformylations of (*E*)- and (*Z*)-3-methyl-2-pentenes give *syn*- and *anti*-2,3-dimethylpentanals, respectively, in a stereospecific manner (Eqs. 2 and 3).^{4,44} Some *E*-*Z* isomerization of the olefins takes place during the reaction, complicating the analysis, but deuterium labeling experiments reveal the completely stereospecific *cis*-addition of hydrogen and a formyl group to the double bond.^{4,43-45}

Asymmetric Hydroformylation

When an appropriate chiral ligand is introduced to a catalyst, the differentiation of two enantiofaces of a prochiral olefin is conceptually possible in the hydroformylation reaction. There are three classes of alkenes from which enantiomerically enriched aldehydes can be obtained (Eqs. 4-6). The asymmetric hy-

$$R \underbrace{Chiral Catalyst}_{H_2, CO} \xrightarrow{R} Me_{CHO} + \begin{bmatrix} R \underbrace{CHO}_{achiral} \end{bmatrix} (Eq. 4)$$

$$R^{1} \xrightarrow{\text{Chiral Catalyst}}_{H_{2}, \text{ CO}} \xrightarrow{R^{1}}_{R^{2}} CHO$$
(Eq. 5)

$$R \xrightarrow{R} \text{ or } R \xrightarrow{R} \xrightarrow{\text{Chiral Catalyst}} R \xrightarrow{R} \xrightarrow{R} (Eq. 6)$$

droformylation of 1-alkenes to give the corresponding branched aldehydes regioselectively and enantioselectively (Eq. 4) is the most general process, but it is more complicated than the other two ways (Eqs. 5 and 6) because of the formation of achiral linear aldehydes in substantial amounts as undesirable products.

Extensive mechanistic studies have been performed on reactions catalyzed by rhodium and platinum complexes containing enantiopure C₂-symmetric diphosphine ligands.^{54,107-112} As discussed above, (1) the formation of the π -olefin-Rh(H) complex **19**, (2) stereospecific *cis* addition of the hydridorhodium to the coordinated olefin to form the alkyl-Rh complex **20** (and then **21**), and (3) the migratory insertion of a carbonyl ligand giving the acyl-Rh complex **17** with retention of configuration, have been established in the hydroformylation of 1-alkenes or substituted ethenes. Thus, it is reasonable to assume that the enantioselectivity of the reaction giving a branched aldehyde is determined at the diastereomeric (1) π -olefin-Rh complex **19** formation step, (2) alkyl-Rh complex **20** formation step, or (3) acyl-Rh complex **17**

As Scheme 5 illustrates, when a 1-alkene reacts with hydridorhodium complex with a chiral diphosphine ligand 18^{*}, two diastereometric π -olefin-Rh complexes,

Scheme 5

19*-S and 19*-R, are formed, in which the Si face and Re face of the 1-alkene coordinate to the Rh catalyst, respectively. The π -olefin-Rh complex, 19*-S has two rotamers, 19*-bS and 19*-lS, that are relevant to the cis addition of the hydridorhodium. The π -olefin-Rh complex 19*-bS gives the branched (S)-aldehyde via the alkyl-Rh complex 20*-bS and the acyl-Rh complex 17*-bS, whereas 19*-lS leads to the formation of the linear achiral aldehyde. In the same manner, the π -olefin-Rh complexes 19*-lR give the branched (R)-aldehyde and the linear achiral aldehyde, respectively.

Based on the apparent importance of the relative population of the four isomers of the π -olefin-Rh complexes **19*** in determining enantioselectivity as well as regioselectivity, an empirical rule was proposed for prediction of the absolute configuration of the major aldehyde and regioselectivity in the asymmetric hydroformylation of prochiral olefins catalyzed by rhodium and platinum complexes with C₂-symmetrical chiral diphosphine ligands.^{107,108,111} This simple quadrants model assumes the trigonal bipyramidal configuration of π -olefin-M complex 19* (M = Rh or Pt) in the transition state of the alkyl-Rh complex formation (early transition state model) and defines the large (L) and small (S) ligands based on experimental results in a consistent manner (Z = CO). This model was successfully applied to the reactions of simple aliphatic olefins such as butenes, 2-methyl-1-butene, 2,3-dimethyl-1-butene, and norbornene. However, this model failed to give meaningful explanation and prediction for the reactions of unsaturated esters and vinylarenes such as styrene and 2-phenylpropene.

Another crucial step for asymmetric induction is the formation of alkyl-M complex 20*; i.e., the rate of olefin insertion to the M-H bond should be different in each π -olefin-M complex 19* and this difference should be reflected in the final ratio of two enantiomeric aldehydes.³³ This possibility should be examined in the future.

Most of the molecular models for the mechanistic studies of asymmetric hydroformylation catalyzed by C₂-symmetric chiral diphosphine-Rh complexes are based on a trigonal bipyramidal structure in which two phosphorus atoms occupy equatorial positions as exemplified in **19***. In fact, recent NMR and X-ray crystallographic studies on HRh(CO)₂(diphosphite) complexes support this type of trigonal bipyramidal structure.^{55–58} However, a different trigonal bipyramidal structure plays a key role in the hydroformylation of prochiral olefins (e.g., 94% ee for styrene, b/1 = 88/12; 97% ee for (*E*)-1-phenyl-1-propene, b/1 = 97/3) catalyzed by a rhodium complex with a phosphine-phosphite chiral ligand, BINAPHOS.³⁴ It has been shown, on the basis of NMR and IR data, that HRh(CO)₂(BINAPHOS) complex (**23**) takes a trigonal bipyramidal configuration in which the phosphine moiety occupies an equatorial position and the phosphite moiety as well as the hydride apical positions.^{34,113} A recent molecular modeling study has indicated that the outstanding properties of BINAPHOS can be ascribed to a combination of the unique coordination mode, adequate numbers of

chiral centers and the matched pair configurations (R, S or S, R) of two binaphthyl moieties. This model provides a good explanation for the observed excellent enantioselectivity and branched/linear ratio.^{114,115}

SCOPE AND LIMITATIONS

Simple Olefins

The phosphine and phosphite complexes of rhodium, cobalt, and platinum are commonly used as catalysts for hydroformylation of olefins (Eq. 7). Other

$$R \xrightarrow{[Rh] \text{ or } [Co] \text{ or } [Pt]}_{H_2, CO} \xrightarrow{R_3P \text{ or } (RO)_3P}_{(major)} \xrightarrow{(CHO)}_{H_2, CO} + \underbrace{R}_{(major)} \xrightarrow{(CHO)}_{(minor)} (Eq. 7)$$

metal carbonyl complexes of ruthenium,^{116,117} iridium,¹¹⁸⁻¹²⁰ osmium,¹²¹ manganese,^{25,122,123} iron,¹²⁴⁻¹²⁶ palladium,^{127,128} and rhenium¹²⁹ also possess catalytic activity.³ In general, the reaction of vinylidene type olefins shows excellent regioselectivity with conventional catalysts because of the significant difference in the steric environment between the two ends of the olefinic bond (Eq. 8).^{130,131}

However, in order to attain high regioselectivity in the hydroformylation of simple 1-alkenes, a large excess of phosphines or phosphites should be added to cobalt and rhodium catalysts such as $Co_2(CO)_8$, HRh(CO)(PPh₃)₃, and Rh(acac)(CO)₂, which decreases the reaction rate.³

Many catalyst systems with phosphine and phosphite ligands have been developed to enhance the linear selectivity of the reaction. $^{104,132-219}$ For example, rho-dium complexes of BISBI (24) (linear/branched ≥ 66.5), $^{132,133,141,142,149,155,158,220-225}$ BIPHEPHOS (25) $(1/b \ge 40/1)$, ^{134,135,160,161} and a homobimetallic rhodium complex with "racemic-et, ph-P4" (26) $(1/b \ge 27.5)^{104,226,227}$ can achieve excellent linear selectivity in the hydroformylation of propene and 1-hexene. Rhodium catalyst systems with water-soluble phosphine ligands have been studied extensively^{21,180,228-240} and it has been demonstrated that HRh(CO)(TPPTS)₃ $[TPPTS = P(C_6H_4SO_3Na-m)_3]$ can achieve high linear selectivity.²¹ In order to achieve easy separation of the product aldehydes from the catalyst, amphiphilic^{241,242} as well as thermoregulated²⁴³ ligands have been developed. The amphiphilic ligands act on the interface of a biphasic mixture, while the thermoregulated ligands have the ability to change their solubilities as a function of temperature, allowing the catalyst species to transfer back and forth between an aqueous and an organic phase. Electrochemically prepared dimeric platinumdiphosphine complexes such as $[Pt_2(H)_2(\mu-DIOP)_2][SnCl_3]$ (27) can also achieve high regioselectivity $(1/b \ge 49)$.^{244–246}

Rhodium complexes with a bis(diphenylmethyl)norbornane **28**,²⁴⁷ a bis(dioxaphospholane) **29**,^{248,249} and α , α -TREDIP (**30**)²⁵⁰ as well as a zwitterionic rhodiumborate complex **31**²⁵¹ give 2-phenylpropanal with 97–99% selectivity in the hydroformylation of styrene (Eq. 9).

Dienes and Polyenes

The hydroformylation of conjugated dienes such as 1,3-butadiene, isoprene, and 1,3-pentadiene gives mixtures of regioisomers, isomerized aldehydes, and dialdehydes depending on the conditions and catalysts used.^{252–256} The reaction of 1,3-butadiene provides 1,6-hexanedial and has relevance to nylon production.^{257,258} The reaction of 1,3-cyclohexadiene catalyzed by a rhodium complex gives a 9:1 mixture of regioisomers (Eq. 10). Recently, high regioselectivity as well as enantioselectivity has been accomplished in the asymmetric hydroformylation of 1,3-dienes.

With nonconjugated dienes, the terminal olefin moiety reacts preferentially with both Pt and Rh catalyst systems (Eqs. 11, 12).²⁵⁹⁻²⁶⁴ The reaction of (*E*, *E*, *Z*)-cyclododeca-1,5,9-triene gives two regioisomers (Eq. 13).²⁶⁵

The hydroformylation of alkynes is usually accompanied by extensive hydrogenation, producing saturated aldehydes or alkenes. However, the use of bimetallic catalytic systems, such as Pd-Co, Pd-W or Pd-Fe, can achieve excellent yields in the hydroformylation of symmetric internal alkynes, affording conjugated unsaturated aldehydes (Eq. 14).²⁶⁶

Functionalized Olefins

Functionalized alkenes. Regioselective hydroformylation of functionalized alkenes has been extensively studied.^{5,135,267–286} The rhodium complex with BIPHEPHOS (**25**) is an excellent catalyst for regioselective hydroformylation of functionalized terminal alkenes to give aldehydes (Eq. 15).¹³⁵ A zwitterionic

$$X \xrightarrow[h]{n} H_{2}, CO (4.8 \text{ atm}) \xrightarrow[h]{n} CHO$$

$$K \xrightarrow[h]{n} H_{2}, CO (4.8 \text{ atm}) \xrightarrow[h]{n} CHO$$

$$K \xrightarrow[h]{n$$

X = MeCO-. MeOC(O), PhC(O)OC(O), Et_2NCO , $(EtO)_2CH$, $(CH_2CO)_2N$; n = 0 to 8

rhodium complex, $[Rh(DPPB)(COD)||BPh_4]$ (DPPB = $Ph_2P(CH_2)_4PPH_2$), is also a good catalyst for the reaction of allyl alkanoates, yielding aldehydes with 91– 95% regioselectivity.^{267,287}

Functional group-directed hydroformylation. Phosphine and phosphite moieties in olefinic substrates exert strong directing effects on the regioselectivity of hydroformylation. For example, hydroformylation of 4-(diphenylphosphino)-1-butene (**32**) catalyzed by $Rh_2(OAc)_4/4PPh_3$ gives branched aldehyde **33**, which subsequently is reduced to provide the corresponding alcohol **34** as the sole product (Eq. 16).^{288,289} Under the same conditions, 1-hexene affords the linear alde-

hyde as the major product. Similar strong directing effects of a phosphite moiety are observed in reactions of cyclic and acyclic alkenylphosphites, e.g., cyclohexenyl phosphite **35** is converted to *cis*-1,2-bis(hydroxymethyl)cyclohexane (**37**) with 100% regio- and stereoselectivity after reduction of the intermediate aldehyde **36** (Eq. 17).^{290,291} The use of phosphite as an intramolecular directing group

is attractive for organic syntheses since the phosphite moiety can be easily introduced and then readily removed after regioselective hydroformylation. Intramolecular phosphine-directed hydroformylation has been successfully applied as a key step in the synthesis of (+)-phyllanthocin (Eq. 18).²⁹²

(Eq. 18)

Hydroxy-directed hydroformylation of (20R)- 3β -dihydroxypregna-5,16-diene (40) catalyzed by Rh₂Cl₂(NBD)₂/PBu₃/NEt₃ gives 16 α -aldehyde 41 in 80% yield after recrystallization (Eq. 19).²⁹³

Alkenyl and Alkynyl alcohols. Rhodium-catalyzed hydroformylation of unsaturated alcohols provides useful intermediates for organic syntheses.^{294–312} For example, hydroformylation of homoallylic alcohols gives isolable lactols 42,³¹³ which can be oxidized to the corresponding lactones 43 (Eq. 20).³¹⁴ The

propargyl alcohol moiety of steroid **44** reacts selectively to give lactol **45** with the trisubstituted olefin left intact (Eq. 21).⁷⁴⁸

As an approach to the synthesis of aldols, hydroformylation of (Z)- β -silylallyl alcohols **46** catalyzed by RhH(CO)(PPh₃)₃/PPh₃ gives **47** with high regioselectivity (>98%) (Eq. 22).³¹⁵

Alkenyl esters. Hydroformylation of vinyl acetate gives exclusively the branched aldehyde 49 (Eq. 23)³¹⁶⁻³¹⁸, while the linear aldehyde 50 is the predominant product in the reaction of allyl acetate (Eq. 24)²⁶⁷.

α,β-Unsaturated esters. Hydroformylation of α,β-unsaturated esters and diesters generally gives α-formyl esters,³¹⁹⁻³²³ but with some exceptions.³²⁴ Hydroformylation of ethyl acrylate is catalyzed by the Rh₂Cl₂(CO)₂/phosphine/NEt₃ system under mild conditions (20-40°, H₂/CO (1/1, 20 atm) to give ethyl 2-formylpropanoate (**52**) with high regioselectivity (98-100%) (Eq. 25).³¹⁹ A

phosphole (o-TDPP) (53), a phosphanorbornadiene (DMTPPN) (54), and DPPB are particularly effective ligands for this reaction. Regioselectivity of hydro-formylation of methyl methacrylate is highly dependent on the catalyst used and reaction temperature, and can provide 2-formyl-2-methylpropanoate (55) or 3-formyl-2-methylpropanoate (56) selectively (Eq. 26).^{251,325}

Vinyl ethers. Hydroformylation of vinyl ethers provides efficient routes to alkoxy aldehydes.³²⁶⁻³³¹ The reaction of terminal vinyl ethers gives mixtures of regioisomers, the branched aldehyde being the major product (Eq. 27).³³² The re-

gioselectivity depends on the substituent R, e.g., methyl vinyl ether gives methoxypropanal with a b/1 ratio of 54/46, while a b/1 ratio of 95/5 is observed for phenyl vinyl ether.³³²

Hydroformylation of 2,3- or 2,5-dihydrofuran gives a mixture of 2- and 3-formyltetrahydrofuran (58, 59), since isomerization of the double bond appears to take place extensively (Eq. 28).³³³ Under optimized conditions using $Rh_2[\mu$ -

 $S(CH_2)_3NMe_2]_2(COD)_2$ (57) and 10 equivalents of PPh₃ or P(OMe)₃, 3-formyltetrahydrofuran (59) is obtained from 2,5-dihydrofuran with 99% regioselectivity.^{333,334} In contrast, reactions of dihydro-2*H*-pyrans with the same catalyst system do not occur selectively.³³³ However, this catalyst system has been successfully applied to achieve regio- and stereoselective hydroformylation of glucal derivatives (Eq. 29).³³⁵ Alkenyl acetals can be employed as substrates for hydroformylation, giving the corresponding monoacetals of alkanedials.³³⁶⁻³⁴⁰

Halogenated alkenes. Hydroformylation of vinyl chloride gives 2-chloropropanal, a versatile intermediate for agrochemical and pharmaceutical agents.³⁴¹⁻³⁵³ The hydroformylation of 3,3,3-trifluoropropene (**60**) catalyzed by $Co_2(CO)_8$ gives 3-trifluoromethylpropanal (**61**) with high linear selectivity (l/b = 93/7), while reactions catalyzed by rhodium complexes afford 2-trifluoromethylpropanal (**62**) with excellent branched selectivity (l/b = 5/95 - 3/97) (Eq. 30).^{354,355} These trifluoromethylpropanals are further transformed to *N*-acetyltrifluoronorvaline (**63**) and *N*-acetyltrifluorovaline (**64**) through ami-

docarbonylation in high yields (Eq. 30).³⁵⁶ The rhodium complex-catalyzed hydroformylation of other fluoroolefins, $R_fCH = CH_2$ ($R_f = F$, perfluoroalkyl, C_6F_5), also gives the corresponding branched aldehydes with 92–100% selectivities.^{355,357,358} The hydroformylation-amidocarbonylation of pentafluorostyrene (**65**) catalyzed by $Rh_4(CO)_{12}/Co_2(CO)_8$ affords 3-methylpentafluorophenylalanine (**66**) in one step with 98% regioselectivity; **66** is readily cyclized to tetrafluoroindole **67** (Eq. 31).³⁵⁹

Alkenylamines and alkenylamides. Hydroformylations of olefins bearing amine or amide groups often give nitrogen heterocycles through condensation of the resulting aldehyde and the amine or amide moiety.^{248,278,313,360-364} The reaction of *N*-allyl-*N*-(2-phenylethyl)amine (**68**) catalyzed by a Rh/Ru mixed system gives pyrrolidinone **69** exclusively in high yield (Eq. 32).³⁶⁰

Amine-directed hydroformylation of 5-benzylamino-1-pentene (**70**) catalyzed by RhH(CO)(PPh₃)₃ affords methylpiperidine **71** with 95% regioselectivity via the branched aldehyde intermediate (Eq. 33).³⁶² In the same manner, reaction of

4-pentenamide **73** catalyzed by RhCl(PPh₃)₃, RhCl(CO)(PPh₃)₂, RhH(CO)(PPh₃)₃ or Rh₄(CO)₁₂ leads to the exclusive formation of methyldihydropyridone **74** in excellent yield (Eq. 34).³⁶³

Hydroformylation of 2-aminostyrene (**75**) catalyzed by the diphosphite-Rh complex **30** gives 3-methylindole (**76**) in quantitative yield (Eq. 35).²⁴⁸ In a simi-

lar manner, reaction of 2-amino-1-(1-hydroxy-2-propenyl)benzene (**77**) affords a 91:9 mixture of didehydrobenzoazepine **78** and quinoline **79** in high yield (Eq. 36).^{313,361} A tricyclic benzimidazole **81** is formed in one step in high yield from 1-alkenylamino-2-aminobenzene **80** (Eq. 37).³⁶⁴

Miscellaneous. Substrates containing phosphorus, sulfur and silicon functional groups, e.g., $-P(O)R_{2}$, 288,365 , $-P(O)(OR^{1})R^{2}$, 366 , -SR, $^{367-370}$, -S(O)R, 369,371 , $-SO_{2}R$, 369,371 , $-CH(SR)_{2}$, $^{135,367,372-374}$, $-SiR_{3}$, 118,315,368,375,376 , $-OSiR_{3}$, 135 and $-Si(OR)_{3}$, 375,377 undergo hydroformylation with rhodium and cobalt catalysts to give the corresponding aldehydes. Phosphine and phosphite moieties possess strong directing effects as described above (see Eqs. 16, 17). Although hydroformylation of alkynes gives the corresponding conjugated aldehydes in moderate yield accompanied by saturated aldehydes (Eq. 38), 368,378,379 reactions of functionalized alkynes

often give carbocyclic or heterocyclic compounds.^{380–383} Propargylamines form pyrroles, usually accompanied by lactone byproducts arising from deamination, as well as hydrogenated byproducts (Eq. 39).^{380,384} Alkenes bearing organometal-

lic moieties such as vinylferrocene,^{385,386} vinylbenzene-Cr(CO)₃,³⁸⁷ and indene-Cr(CO)₃,^{387,388} are good substrates for hydroformylation. The benzene-chromium moiety has a strong directing effect to form the branched aldehyde in excellent regioselectivity (Eq. 40).³⁸⁷ Hydroformylation of oxiranes gives 1,3-diols or

3-hydroxyaldehydes.³⁸⁹⁻³⁹³ The hydroformylation of polymers bearing unsaturated tethers or pendant groups is useful for the production of polymers with formylalkyl groups.³⁹⁴⁻³⁹⁷

Asymmetric Hydroformylation

Asymmetric hydroformylation of prochiral olefins has been investigated both for the elucidation of reaction mechanism and for development of a potentially useful method for asymmetric organic synthesis. Rhodium and platinum complexes have been extensively studied, and cobalt complexes to a lesser extent. A variety of enantiopure or enantiomerically enriched phosphines, diphosphines, phosphites, diphosphites, phosphine-phosphites, thiols, dithiols, *P*,*N*-ligands, and *P*,*S*-ligands have been developed as chiral modifiers of rhodium and platinum catalysts.^{33,398-403}

In spite of extensive studies on the asymmetric hydroformylation of olefins using chiral rhodium and platinum complexes, enantioselectivities had not exceeded 60% ee until the reaction of styrene catalyzed by $PtCl_2(DBP-DIOP)/SnCl_2$ (82) was reported to attain 95% ee in 1982.⁴⁰⁴ Although the value was corrected to 73% ee in 1983,⁴⁰⁵ this result spurred further studies of the reaction (Eq. 41) in connection with possible commercial synthesis of anti-inflammatory drugs such as (S)-ibuprofen and (S)-naproxen. The catalyst $PtCl_2(BPPM)/SnCl_2$ (83) is useful for asymmetric hydroformylation of styrene and its derivatives, yielding the branched aldehyde 86.406 For example, this catalyst gave the corresponding aldehyde in 70-80% ee for styrene, 80% ee for p-isobutylstyrene, and 81% ee for 2-ethenyl-6-methoxynaphthalene. Although the branched/linear ratios were low (0.5-0.7), the enantioselectivities achieved were considerably higher than those realized with any other chiral catalyst system at that time. A chiral platinum catalyst, PtCl₂(BCO-DBP)/SnCl₂ (84), also achieved 86% ee for the reaction of styrene with much better branched/linear ratio (4:1).⁴⁰⁷ Higher enantioselectivity (91% ee) for the hydroformylation of styrene was achieved with the platinumbis(phosphite) 85-Sn system, although regioselectivities did not exceed a branched/linear ratio of 60/40.408

$$Ar + H_2 + CO = \frac{PtCl_2(DBP-DIOP)-SnCl_2}{CHO} + H_2 + CO = \frac{PtCl_2(DBP-DIOP)-SnCl_2}{CHO} + CHO = \frac{Ar}{86} + CHO = \frac{CHO}{86} + CHO = \frac{CHO}{8} + CHO = \frac{CHO}$$

One of the difficulties in achieving high enantioselectivity in asymmetric hydroformylation is the propensity of chiral aldehydes **86** to racemize under the reaction conditions. Accordingly, if the chiral aldehyde can be converted to a less labile derivative in situ, higher enantioselectivity might be anticipated. In fact, when asymmetric hydroformylation of styrene and its derivatives catalyzed by PtCl₂(BPPM)/SnCl₂ is carried out in triethyl orthoformate, the diethylacetals of chiral aldehydes **87** are obtained with >96% ee (Eq. 42).^{406,409,410} It is reported

that a chiral platinum-phosphine catalyst anchored on cross-linked beads 88 bearing BPPM as the pendant group gives virtually the same enantioselectivity (up to

>98% ee at 22% conversion) as that attained by the homogeneous catalyst system in the reaction of styrene.^{406,410-412} Hydroformylations in triethyl orthoformate are slow, but enantioselectivities are excellent. Because of the low reaction rate and low regioselectivity, this protocol does not appear to be practical.

A breakthrough in asymmetric hydroformylation has been realized by using rhodium complexes with a novel phosphine-phosphite ligand, (R,S)-BINAPHOS (89).³⁴ The Rh(acac)(CO)₂-BINAPHOS (89) catalyst can achieve excellent enantioselectivities (85–95% ee) in the hydroformylations of a variety of prochiral olefins such as vinyl acetate, *N*-vinylphthalimide, styrene and its derivatives, and 1,3-dienes^{34,36,413} with high branched/linear ratios (84/16–92/8) and good reaction rates at 60–80° (Eq. 43). A similar phosphine-phosphite ligand, (S,R)-BIPHENPHOS (90), has also been developed, and its Rh complex can achieve the same high level of enantioselectivity as (R,S)-BINAPHOS.^{414,415}

R = AcO, phthalimido, phenyl, tolyl, 4-isobutylphenyl

A rhodium complex with a polymer-supported (R,S)-BINAPHOS (91) has achieved high enantioselectivities similar to those obtained in the homogeneous system, showing promise for the development of practical heterogenized reusable chiral catalysts (Eq. 44).⁴¹⁶

The Rh complex with the chiral diphosphite ligand 92 derived from (R,R)-pentane-2,4-diol has shown enantioselectivity up to 90% ee with 98% branched

aldehyde selectivity.^{38,417} Phosphine-phosphinite ligands such as **93** show high asymmetric induction and high regioselectivity in the Rh-catalyzed hydroformylation of 4-vinyl- β -lactams.⁴¹⁸

Chiral aldehydes with high enantiopurity obtained through asymmetric hydroformylation serve as useful intermediates for pharmaceutical drugs.⁴¹⁹ For example, (S)-2-arylpropanals (**86**) can be oxidized to the corresponding (S)-2-arylpropanoic acids **94**, which are anti-inflammatory drugs such as (S)-ibuprofen (**94a:** Ar = 4-isobutylphenyl), (S)-naproxen (**94b:** Ar = 6-methoxynaphthyl), and (S)-suprofen (**94c:** Ar = 4-(2-thienylcarbonyl)phenyl) (Eq. 45).⁴⁰⁶

COMPARISON WITH OTHER METHODS

Hydroformylation is a useful catalytic method for the synthesis of aldehydes from alkenes and alkynes. There are no other methods that compete directly with hydroformylation for the synthesis of alkyl aldehydes. However, when the desired compounds are carboxylic acids or esters, and aldehydes are used as their

intermediates, there are other methods that can give the desired compounds directly from alkenes, i.e., hydrocarbohydroxylation and hydrocarbalkoxylation catalyzed by transition metal complexes.^{4,420} The hydroformylation of alkynes does not cleanly afford conjugated alkenyl aldehydes mainly because of extensive hydrogenation associated with the process. For the synthesis of conjugated alkenyl aldehydes, the formylation of aryl halides, alkenyl iodides, alkenyl triflates, and allylic halides is a convenient method. The silylformylation of alkynes also provides an efficient method, although a silyl group is incorporated in the product along with a formyl group.

Hydrocarbohydroxylation and Hydrocarbałkoxylation

The hydrocarbohydroxylation of 1-alkenes is promoted by nickel, cobalt, platinum, and palladium catalysts to give linear and branched alkanoic acids in differing ratios (Eq. 46).^{4,420,421} Nickel catalysts, e.g., Ni(CO)₄, NiCl₂, Nil₂ and

Raney Ni, favor formation of the branched product, while $Co_2(CO)_8$ /pyridine, $H_2PtCl_6/SnCl_2$, and $PdCl_2(PPh_3)_2/HCl$ catalyst systems give the linear carboxylic acid as the predominant product.⁴²⁰ The nickel and cobalt catalysts usually require high temperature $(150-250^\circ)$ and high carbon monoxide pressure (150-250 atm). Although platinum and palladium catalysts can promote the reaction at lower temperatures, often an extremely high pressure (700-800 atm) is required.^{420,421} Although the platinum catalyst $H_2PtCl_6/SnCl_2$ can only promote the reaction of 1-alkenes,⁴²² other catalysts can be used for internal olefins, cyclo-alkenes, and vinylidenealkanes.⁴²¹

The reaction of 1,3-butadiene catalyzed by $PdCl_2(PPh_3)_2/HCl (120-140^\circ, 700 \text{ atm})^{421}$ and $Co_2(CO)_8$ /pyridine (160°, 250 atm) forms 3-buten-1-oic acid in high yield, and this can be further transformed to adipic acid in a reasonable yield using the cobalt catalyst at higher temperature (210°) (Eq. 47).⁴²⁰

A palladium complex generated in situ by mixing $Pd(OAc)_2$ with DPPB and HCO_2H (2 equivalents) is an excellent catalyst system for the hydrocarbohydroxylation of a variety of terminal olefins, which gives linear acids with excellent regioselectivity (74–100%) at 150° and 6.8 atm of carbon monoxide.⁴²³ For example, the reactions of 2,4,6-trimethylstyrene, 3,3-dimethyl-1-butene, 2,2dimethyl-4-pentanal, and 4-vinylcyclohexene (Eq. 48) give the corresponding linear acids as the only products in high yields (75–98%).

In a manner similar manner, the hydrocarbalkoxylation (commonly called hydroesterification) of alkenes in the presence of alcohols can be effected by the nickel, cobalt, platinum, and palladium catalysts described above (Eq. 49).^{4,420,421}

$$R^{1} \xrightarrow{\text{Catalyst}} R^{1} \xrightarrow{\text{CO}_{2}R^{2}} + \frac{R^{1}}{CO_{2}R^{2}} (Eq. 49)$$

The reaction of 1,3-butadiene catalyzed by $PdCl_2$ gives an alkyl 3-pentenoate (Eq. 50), whereas the $Pd(OAc)_2(PPh_3)_2$ -catalyzed reaction yields an alkyl 3,8-nonadienonate via a dimerization-carbonylation process (Eq. 51).^{4,424}

An (R,S)-naproxen ester **96** is obtained through regioselective hydrocarbalkoxylation of 6-methoxy-2-naphthylethene (**95**) catalyzed by PdCl₂[P(c-C₆H₁₁)Ph₂]₂ with 100% regioselectivity in 95% yield (Eq. 52).⁴²⁵

(Eq. 52)

The hydrocarbalkoxylation of trimethylvinylsilane catalyzed by $PdCl_2(PPh_3)_2$ gives 3-(trimethylsilyl)propanoate with 95–100% selectivity, while the Co₂(CO)₈-catalyzed reaction affords 2-(trimethylsilyl)propanoate with 91–100% selectivity (Eqs. 53, 54).⁴²⁶ A platinum complex, $PtCl_2(AsPh_3)_2$, can also give the linear product with 100% selectivity. The reactions of other vinylsilanes bearing different

substituents on silicon show the regioselectivity switching between the palladium and the cobalt catalysts as well. Highly regioselective hydrocarbohydroxylation of trimethylvinylsilane can be effected by $PdCl_2(PPh_3)_2$, giving 3-(trimethylsi-lyl)propanoic acid in 95% yield.⁴²⁶

The hydrocarbohydroxylation of pentafluorostyrene catalyzed by PdCl₂(DPPB) in AcOH/H₂O gives 3-(pentafluorophenyl)propanoic acid with >99% selectivity, whereas the hydrocarbalkoxylation of pentafluorostyrene catalyzed by PdCl₂(PPh₃)₂ in MeOH/benzene yields methyl 2-(pentafluorophenyl)propanoate with 95% selectivity (Eqs. 55, 56).⁴²⁷

$$C_{6}F_{5} \xrightarrow{PdCl_{2}(DPPB)} C_{6}F_{5} \xrightarrow{CO_{2}H} (Eq. 55)$$

$$AcOH, H_{2}O$$

$$C_{6}F_{5} \longrightarrow \underbrace{\frac{PdCl_{2}(PPh_{3})_{2}}{CO(170 \text{ atm})}}_{MeOH, C_{6}H_{6}} C_{6}F_{5} \longrightarrow CO_{2}Me$$
(Eq. 56)

The hydrocarbohydroxylation of phenylacetylene catalyzed by Ni(CN)₂ under mild phase transfer conditions using cetyltrimethylammonium bromide (CTAB) gives atropic acids in excellent yield (Eq. 57).⁴²⁸

Ph
$$(Eq. 57)$$

 $CO (1 atm), CTAB Ph CO2H (Eq. 57)$

Asymmetric Hydrocarbohydroxylation and Hydrocarbalkoxylation

Asymmetric hydrocarbalkoxylation of alkenes has been studied since early 1970s, but the number of papers published on this subject is much less than that on asymmetric hydroformylation. This is mainly due to the fact that these reactions catalyzed by palladium complexes with chiral phosphine ligands usually require a very high pressure of carbon monoxide, which is rather difficult for academic laboratories to provide. However, new processes that do not require high pressure have been developed, which make these potentially useful reactions in organic synthesis more attractive. Apparently, it has been difficult to achieve high enantioselectivity in these reactions.¹¹¹ For example, until 1997 the best

enantioselectivity attained in asymmetric hydrocarbalkoxylation was 69% ee (at 8% conversion) in the reaction of 2-phenylpropene with *tert*-butyl alcohol catalyzed by a palladium complex with DBP-DIOP (**82**) (100° and 220–240 atm of CO), giving *tert*-butyl 3-phenylbutanoate.⁴²⁹ A closely related catalyst system, PdCl₂/DIOP, catalyzed the reaction of methyl methacrylate (100° and 370–400 atm of CO) to give methylsuccinic acid monomethyl ester with 49% ee.^{430,431} Although an improved process for asymmetric hydrocarbalkoxylation under mild conditions (50° and 1 atm of CO) was developed in 1982 using Pd(dba)₂, neomenthyldiphenylphosphine, and trifluoroacetic acid in methanol,⁴³² there appears to have been no further development of this catalyst system. However, quite recently a similar system, Pd(OAc)₂/BPPFA/*p*-toluenesulfonic acid, has achieved 86% ee in the reaction of styrene.⁴³³ Very recently, a PdCl₂/CuCl₂/diphosphine catalyst system with a unique chiral diphosphine, 1,4:3,6-dianhydro-2,5-dideoxy-2.5-bis(diphenylphosphino)-L-idiol, was reported to achieve 99% ee,⁴³⁴ which is very encouraging and warrants further investigation.

For asymmetric hydrocarbohydroxylation, an efficient catalyst system consisting of PdCl₂, CuCl₂, and (R)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BNPPA) was introduced in 1990, and can promote the reaction at ambient temperature and pressure.⁴³⁵ The reactions of 4-isobutylstyrene and 6-methoxy-2naphthylethene (**95**) promoted by the PdCl₂/CuCl₂/(R)-(-)-BNPPA catalyst give (S)-ibuprofen (**94a**) with 83–84% ee and (S)-naproxen (**94b**) with 91% ee, respectively (Eq. 58).⁴³⁶ Although 10–25 mol% of the chiral palladium catalyst is required to promote the reaction efficiently, this process has high potential because of mild reaction conditions and high enantioselectivity achieved.

Formylation of Halides and Triflates⁴³⁷

Catalytic formylation of aryl, heteroaryl, and vinylic halides in the presence of an amine, carbon monoxide, and hydrogen using a palladium complex such as $PdCl_2(PPh_3)_2$ provides a convenient route to conjugated aldehydes in good to excellent yields (Eq. 59).⁴³⁸ The use of iodo substrates secures excellent yields.

ArX + NEt₃
$$\xrightarrow{PdCl_2(PPh_3)_2}_{CO/H_2 (100 \text{ atm})}$$
 ArCHO + Et₃N•HX (Eq. 59)
NEt₃

Allylic halides can be used as the substrates, but the yields of the resulting β , γ -unsaturated aldehydes are modest (38--42%).⁴³⁹ When 1,3-bis(diisopropylphosphino)propane (DIPPP) is used as the ligand for palladium catalyst, and sodium

formate as the hydrogen source, aryl chlorides are converted to the corresponding aldehydes in excellent yield under mild conditions (Eq. 60).

ArCl + HCO₂Na
$$\xrightarrow{Pd(DIPPP)_2}$$
 ArCHO + CO₂ + NaCl (Eq. 60)

The use of a silicon hydride or a tin hydride in place of molecular hydrogen allows the formylation of aryl halides to proceed under much milder conditions. The reactions of aryl and benzylic bromides/iodides catalyzed by $Pd(PPh_3)_3$ in the presence of poly(methylhydrosiloxane) (PHMS) at 80° and 3 atm of carbon monoxide afford the corresponding aldehydes in 48–96% yields.⁴⁴⁰ When 1-bromo-4-iodobenzene is used as the substrate, 4-bromobenzaldehyde is formed exclusively in 95% yield (Eq. 61).⁴⁴⁰

Almost the same procedure except for using tributyltin hydride as the hydrogen source provides a convenient and versatile method for the synthesis of aldehydes from aryl iodides/bromides, benzylic and vinylic halides, vinylic triflates, and allylic halides.⁴⁴¹ This protocol allows the reactions to proceed at ca. 50° and 1–3 atm of carbon monoxide, and a variety of functional groups can be tolerated (Eqs. 62-64).⁴⁴¹

Primary and secondary alkyl iodides can be formylated with the platinum complex $PtCl_2(PPh_3)_2$, instead of palladium complexes as the catalyst in good to high yield at 120° and 100 atm of carbon monoxide and hydrogen (1:1) in the presence of potassium carbonate (Eq. 65).⁴⁴²

Silylformylation of Alkynes

Silylformylation of 1-alkynes gives 1-silyl-2-formyl-1-alkenes with excellent regio- and stereoselectivity (Eq. 66).⁴⁴³⁻⁴⁴⁵ This reaction is catalyzed by rho-

$$R^{1} = \frac{[Rh] \text{ or } [Rh-Co]}{HSiR_{3}} \qquad R^{1} \qquad SiR_{3} \qquad (Eq. 66)$$

dium or rhodium-cobalt complexes such as $Rh_4(CO)_{12}$,⁴⁴³⁻⁴⁴⁵ $Rh_2Co_2(CO)_{12}$,^{444,445} $Rh(CN-Bu-t)_4Co(CO)_4$,⁴⁴⁵ $Rh(acac)(CO)_2$,⁴⁴⁵ $Rh_2(pfb)_4$ (pfb = perfluorobuty-rate),⁴⁴⁶ and (η^6 -C₆H₅BPh₃)Rh(COD) (**29**)⁴⁴⁷.

When internal alkynes are used, a mixture of regioisomers is formed.⁴⁴³ A mixture of Z and E isomers in varying ratios is obtained depending on the catalyst species and reaction conditions.^{443,446} Functional groups such as olefin, hydroxy, ester, ether, amide and nitrile are tolerated.^{443,445-447} The reaction of 5-ethynylpiperidin-2-one (**96**) was successfully applied to the synthesis of isoretronecanol (**98**) (Eq. 67).^{445,448}

Although the reaction of 1-alkynes always affords 2-formyl products as shown in Eq. 66, this regiochemistry can be completely reversed using intramolecular silylformylation via *exo-dig* cyclization of alkynylsilanes⁴⁴⁹ and alkynyloxysilanes⁴⁵⁰ (Eqs. 68–70).

EXPERIMENTAL CONDITIONS

Hydroformylation is usually carried out under catalytic conditions. The alkene, catalyzed by metal complexes under carbon monoxide and hydrogen in hydrocarbon, alkyl halide or ether solvent, generates the hydroformylation product. Rhodium catalysts are preferred for laboratory syntheses because of their higher activity and selectivity. Improvements in regioselectivity and yields have been found when the reaction is carried out in the presence of added donor ligands such as trialkylphosphines, or under UV irradiation. Catalysts supported on polymers have been used for easy separation of product and reuse of catalysts.

Carbon monoxide. Carbon monoxide is a colorless, odorless gas, liquefying at -191.5° . It is readily available, at pressures of up to about 100 bar, in a variety of cylinder sizes, so that experiments can be run at 80 bar without a compressor. The acute toxicity of carbon monoxide reflects its high affinity for hemoglobin. It is stated⁴⁵¹ that 400–500 ppm of carbon monoxide in air can be breathed for an hour without appreciable effect, while levels above 1000 ppm are dangerous, and at more than 4000 ppm it causes death within an hour. The previously cited reference gives a Threshold Limit Value of 50 ppm. Carbon monoxide must always be used in an efficient fume cupboard, keeping emissions into the laboratory atmo-

sphere to an absolute minimum. If carbon monoxide is in routine use it is recommended that an electronic detection system be installed to provide continuous monitoring of the laboratory atmosphere. For atmospheric pressure reactions, conventional rubber tubing or clear PVC tubing can be employed in laboratories, with appropriate securing clips, for delivering carbon monoxide to the reaction system. Higher pressures require the use of stainless steel tubing and couplings.

EXPERIMENTAL PROCEDURES

Cyclohexanecarboxaldehyde [Hydroformylation of an Alkene under Classical Homogeneous Conditions].⁴⁵² To a stainless steel 0.5 L pressure vessel equipped with a 450-atm manometer and a temperature recorder was added 0.2 g (0.8 mmol) of rhodium(III) oxide. The vessel was then sealed and evacuated to 0.1 mm Hg pressure. A solution of 82 g (1 mol) of cyclohexene in 140 mL of anhydrous benzene was introduced by suction into the vessel. The vessel was placed in a heatable shaking device and pressured to 75 atm with carbon monoxide, then the total pressure was increased to 150 atm with hydrogen. Shaking was begun and the vessel was heated to an internal temperature of 100°. When the internal temperature reached 100°, the pressure began to fall. When the pressure had fallen to 60 atm, rocking was stopped and carbon monoxide was introduced to 105 atm and then hydrogen to 150 atm. Rocking was started again, and the process was continued until no appreciable pressure decrease occurred. Approximately two hours was required, and the pressure decrease corresponded to the consumption of 2 moles of gas. The vessel was rapidly cooled to room temperature and the residual gas was carefully vented. The vessel was opened, and the slightly yellow reaction mixture was transferred immediately to a 2-L roundbottomed flask containing a freshly prepared solution of 200 g of sodium hydrogen sulfite in 400 mL of water. The flask was fitted with a stopper and was occasionally shaken at room temperature for a period of 3 hours. The resulting precipitate was collected by suction filtration on a sintered-glass funnel and washed with 500 mL of ether. After drying in air, the bisulfite derivative was transferred to a 2-L distillation flask containing 1 L of 20% aqueous potassium carbonate. The resulting mixture was distilled, and the azeotropic mixture of water and aldehyde (bp 94-95°) was collected under nitrogen. The aldehyde was separated from the lower aqueous layer as a colorless liquid and dried over 10 g of anhydrous sodium sulfate. The drying agent was removed by filtration, and the product was distilled under reduced pressure using a Claisen distillation apparatus to give 92-94 g (82-84%) of cyclohexanecarboxaldehyde, bp $52-53^{\circ}$ (18 mm), n^{25}_{D} 1.4484. A purity of about 98% was established by GC analysis.

(7,7-Dimethylnorborn-2*R*-yl)-acetaldehyde [Hydroformylation of an Alkene under Homogeneous Conditions].⁴⁵³ A 200 mL autoclave was charged with 5.0 g (37 mmol) of (+)- α -fenchene, 45.3 mg (0.18 mmol) of the dimer of rhodium(I) chloride-1,5-cyclooctadiene, 95 mg (0.36 mmol) of triphenylphospine, 0.5 mL of triethylamine and 25 mL of benzene, and the reaction was carried out at 90° for 16 hours under a synthesis gas pressure of 80 kg/cm² (CO pressure 40 kg/cm²; H₂ pressure 40 kg/cm²). The solvent was evaporated, and the residue was fractionally distilled under reduced pressure to give 5.7 g (93.4%) of the product. The *exo/endo* ratio of the product was determined to be 85:15 by ¹H NMR; bp 54–55° (0.2 mm); ¹H NMR (CDCl₃) δ : *exo form* 9.71 (t, *J* = 7.9 Hz, 1 H, *CHO*), 2.60 (ddd, *J* = 2.1, 5.9, 9.6 Hz, 2 H, *CH*₂CHO), 1.08 (s, 3 H, *CH*₃), 1.02 (s, 3 H, *CH*₃); *endo form* 9.76 (t, *J* = 7.9 Hz, 1 H, *CHO*), 1.08 (s, 3 H, *CH*₃), 1.02 (s, 3 H, *CH*₃); MS (m/z): 166 (M⁺), 151, 133, 123, 122 (base), 107, 95, 81, 79, 69, 67, 55, 41. Anal. Calcd for C₁₁H₁₈O: C, 79.52; H, 10.84. Found: C, 79.40; H, 10.86.

6-Oxoheptanal.¹³⁵ Into a Fisher-Porter bottle, fitted with a pressure coupling closure complete with gas inlet, pressure gauge, and pressure release valve, was added (acetylacetonato)dicarbonylrhodium (28 mg, 0.109 mmol, 0.54 mol%), BIPHEPHOS (**25**) (320 mg, 0.408 mmol), THF (36 mL), and 5-hexen-2-one (2.32 mL, 20 mmol). The reaction vessel was degassed three times and purged with CO/H₂ (1:1 mixture) for several minutes. The reaction vessel was pressurized at room temperature to 60 psi with CO/H₂ (1:1 mixture) and then heated at 60° for 18 hours. After cooling to room temperature, the pressure was released and the solution concentrated. The resulting oil was purified by Kugelrohr distillation to give a colorless oil, 6-oxoheptanal (2.21 g, 86% yield).

(S)-2-(6-Methoxy-2-naphthyl)propanal [Asymmetric Hydroformylation of a Vinylarene under Homogeneous Conditions].⁴⁰⁶ A deoxygenated so-

lution of 1.0 g (5.4 mmol) of 6-methoxy-2-naphthylethene in 15 mL of benzene was charged into a 125-mL Parr Monel bomb with 16 mg (0.02 mmol) of [(-)-BPPM]PtCl₂ and 11 mg (0.05 mmol) of stannous chloride dihydrate. The bomb was sealed, pressurized to 2700 psi, and heated with stirring at 60° for 9 hours. At the end of the reaction, the bomb was quenched in a dry ice bath, the pressure was vented, and the mixture was eluted with benzene through an MPLC apparatus to afford 350 mg (30.1%) of the branched aldehyde (b/n = 0.7): mp 145°; 81% ee (determined by ¹H NMR using Eu(hfc)₃ as chiral shift reagent); ¹H NMR δ 9.7 (d, J = 4.1 Hz, 1 H), 7.7–7.1 (m, 6 H), 3.9 (s, 3 H), 3.7 (dq, J =6.3, 4.1 Hz, 1 H), 1.6 (d, J = 6.3 Hz, 3 H). Anal. Calcd for C₁₄H₁₄O₂: C, 78.50; H, 6.54. Found: C, 78.38; H, 6.59.

(S)-2-(4-Isobutylphenyl)propanal [Asymmetric Hydroformylation of a Vinylarene under Homogeneous Conditions].³⁸ A catalyst solution was prepared consisting of 0.011 g of (acetylacetonato)dicarbonylrhodium (1500 ppm rhodium), 0.765 g of (isoBHA-P)₂-(2R,4R)-pentanediol (92) (4:1 ligand to rhodium ratio), 5 g of 4-isobutylstyrene, and 24.5 g of acetone. This solution was charged to a 100 mL reactor and charged to a pressure of 67 psi with hydrogen gas and 200 psi with carbon monoxide (at ambient temperature). The rate of the reaction was determined by monitoring the drop in pressure as syngas was consumed. The reaction rate was approximately 0.1 g-mole/L/h. When the rate had slowed because of consumption of starting material, the reaction mixture was removed from the reactor under a nitrogen atmosphere. A portion of the reaction mixture was analyzed by GC to determine product composition. An isomer ratio of 66:1 [2-(4-isobutylphenyl)propanal: 3-(4-isobutylphenyl)propanal] was observed.

Determination of enantiomeric purity. Three mL of the solution was diluted in 50 mL of acetone and treated with 0.3 g of potassium permanganate and 0.32 g magnesium sulfate to effect oxidation of the product aldehydes to their respective acids. The mixture was stirred at room temperature for 30 minutes after which time the solvent was removed under reduced pressure. The residue was extracted three times with 50 mL of hot water. The three aqueous solutions were then combined, filtered, and washed with 50 mL of chloroform. The aqueous layer was acidified with hydrochloric acid to a pH of 2 and then extracted with 50 mL of chloroform. The chloroform was removed in vacuo and the resulting residue dissolved in 0.5 mL of toluene. This solution was analyzed by GC on a chiral β -cyclodextrin column which separated the two enantiomers of the resulting 2-arylpropanoic acid. This analysis indicated a 91:9 ratio of the S and R enantiomers for an ee of 82%.

(S)-2-Acetoxypropanal [Asymmetric Hydroformylation of a Vinyl Ester under Homogeneous Conditions].³⁴ A solution of vinyl acetate (532.3 mg, 6.19 mmol), Rh(acac)(CO)₂ (4.0 mg, 1.55×10^{-2} mmol), and (*R*,*S*)-BINAPHOS (89) (17.7 mg, 3.34×10^{-2} mmol) in benzene (10 mL) placed in a Schlenk tube was degassed by freeze-thaw cycles. It was then transferred into a 50 mL autoclave, and the mixture was stirred at 60° for 36 hours under hydrogen and carbon monoxide pressure (1:1 ratio, total 100 atm). ¹H NMR analysis of the reaction mixture showed that the conversion was >99% and the branched and normal aldehydes (2-acetoxypropanal and 3-acetoxypropanal) were formed in 86:14 ratio. The enantiomeric excess of (*S*)-2-acetoxypropanal (92%) was determined by GC using a chiral capillary column.

exo-Norbornanecarboxaldehyde [Asymmetric Hydroformylation of an Alkene using a Cross-Linked Polymer-Supported Catalyst under Heteroge**neous Conditions**].⁴¹¹ Preparation of the Polymer-Supported Ligand. A solution of 500 mg of poly(vinylpyrrolidone) (M_r 40000) in 60 mL of water was degassed by two freeze-pump-thaw cycles, transferred to a 250 mL Morton creased flask containing a variable speed stirrer, and heated to 65° under argon. A mixture of 441.5 mg (0.77 mmol) of (4R,5R)-2-(p-styryl)-4,5-bis[(dibenzophospholyl)methyl]-1,3-dioxolane, 648.2 mg (6.22 mmol) of styrene, 101.1 mg (0.77 mmol) of divinylbenzene, 50 mg of azobis(isobutyronitrile), and 2 mL of toluene was deoxygenated and added to the flask. The suspension was stirred for 20 hours, cooled, treated with 30 mL of methanol, and stirred for 30 minutes. The beads were filtered in a glove bag, washed with 50 mL of methanol, 50 mL of THF, 50 mL of benzene, and 50 mL of methanol, and dried under reduced pressure to afford 972.2 mg (80%) of 20-60 μ m polymer beads: solid state ³¹P NMR (CP/MAS) δ -24.8 (broad signal with a shoulder at δ -18.8). Anal. Calcd: P, 4.01. Found: P, 4.18.

Preparation of the Polymer-Supported Catalyst. A solution of 0.12 mmol of bis(benzonitrile)dichloroplatinum(II) in 10 mL of benzene was added to a refluxing suspension of an amount of polymer beads containing 0.21 mmol of dibenzophosphole ligand in 5 mL of benzene. Reflux was continued for 40 hours under argon. The mixture was filtered in a glove bag, washed with 10 mL of dichloromethane and 10 mL of benzene, and dried under reduced pressure to afford the polymer-supported catalyst I in 98.6% yield: solid state ³¹P NMR (CP/MAS) δ 2.0 (1*J* (Pt,P) = 3549 Hz), -24.7 (uncoordinated ligand). Anal. Calcd: Pt, 6.99. Found: Pt, 5.96.

A 125 mL Parr Monel bomb was charged with 0.02 mmol of the Pt polymersupported catalyst I and 0.04 mmol of stannous chloride dihydrate. The bomb was brought into an argon-filled glove bag and charged with 8.7 mmol of norbornene dissolved in 3 mL of benzene. The bomb was sealed, pressurized, and vented three times with the synthesis gas mixture $(1:1 \text{ CO}:H_2)$ and then pressurized to 2700 psi and heated with stirring in an oil bath at 60° for 4 hours. At the end of the reaction, the bomb was opened in a glove bag. Catalyst I was recovered by filtration. The reaction mixture was analyzed by GC to determine the conversion (100%) and the aldehyde selectivity (87%). ¹H NMR of the mixture in the presence of Eu(hfc)₃ determined that the *exo*-norbornanecarboxaldehyde was obtained in 20% *ee*.

n-Heptanal and 2-Methylhexanal [Hydroformylation of an Alkene using Water-Soluble Complexes as Catalytic Precursors in a Two-Phase System].²³ A mixture of 5.0 mL (40 mmol) of 1-hexene, 157.6 mg (0.1 mmol) of $Rh_2(\mu$ -S-t-Bu)_2(CO)_2(TPPTS)_2 and 568 mg (1.00 mmol) P(C₆H₄SO₃Na-m)_3 (TPPTS) in 30 mL of distilled and nitrogen-saturated water was introduced into the autoclave under vacuum. This was heated to 80°, with stirring; after 5 minutes the syngas (CO/H₂ = 1/1) was introduced at the working pressure (10 bar). After 18 hours, the solution was transferred from the autoclave into a Schlenk tube. The composition of the solution was determined by GC on an Intersmat I.G.C. 131 apparatus equipped with a 3 m × 0.125 in. diameter column of OV17 on chromosorb WHP. The reaction conversion was 100% and the aldehyde selectivity was 97% (*n*-heptanal/2-methylhexanal = 36).

$$n-C_{6}H_{13} \xrightarrow{\text{Rh}(\text{acac})(\text{CO})_{2}, P[(\text{CH}_{2})_{2}(\text{CF}_{2})_{5}\text{CF}_{3}]_{3}}}_{c-C_{6}F_{11}\text{CF}_{3}/\text{PhMe, CO/H}_{2}(10 \text{ atm}), 100^{\circ}} n-C_{6}H_{13}} \xrightarrow{\text{CHO}}_{+} n-C_{8}H_{17}\text{CHO}}$$

n-Nonanal and 2-Methyloctanal [Fluorous Biphase Hydroformylation of Alkene using Recycle Catalyst].³¹ A mixture of 12.9 mg (0.05 mmol) Rh(acac)(CO)₂ in 35 mL of toluene and 2.14 g (2.00 mmol) $P[(CH_2)_2(CF_2)_5CF_3]_3$ in 35 mL of c-C₆F₁₁CF₃ was charged to a 300 mL autoclave under 5 atm CO/H₂ (1:1) and heated to 100°. A 75 mL pressure bomb was charged with 2.52 g (158 mmol) of 1-decene and attached to the autoclave. When the temperature in the autoclave reached 100°, the 1-decene was added by using 10 atm CO/H₂ (1:1) pressure, which was maintained during the reaction. After the reaction was complete, the reactor was cooled to room temperature. The autoclave was depressurized, and the two-phase system was separated in a separatory funnel under N₂.

ORGANIC REACTIONS

The upper phase was recharged to the cleaned and catalytically inactive autoclave. A solution of 30 mL of 1-octene in 35 mL of toluene was added under 5 atm CO/H₂ (1:1) and heated to 100°. The pressure was increased to 10 atm CO/H₂ (1:1) and maintained for 24 hours. A GC analysis of the reaction mixture showed only trace amounts of conversion of 1-octene. In contrast, when the lower phase was charged to the autoclave, the hydroformylation of 1-octene proceeded to give 85% nonanals with n/i ratio of 2.9 and 8% octenes.

(E,Z)-3-Pentenal and 4-Pentenal [Hydroformylation of an Alkene Catalyzed by Mesitylene-Solvated Rhodium Atoms].²⁵⁴ Rhodium metal (82.8 mg, 0.8 mmol) was evaporated during 40 minutes and co-condensated with mesitylene (30 mL) at liquid-nitrogen temperature, using a glass metal-atom reactor. The matrix obtained was warmed to about -40° and the resulting brown solution siphoned under argon into a Schlenk tube and manipulated at -30° under argon.

To a portion of the above co-condensate containing 5.2 mg of rhodium were added 22 mg (0.05 mmol) of bis(diphenylphosphino)ethane and 32.5 mmol of 1,3-butadiene, and the solution so obtained was introduced by suction into an evacuated 80 mL stainless steel autoclave. When carbon monoxide was introduced to the desired pressure (60 atm), and the autoclave was rocked and heated to 80°, hydrogen gas was rapidly introduced to give a 1:1 gas composition (total pressure 120 atm). After 4 hours, the reaction mixture was analyzed by GC to determine the conversion (78%) and the aldehydes yield (76%). The ratio of 3-pentenal/4-pentenal was 96/4. (E,Z)-3-Pentenal (E/Z = 75/25): ¹H NMR δ 9.62 (t, J = 2 Hz, 1 H, CHO, E), 9.64 (t, J = 1.8 Hz, 1 H, CHO, Z); 5.38-5.90 (m, 2 H, CH = CH, E + Z); 3.12–3.20 (m, 2 H, CH_2 , Z); 3.05–3.10 (m, 3 H, CH₂, E); 1.65–1.78 (m, 3 H, CH₃, E); 1.55–1.72 (m, 3 H, CH₃, Z); GC-MS (m/e) 84 (M⁺), 69, 55 (100). 4-Pentenal: ¹H NMR δ 9.75 (t, J = 1.5 Hz, 1 H, CHO); 5.04-5.07 (m, 1 H, -CH =); 4.94-5.02 (m, 2 H, $= CH_2$); 2.45-2.55 (m, 2 H, $-CH_2$ -CHO); 2.35–2.40 (m, 2 H, $-CH_2$ -CH₂); GC-MS (m/e) 84 (M⁺), 83, 55 (100), 41.

TABULAR SURVEY

As mentioned in the Introduction, the exhaustive review by Cornils on the hydroformylation reactions that appeared in 1980 compiled publications including patents and patent applications since its discovery in 1938 till sometime in 1978.³ Accordingly, the tabular survey in this chapter covers relevant examples abstracted from the literature from 1978 through 1998, and additional examples from crucial references up to November, 1999 have also been included. Because of the emphasis on the scope of the hydroformylation reactions as synthetic methods, patents and patent applications dealing with improvements of the wellestablished industrial Oxo-Process are not included. The tabular survey starts from the hydroformylation of simple olefins, dienes, and polyenes in Tables I and II. Then, Tables III–IX are categorized according to different functional groups attached to olefinic substrates. Table X covers asymmetric hydroformylations of prochiral olefins, and Table XI summarizes the hydroformylation of acetylenes. Within each table the substrate compounds are listed according to increasing carbon numbers. Reaction conditions including solvent, temperature, pressure, and time are presented as they are available from the original references. The pressure unit differs from a paper to another paper, i.e., atmosphere (atm), bar, kg/cm², pounds per square inch (psi), and pascal (Pa). Although it might be confusing, the authors intentionally did not convert the reported pressures to a uniform pressure unit. The relations between different pressure units are as follows: 1 atm = 1.01325 bar = 1.03323 kg/cm² = 14.696 psi = 101.325 Pa. Yields and percent enantiomeric excess (% ee) are given in parentheses. A dash indicates that no yield is given in the reference.

The following abbreviations are used in the tables:

Ac	acetyl
acac	acetylacetonato
Bipy	2,2'-bipyridine
COD	cycloocta-1,5-diene
Су	cyclohexyl
ee	enantiomeric excess
Pht	o-phthalyl
ру	pyridine
Pz	pyrazolate
THF	tetrahydrofuran

The following catalysts and their abbreviations are listed in alphabetical order and are used throughout the Tabular Survey.

\wedge	CO/H ₂ (47/67, 114 bar). THI	, 120°, 16 h			Сно	454
// `	· · · · · · · · · · · · · · · · · · ·	. , -		UHC V	I ' / Ш	
	Catalyst			Turn	over ^a I/II	
	[Rh(CpCo(P(O)(OMe) ₂	$_{3}]_{2}(CO)_{3}$		30	0.7	
	[Rh(CpCo(P(O)(OMe) ₂	3]2(CO)3/PP	h3	50	1.7	
	Rh(CpCo[P(O)(OMe)(C	[CH ₂] ₃ CH=0	CH ₂)] ₃)(CO	D) ₂ 280	0.6	
	Rh(CpCo(P(O)(OMe)(C	C ₃ H ₆ CH=Cl	H ₂)) ₃)(CO)	₂ /PPh ₃ 390	2.6	
	Rh(CpCo(P(O)(OMe)(C	$C_3H_6CN))_3)$	(CO) ₂	340	0.7	
	Rh(CpCo(P(O)(OMe)(C	$C_3H_6CN))_3)$	(CO) ₂ /PPh	₃ 690	2.2	455
	CO/H ₂ (1/1, 7.4 bar), di-n-bu	tyl phthalate,				-55
	90°, 5 h					
	Catalyst precursor	Ligand	L/[Rh]	Turnover ^a	<u>1/11</u>	
	RhH(CO)(PPh ₃) ₃	_	0	68.8	1.63	
	$RhH(CO)(C_{60})(PPh_3)_2$	_	0	57.3	1.38	
	RhH(CO)(PPh ₃) ₃	PPh ₃	13	64.6	2.91	
	$RhH(CO)(C_{60})(PPh_3)_2$	$C_{60}{}^{b}$	13	44.8	1.19	
	$RhH(CO)(C_{60})(PPh_3)_2$	PPh ₃	13	55.3	3.00	
	RhH(CO)(PPh ₃) ₃	PPh ₃	40	64.8	4.23	
	$RhH(CO)(C_{60})(PPh_3)_2$	PPh ₃	40	49.5	4.25	
	Ru(saloph)(CO), CO/H ₂ (1/1,	27 atm),		456		
	120°, 4 h					
	[NEt ₄][HRu ₃ (CO) ₁₁], CO (3.3 bar),			I + II (), I:	$\mathbf{H} = 98.6:1.4$	457,
	H ₂ (1.7 bar), diglyme, 75°, 6	6 h				458
				T () (]]		450
	$Fe_3Rh_2(CO)_{14}C \text{ on } SiO_2,$			I(—) + II	() +Он +Он	459
	CO/H_2 (1/1), 162°				III (—) IV (—)	
				+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(I + II):(III + IV):V = 17:28:55, (I + III):(II + IV) = 70:30	
	HRuCo ₃ (CO) ₁₂ on carbon,			I () + II ($(-) + \mathbf{III}(-) + \mathbf{IV}(-) + \mathbf{V}(-)$	460
	CO/H ₂ (1/1), 194°			(1 + 11):(11	$\mathbf{u} + \mathbf{iv}$): $\mathbf{v} = 1:4:95$, ($\mathbf{i} + \mathbf{iu}$):($\mathbf{u} + \mathbf{iv}$) = 96:4	
	Co(OAc) ₂ /P(Bu-n) ₃ , hv, 80°, CO/H ₂ (1/1, 85 bar), 24 h	MeOH,		I + II (16), I:	II = 99:1	461, 462
	RhNaY (Rh 3.4%), CO/H ₂ (1. 150°	'3, 1 atm),		I + II (), I:1	$\mathbf{II} = 1.9:1, \mathbf{V}/(\mathbf{I} + \mathbf{II}) = 3.4$	
						463-463
	SO3Na					463-46:
	SO3Na	the Ph				463-46
	SO ₃ Na P(C ₆ H ₄ SO ₃ Na-n	ı) _{2-n} Ph _n				463-46
	SO ₃ Na P(C ₆ H ₄ SO ₃ Na- <i>m</i>	ı) _{2-n} Ph _n) _{2-n} Ph _n		I (87) + II (-), I:II = 96.9:3.1; III + IV (1)	463-46 466
	SO ₃ Na P(C ₆ H ₄ SO ₃ Na- <i>m</i> SO ₂ Na	$x_{2-n}Ph_n$ $y_{2-n}Ph_n$ n = 0.1		I (87) + II (-), I:II = 96.9:3.1; III + IV (1)	463-46 466
	SO ₃ Na $P(C_6H_4SO_3Na-m)$ SO ₃ Na Rh(OAc) ₃ , P/Rh = 6.7, pH = CO/H (1/1, 725 pc)) H = 0	$h_{2-n}Ph_n$ $h_{2-n}Ph_n$ n = 0,1 5, 125°,		I (87) + II (-), I:II = 96.9:3.1; III + IV (1)	463-46 466
	SO ₃ Na $P(C_6H_4SO_3Na-m_3)$ SO ₃ Na Rh(OAc) ₃ , P/Rh = 6.7, pH = CO/H ₂ (1/1, 725 psi), H ₂ O	$h_{2-n}Ph_n$ $h_{2-n}Ph_n$ n = 0,1 5, 125°,		I (87) + II (-), I:II = 96.9:3.1; III + IV (1)	463-463
	SO ₃ Na $P(C_6H_4SO_3Na-m_3)$ SO ₃ Na Rh(OAc) ₃ , P/Rh = 6.7, pH = CO/H ₂ (1/1, 725 psi), H ₂ O Co ₂ (CO) ₈ , CO/H ₂ (1/1, 192 p	$r_{2-n}Ph_n$ $p_{2-n}Ph_n$ n = 0,1 5, 125°, si), scCO ₂ ^d		I (87) + II (-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	SO ₃ Na $P(C_6H_4SO_3Na-m_3)$ SO ₃ Na Rh(OAc) ₃ , P/Rh = 6.7, pH = CO/H ₂ (1/1, 725 psi), H ₂ O Co ₂ (CO) ₈ , CO/H ₂ (1/1, 192 p <u>Pressure (psi)</u> Tem	$r_{2-n}Ph_n$ n = 0,1 5, 125°, si), scCO ₂ ^d P		I (87) + II (<u>I:П I+I</u>	-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	$SO_{3}Na$ $P(C_{6}H_{4}SO_{3}Na-m)$ $SO_{3}Na$ $Rh(OAc)_{3}, P/Rh = 6.7, pH = CO/H_{2} (1/1, 125 psi), H_{2}O$ $Co_{2}(CO)_{8}, CO/H_{2} (1/1, 192 p)$ $Pressure (psi) Tem 240(0) 78^{\circ}$	$(x)_{2-n}Ph_n$ n = 0,1 5, 125°, si), scCO ₂ ^d P		I (87) + II (<u>I:П I+I</u> 4.2 —	-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	$SO_{3}Na$ $P(C_{6}H_{4}SO_{3}Na-m)$ $SO_{3}Na$ $Rh(OAc)_{3}, P/Rh = 6.7, pH = CO/H_{2} (1/1, 125 psi), H_{2}O$ $Co_{2}(CO)_{8}, CO/H_{2} (1/1, 192 p)$ $\frac{Pressure (psi)}{2400} \frac{Tem}{88^{\circ}}$	$(x)_{2-n}Ph_n$ n = 0,1 5, 125°, si), scCO ₂ ^d P		I (87) + II (<u>I:II I+II</u> 4.2 4.1	-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	$SO_{3}Na$ $P(C_{6}H_{4}SO_{3}Na-m)$ $SO_{3}Na$ $Rh(OAc)_{3}, P/Rh = 6.7, pH = CO/H_{2} (1/1, 125 psi), H_{2}O$ $Co_{2}(CO)_{8}, CO/H_{2} (1/1, 192 p)$ $\frac{Pressure (psi)}{2400} \frac{Tem}{78^{\circ}}$ $2400 \qquad 88^{\circ}$	$(x)_{2-n}Ph_n$ n = 0,1 5, 125°, si), scCO ₂ ^d P		I (87) + II (<u>I:II I + II</u> 4.2 4.1 3.1	-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	$SO_{3}Na$ $P(C_{6}H_{4}SO_{3}Na-m)$ $SO_{3}Na$ $Rh(OAc)_{3}, P/Rh = 6.7, pH = CO/H_{2} (1/1, 125 psi), H_{2}O$ $Co_{2}(CO)_{8}, CO/H_{2} (1/1, 192 p)$ $\frac{Pressure (psi)}{2400} \frac{Tem}{88^{\circ}}$ $2400 \qquad 88^{\circ}$ $2400 \qquad 98^{\circ}$ $2400 \qquad 108^{\circ}$	$r_{2-n}Ph_n$ n = 0,1 5, 125°, si), scCO ₂ ^d P		I (87) + II (<u>I:II I + II</u> 4.2 4.1 3.1 2.7	-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	$SO_{3}Na$ $P(C_{6}H_{4}SO_{3}Na-m)$ $SO_{3}Na$ $Rh(OAc)_{3}, P/Rh = 6.7, pH =$ $CO/H_{2} (1/1, 725 psi), H_{2}O$ $Co_{2}(CO)_{8}, CO/H_{2} (1/1, 192 p)$ $\frac{Pressure (psi)}{2400} \frac{Tem}{2400}$ 88° $2400 \qquad 88^{\circ}$ $2400 \qquad 98^{\circ}$ $2400 \qquad 108^{\circ}$ $1350 \qquad 88^{\circ}$	$r_{2-n}Ph_{n}$ n = 0,1 5, 125°, si), scCO ₂ ^d P		I (87) + II (I:II I + II 4.2 4.1 3.1 2.7 2.7	-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	$SO_{3}Na$ $P(C_{6}H_{4}SO_{3}Na-m)$ $SO_{3}Na$ $Rh(OAc)_{3}, P/Rh = 6.7, pH =$ $CO/H_{2} (1/1, 725 psi), H_{2}O$ $Co_{2}(CO)_{8}, CO/H_{2} (1/1, 192 p)$ $\frac{Pressure (psi)}{2400} \frac{Tem}{2400}$ $2400 \qquad 88^{\circ}$ $2400 \qquad 98^{\circ}$ $2400 \qquad 108^{\circ}$ $1350 \qquad 88^{\circ}$ $1650 \qquad 88^{\circ}$	$r_{2-n}Ph_{n}$ n = 0,1 5, 125°, si), scCO ₂ ^d P		I (87) + II (I:II I + II 4.2 4.1 3.1 2.7 3.0	-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	$\begin{array}{c} SO_3Na \\ \hline \\ P(C_6H_4SO_3Na-m) \\ SO_3Na \\ \hline \\ Rh(OAc)_3, P/Rh = 6.7, pH = \\ CO/H_2 (1/1, 725 psi), H_2O \\ \hline \\ Co_2(CO)_8, CO/H_2 (1/1, 192 p) \\ \hline \\ \hline \\ Pressure (psi) \\ \hline \\ 2400 \\ 88^\circ \\ 2400 \\ 88^\circ \\ 2400 \\ 1350 \\ 88^\circ \\ 1650 \\ 88^\circ \\ 2100 \\ 88^\circ \end{array}$	$(x)_{2-n}Ph_n$ n = 0,1 5, 125°, si), scCO ₂ ^d P		I (87) + II (I:II I + II 4.2 4.1 3.1 2.7 3.0 4.2	-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	$\begin{array}{c} SO_3Na \\ \hline \\ P(C_6H_4SO_3Na-m_3SO_3Na \\ Rh(OAc)_3, P/Rh = 6.7, pH = \\ CO/H_2 (1/1, 725 psi), H_2O \\ Co_2(CO)_8, CO/H_2 (1/1, 192 p) \\ \hline \\ \underline{Pressure (psi)} \\ 2400 \\ 88^\circ \\ 2400 \\ 88^\circ \\ 2400 \\ 1350 \\ 88^\circ \\ 1350 \\ 88^\circ \\ 2400 \\ 108^\circ \\ 1350 \\ 88^\circ \\ 2400 \\ 108^\circ \\ 88^\circ \\ 2400 \\ 88^\circ \\ 2100 \\ 88^\circ \\ 2700 \\ 88^\circ \\ 2700 \\ 88^\circ \\ 88^\circ \\ 2100 \\ 88^\circ \\ 2700 \\ 88^\circ \\ 2700 \\ 88^\circ \\ 2100 \\ 88^\circ \\ 2700 \\ 88^\circ \\ 2100 \\ 88^\circ \\ 2700 \\ 88^\circ \\ 2100 \\ 88^\circ \\ 2100 \\ 88^\circ \\ 2100 \\ 88^\circ \\ 2700 \\ 88^\circ \\ 2100 \\ 88^\circ \\ 2700 \\ 88^\circ \\ 2700 \\ 88^\circ \\ 2100 \\ 88^$	$a_{2-n}Ph_{n}$ n = 0,1 5, 125°, si), scCO ₂ ^d P		I (87) + II (I:II I + II 4.2 4.1 3.1 2.7 3.0 4.2 4.3	-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467
	$SO_{3}Na$ $P(C_{6}H_{4}SO_{3}Na-m)$ $SO_{3}Na$ $Rh(OAc)_{3}, P/Rh = 6.7, pH = CO/H_{2} (1/1, 125 psi), H_{2}O$ $Co_{2}(CO)_{8}, CO/H_{2} (1/1, 192 p)$ $\frac{Pressure (psi)}{2400} \frac{Tem}{2400}$ 88° $2400 \qquad 88^{\circ}$ $2400 \qquad 88^{\circ}$ $2400 \qquad 088^{\circ}$ $2100 \qquad 88^{\circ}$	$(x)_{2-n}Ph_n$ n = 0,1 $(x)_{2-n}Ph_n$ n = 0,1 $(x)_{2-n}Ph_n$		I(87) + II (-), I:II = 96.9:3.1; III + IV (1)	463-46 466 467

TABLE I, HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS

$\begin{array}{l} Ru_{3}(CO)_{12}, ligand, L/Rh=8, MeCONMe_{2}, \\ CO/H_{2}(1/1, 80 atm), 120^{\circ}, 20 h \\ \hline \\ \underline{Ligand} \\ \hline \\ None \\ 1.10-phenanthroline \\ 2.9-Me_{2}-1,10-phenanthroline \\ Me_{2}N(CH_{2})_{2}NMe_{2} \\ Me_{2}N(CH_{2})_{3}NMe_{2} \\ Me_{2}N(CH_{2})_{4}NMe_{2} \\ Me_{2}N(CH_{2})_{6}NMe_{2} \\ 2.,2^{-bipyridyl} \\ py \\ PPh_{3} \\ \hline \\ Chloro(\eta^{4}-1,5-cyclooctadiene)(1,3-di- \\ \end{array}$	I + Π (25) (73) (76) (31) (33) (57) (62) (24) (79) (0) I + Π ()	I:II 84:16 95:5 92:8 95:5 96:4 96:4 96:4 96:4 93:7 91:9	469
$CO/H_2 (1/1, 80 \text{ atm}), 120^\circ, 20 \text{ h}$ $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<u>I + II</u> (25) (73) (76) (31) (33) (57) (62) (24) (79) (0) I + II (I:II 84:16 95:5 92:8 95:5 96:4 96:4 96:4 93:7 91:9 —	
$eq:linear_line$	I + Π (25) (73) (76) (31) (33) (57) (62) (24) (79) (0) I + Π (0)	I:II 84:16 95:5 92:8 95:5 96:4 96:4 96:4 93:7 91:9 —	
None 1,10-phcnanthrolinc 2,9-Me ₂ -1,10-phenanthroline Me ₂ N(CH ₂) ₂ NMe ₂ Me ₂ N(CH ₂) ₃ NMe ₂ Me ₂ N(CH ₂) ₄ NMe ₂ Me ₂ N(CH ₂) ₆ NMe ₂ 2,2'-bipyridyl py PPh ₃ Chloro(η^4 -1,5-cyclooctadiene)(1,3-di-	(25) (73) (76) (31) (33) (57) (62) (24) (79) (0) I + II (84:16 95:5 92:8 95:5 96:4 96:4 96:4 96:4 93:7 91:9 —	
1.10-phenanthroline 2,9-Me ₂ -1,10-phenanthroline Me ₂ N(CH ₂) ₂ NMe ₂ Me ₂ N(CH ₂) ₃ NMe ₂ Me ₂ N(CH ₂) ₄ NMe ₂ Me ₂ N(CH ₂) ₄ NMe ₂ 2,2'-bipyridyl py PPh ₃ Chloro(η^4 -1,5-cyclooctadiene)(1,3-di-	(73) (76) (31) (33) (57) (62) (24) (79) (0) I + II (95:5 92:8 95:5 96:4 96:4 96:4 93:7 91:9 —	
2,9-Me ₂ -1,10-phenanthroline Me ₂ N(CH ₂) ₂ NMe ₂ Me ₂ N(CH ₂) ₃ NMe ₂ Me ₂ N(CH ₂) ₄ NMe ₂ Me ₂ N(CH ₂) ₆ NMe ₂ 2,2'-bipyridyl py PPh ₃ Chloro(η^4 -1,5-cyclooctadiene)(1,3-di-	(76) (31) (33) (57) (62) (24) (79) (0) I + II (92:8 95:5 96:4 96:4 96:4 93:7 91:9 —	
$\label{eq:metric} \begin{split} & Me_2N(CH_2)_2NMe_2 \\ & Me_2N(CH_2)_3NMe_2 \\ & Me_2N(CH_2)_4NMe_2 \\ & Me_2N(CH_2)_6NMe_2 \\ & 2,2^*\text{-bipyridyl} \\ & py \\ & PPh_3 \\ & Chloro(\eta^4-1,5\text{-cyclooctadiene})(1,3\text{-di-}) \end{split}$	(31) (33) (57) (62) (24) (79) (0) I + II (95:5 96:4 96:4 96:4 93:7 91:9 	
$\label{eq:constraint} \begin{array}{l} Me_2N(CH_2)_3NMe_2\\ Me_2N(CH_2)_4NMe_2\\ Me_2N(CH_2)_6NMe_2\\ 2,2^{*}\text{-bipyridyl}\\ py\\ PPh_3\\ Chloro(\eta^4-1,5\text{-cyclooctadiene})(1,3\text{-di-}) \end{array}$	(33) (57) (62) (24) (79) (0) I + II (96:4 96:4 96:4 93:7 91:9 	
$\label{eq:mc2} \begin{array}{l} Me_2N(CH_2)_4NMe_2\\ Me_2N(CH_2)_6NMe_2\\ 2,2^{-}bipyridyl\\ py\\ PPh_3\\ Chloro(\eta^4-1,5\text{-cyclooctadiene})(1,3\text{-di-}) \end{array}$	(57) (62) (24) (79) (0) I + II (96:4 96:4 93:7 91:9 	
$\label{eq:me2} \begin{array}{l} Me_2N(CH_2)_{0}NMe_2\\ 2,2^{*}\text{-bipyridyl}\\ py\\ PPh_3\\ Chloro(\eta^4-1,5\text{-cyclooctadiene})(1,3\text{-di-}\\ \end{array}$	(62) (24) (79) (0) I + II (96:4 93:7 91:9 	
2,2-bipyridyl py PPh ₃ Chloro(η^4 -1,5-cyclooctadiene)(1,3-di-	(24) (79) (0) I + II (93:7 91:9 —	
py PPh ₃ Chloro(η ⁴ -1,5-cyclooctadiene)(1,3-di-	(79) (0) І + П (91:9 —	
PPh_3 Chloro(η^4 -1,5-cyclooctadiene)(1,3-di-	(0) І + П (—	
Chloro(n ⁴ -1,5-cyclooctadiene)(1,3-di-	I + II () LH = 1	
methylimidazolin-2-ylidine)rhodium, PhMe, CO/H ₂		—), I.II = 1	470
Rh(acac)(CO) ₂ , PPh ₃ , P/Rh = 10, PhMe, CO/H ₂ (1/1, 50 atm), 100° , <5 min	I + II (;	>96), I:II = 2	471
Rh(acac)(CO) ₂ , TPPTS, P/Rh = 10, 90 min, PhMe/H ₂ O = 4/3, CO/H ₂ (1/1, 50 atm), 100°	I + II (), I : II = 5	471
Rh(acac)(CO) ₂ /TPPTS on 60 Å silica gel, P/Rh = 10, PhMe, 24% wt H ₂ O, 100°, CO/H ₂ (1/1, 50 atm), 90 min	I + II (—), I : II = 2.8	471
[Rh], P/Rh = 10-50, 110-130°, CO/H ₂ (1/1, 20-60 atm)	І + П (—), I:II = 99	241
NaSO ₃ $P(C_6H_4SO_3Na-m)_{2.n}$ $P(C_6H_4SO_3Na-m)_{2.n}$ NaSO ₂	Ph _n Ph _n		
Ru ₃ (CO) ₁₂ , 1,10-phenanthroline, AcNMe ₂ , 120°, 20 h	I (73)	+ \mathbf{II} (—) + \mathbf{V} (1), \mathbf{I} : \mathbf{II} = 20.3	472
HRh(CO) ₂ L, CO/H ₂ (10kg/cm ²),	I (62)	+ II (37)	473

Reactant

100°, 50 min t-Bu. -0_P(OR)2 ,ò r-B (RO)₂P R = ₹ -Bu-r Rh-catalyst, CO/H2 (10 kg/cm²G), 100° I (55) + II (43)

Bu-t

474

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	[Rh(OAc)(COD)] ₂ , PhMc, H ₂ /CO (9 kg/cm ² G) 70°, 1 h t-Bu r-Bu r-Bu R_2P PR ₂ $R = \frac{\sqrt{2}}{2}$	I:Π = 49	475
	HRh(CO) ₂ L, CO/H ₂ (10 kg/cm ²), 100°, 50 min t-Bu (RO) ₂ P O $P(OR)_2$ R = 3 $ Bu$ - t	I (62) + II (37)	473
	$[Rh(OAc)(CO)]_2, P/Rh = 8,$ CO/H ₂ (1/1), N ₂	I (87) + III (1)	476
	Rh(CO)(PPh ₃) ₃ , P(OC ₆ H ₄ Bu- <i>t</i> -2) ₃ , DPPB, diphosphite/DPPB/Rh = $56/2/1$, N(CH ₂ CH ₂ OH) ₃ , <i>i</i> -PrOH, CO/H ₂ (40 atm), 55° , 2 h	I + II (87)	477
C4	PtCl ₂ (CO)(PPh ₃), SnCl ₂ , CH ₂ Cl ₂ , CO/H ₂ (1/1, 140 atm), 80°, 1.5 h	$\begin{array}{c} & & & \\ & & & \\ \mathbf{I}(-) & & \mathbf{II}(-) & \mathbf{III}(-) \\ + & & & \\ & & $	478
	PtCl ₂ (PPh ₃) ₂ , SnCl ₂ , CH ₂ Cl ₂ , CO/H ₂ (1/1, 140 atm), 80°, 1.5 h	I(-) + II(-) + III(-) + V(-) $I:II = 92:8$	478
	HPtCl(PPh ₃) ₂ , SnCl ₂ , CH ₂ Cl ₂ , CO/H ₂ (1/1, 140 atm), 80°, 1.5 h	I(-) + II(-) + III(-) + V(-) $I:II = 95:5$	478
	Rh(acac)(CO)_2, phosphine ligand,P/Rh = 12, CO/H2 (1/5, 1500 kPa),2-ethylhexyl acetate, 110°Phosphine ligandRate ($M^{-1}min^{-1}$)Me_3SiCH2CH2PPh2330Me_2Si(CH2CH2PPh2)2123	Conv. (%) I : Π : Π : V 50 67 : 19 : 6 : 8 50 78 : 12 : 4 : 6	479
	MeSi(CH ₂ CH ₂ PPh ₂) ₃ 77 Si(CH ₂ CH ₂ PPh ₂) ₄ 41 PPh ₂ 430	50 82:9:3:6 50 83:10:2:6 50 59:18:5:19	
	PtCl ₂ (COD)/SnCl ₂ /P(OPh) ₃ /(PPN)Cl (1/5/2/1), 80°, CH ₂ Cl ₂ , 0.5 h, CO/H ₂ (1/2, 140 atm)	I() + II() + III() + IV() + V() I:II = 93:7	480
	PtCl ₂ (CO)(PPh ₃), SnCl ₂ , CH ₂ Cl ₂ , CO/H ₂ (1/1, 140 atm), 80°, 2 h	I () + II () + III () + IV () + VI () I:II = 18:82	478
	PtCl ₂ (PPh ₃) ₂ , SnCl ₂ , CH ₂ Cl ₂ , CO/H ₂ (1/1, 140 atm), 80°, 2 h	I() + II() + III() + IV() + VI() $I:II = 16.84$	478
	HPtCl(PPh ₃) ₂ , SnCl ₂ , CH ₂ Cl ₂ , CO/H ₂ (1/1, 140 atm), 80°, 2 h	I() + II() + III() + VI() $I:II = 9:91$	478

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	PtCl ₂ (COD), PPh ₃ , (PPN)Cl, SnCl ₂ , CO/H ₂ (1/1, 140 atm), CH ₂ Cl ₂ , 80°, 2 h	I() + II() + III() + IV() $I:II = 8:92$	481
	PtCl ₂ (COD), SnCl ₂ , P(OC ₆ H ₄ OMe-4) ₃ , CO/H ₂ (1/1, 140 atm), CH ₂ Cl ₂ , 120°, 2 h	$\mathbf{I}() + \mathbf{II}() + \mathbf{III}() + \mathbf{IV}() + \mathbf{VI}() \mathbf{I}:\mathbf{II} = 68:32$	482
	PtCl ₂ (COD)/SnCl ₂ /P(OPh) ₃ /(PPN)Cl (1/5/1/1), 80°, CH ₂ Cl ₂ , 0.5 h, CO/H ₂ (1/2, 140 atm)	$\mathbf{I} (-) + \mathbf{II} (-) + \mathbf{III} (-) + \mathbf{IV} (-) + \mathbf{VI} (-) \mathbf{I}: \mathbf{II} = 8:92$	480
\sim	 Pt(SnCl₃)Cl(DIOP), CO (90 atm), D₂ (35 atm), 80°, 3 h, PhEt Ag₂O, NaOH, H₂O CH₂N₂, Et₂O 	$\begin{array}{lll} CH_{3}CH_{1,18}D_{.82}CH_{.9}D_{1.1}CH_{1.92}D_{.08}CO_{2}Me & I () \\ &+ CH_{3}CH_{1.09}D_{.91}CH(CH_{2.95}D_{.05})CO_{2}Me & II () & I:II = 20:80 \end{array}$	483, 484
	 Rh₄(CO)₁₂, CO (90 atm), D₂ (90 atm), 100°, 17 h, PhEt Ag₂O, NaOH, H₂O CH₂N₂, Et₂O 	$\begin{array}{ll} CH_{3}CH_{.92}D_{1.08}CH_{.83}D_{1.17}CH_{2}CO_{2}Me & I() \\ + CH_{3}CH_{.94}D_{1.06}CH_{.92}D_{.08}(CH_{2.86}D_{.14})CO_{2}Me & II() \\ & I:II = 14:86 \end{array}$	483
	 Co₂(CO)₈, CO (430 atm), D₂ (70 atm), 100°, 6.5 h, PhEt Ag₂O, NaOH, H₂O CH₂N₂, Et₂O 	$\begin{array}{ll} CH_{3}CH_{1.5}D_{.5}CH_{1.81}D_{.19}CH_{1.55}D_{.45}CO_{2}Me & I () \\ + CH_{3}CH_{1.41}D_{.59}CH_{.66}D_{.34}(CH_{3})CO_{2}Me & II () \\ & I:II = 65:35 \end{array}$	483
	Rh(acac)(CO) ₂ , ligand, PhMe, 100°, H ₂ /CO (8.0 kg/cm ²), 5 h (RO) ₂ P-O O-P(OR) ₂ OR = \checkmark_{t-Bu}^{O} Bu-r	I (81)	485
C ₅	RhCl(CO)(DPPB), C ₆ H ₆ , 55°, 12 h, CO/H ₂ (1/1, 90 atm)	СНО I (44) + СНО П (44)	486
<u> </u>	Ru ₃ (CO) ₁₂ , C ₆ H ₆ , 150°, CO (50 atm), H ₂ (45 atm)	I + II + I + II + II + III (30), I:II:III = 24:3.4:72.6	487
	Co ₂ (CO) ₈ /DIPHOS (1/1), C ₆ H ₆ , 140°, 24 h, CO/H ₂ (1/1, 1100-1150 psi)	$1 + \Pi + \Pi I (98), \Pi I (1 + \Pi) = 1.8$	488
	Co ₂ (CO) ₈ /DIPHOS (1/3), C ₆ H ₆ , 140°, 24 n, CO/H ₂ (1/1, 1100-1150 psi)	I + II + III (24), III/(I + II) = 3.4	488
	Polystyrene resin- $C_6H_4CH_2PPh_2Co(CO)_3$ - Co(CO)_3Ph_2PCH_2C_6H_4-polystyrene resin, P/Co = 0.67, CO/H ₂ (1/1, 1100-1150 psi), C ₆ H ₆ , 140°, 24 h	$\mathbf{I} + \mathbf{II} + \mathbf{III} (98), \mathbf{III}/(\mathbf{I} + \mathbf{II}) = 1.94$	488
	Polystyrene resin- $C_6H_4CH_2PPh_2Co(CO)_3$ - Co(CO)_3Ph_2PCH_2C_6H_4-polystyrene resin, DIPHOS, P/Co = 2.67, C_6H_6, 140°, 24 h, CO/H ₂ (1/1, 1100-1150 psi)	I + II + III (50), III/(I + II) = 4.61	488
	Co ₄ (CO) ₈ (µ ₂ -CO) ₂ (µ ₄ -PPh) ₂ , 150°, 22.5 h, CO/H ₂ (1/1, 77.1-68.2 bar)	I + II + III (95), III/(I + II) = 0.6	489
	RhH(CO)(PPh ₃) ₃ , PPh ₂ (CH ₂) ₂ PPh ₂ , P/Rh = 21, CO/H ₂ (1/1, 800 psi), 120°, C_6H_6 , 21 h	Ι + Π (90)	490

Styrene-divinylbenzene (1%) resin-(C₆H₄PPh(CH₂)₂PPh₂)RhH(CO)(PPh₃), P/Rh = 21, CO/H₂ (1/1, 100 psi),

HCo(CO)₄, CO (0.1 bar), H₂ (100 bar),

 C_6H_6 , 140°, 21 h

n-heptane, 25°

 \bigcirc

 $\mathbf{I} + \mathbf{II} + \mathbf{III}$ (91), $\mathbf{III}/(\mathbf{I} + \mathbf{II}) = 0.72$

490

Reactant	Conditions	Product(s) and Yield(s) (%)				
	<i>cis</i> -PtCl ₂ (PPh ₃) ₂ /SnCl ₂ ·2H ₂ O (1:5), CHCl ₃ , CO/H ₂ (1/1, 100 bar), 90°, 4 h	I (79) + II (3)	492			
	Rh(acac)[P(OPh) ₃] ₂ , P(OPh) ₃ , 80°, CO/H ₂ (10 atm), 1 h	I (100)	393			
	$Ru_3(CO)_{12}$, $P(C_6H_{11})_3$, HCO_2Me , H_2O , 180°, 10 h	$II (47) + CH_2OH$ (43)	493			
	Polystyryl-(CH ₂) ₄ P(Bu- <i>n</i>) ₂ -Co ₂ (CO) ₈ , <i>n</i> -C ₈ H ₁₈ , CO/H ₂ (1/2, 480-510 psi),	OHC $I(13) + I(13)$ H $I(13)$	494			
	180°, 14 h	+ HO III (33) + OH IV (21)				
		+ V (7)				
	[Rh(COD)OAc] ₂ , PPh ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), PhH, 90 $^{\circ}$	I (78)	468			
	Rh(acac) ₃ (CO) ₂ , 1-butyl-1-methyl- imidazolium hexafluorophosphate, PPh ₃ , CO/H ₂ , C ₇ H ₁₆ /PhMe, 82°, 2 h	I (75) + II (24)	495			
	<i>cis</i> -PtCl ₂ (PPh ₃) ₂ /SnCl ₂ ·2H ₂ O (1:5), C ₆ H ₆ , CO/H ₂ (1/1, 100 bar), 90°, 4 h	I + II (86), I:II = 93:7, V (7); 2-pentenes (5)	492			
	Rh(OAc) ₃ , TPPTS, polyethylene glycol, H/CO (1/1, 30 bar), 125°, 3h	Ι + Π (70), Ι : Π = 96 : 4				
	RhCl(CO)(DPPB), C ₆ H ₆ , 55°, 12 h, CO/H ₂ (1/1, 90 atm)	I (57) + II (43)				
	$Rh_4(CO)_{12}/PPh_3$ (1/5), C_6H_6 , 25°, 6 h.	I + II (99), I:II = 3.7				
	CO/H_2 (1/1, 1 atm) Rh ₄ (CO) ₁₂ /P(OPh) ₃ (1/4), C ₆ H ₆ , 25°, 24 h, CO/H ₂ (1/1, 1 atm)	I + II (28), I:II = 16.3	497			
	[Rh(CO) ₂ Cl] ₂ , CO/H ₂ (1/1, 600 psi), C ₆ H ₆ ,		498			
	100-110°, 16-18 h Decembing liggerd P/Ph					
	none —	$\frac{100}{100}$ 0.76				
	PPh ₃ 2	99 0.88				
	DIPHOS 2	82 0.86				
	$1,2-(PPh_2)_2C_6H_4$ 2	73 1.55				
	7	94 3.20				
	Ph_2P' PPh_2					
Ph N	Ph N Ph Ph Ph Ph Ph Ph Ph Ph	100 0.91				
	PPN[HRu(CO) ₄], CO/H ₂ (1/1, 300 atm), DMF 150° 16.5 h	I + II (56), I:II = 90.1:9.9; III + IV (3), III:IV = 93.9:6 1: V (3) - 2-pentence (14)	499			
	Fe ₄ Rh ₂ C(CO) ₁₆ , CO/H ₂ (1/1, 60 atm), 100°, 6 h	$\mathbf{I} + \mathbf{II} (), \mathbf{I}:\mathbf{II} = 1:1; \text{ pentane (traces)}$	500			
	$[Fe_3Rh_3C(CO)_{15}][PPh_4], 100^\circ, 5 h, CO/H_2 (1/1, 60 atm)$	I + II (—), I : II = 1:1; pentane (traces)	500			
	Fe ₂ Co ₂ (CO) ₁₁ (µ ₁ -PPh) ₂ , C ₆ H ₆ , 130°, CO/H ₂ (1/1, 400 psi), 168 h	I + II (50), I : II = 3.2	501			

Fe₂Co₂(CO)₁₁(µ₄-PPh)₂, C₆H₆, 130°, CO/H₂ (1/1, 800 psi), 150 h

I + II (56), I : H = 90.1:9.9; III + IV (3), III + IV $(-0.2) + (-1.2) + (2) + 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2$	499
III: IV = 93.9:6.1; V(3); 2-pentenes (14) I + II (500
I + II (—), I:II = 1:1; pentane (traces)	500
I + II (50), I:II = 3.2	501
I + II (89), I : II = 1.7	501

PtCl ₂ (PhCN) ₂ , Ligand, SnC	Cl ₂ ·2H ₂ O,					502
Pt/P/Sn = 1/2/5, CO/H ₂ (1	/1, 100 kg/cm ²),					
C ₆ H ₆ , 100°						
Ligand	Time (h)	Conv. (%)	I : II : pent	ane : 2-pent	tenes	
PPh ₃	24	4	72.7 : 6.3 :	8:13		
Ph ₂ P(CH ₂) ₄ PPh ₂	10	100	64.6 : 6.4 :	14:15		
trans-1 2-(PhaPCHa)a-c-	C_H10 18	100	68.4 : 7.6 :	13:10		
trans-1,2-(Ph_PCH_)-c-	CeHe 4	100	70.1 : 2.9 :	9:18		
	4	100	67 2 . 28 .	10.20		
trans-1 2-(PhaCHa)a-c-C	т.н. з	100	78.2 . 0.8 .	6 · 13		
trans-1,2-(1 injetinj)-e-e	24116 3	100	712.07.	0.15		
phosphinomethyl)norh	ornane	100	/1.3:0.7:	8:20		
trans-1,2-(Ph2PO)2-c-C5	₃ H ₈ 5	99	51.7 : 3.3 :	12:33		
1,2-(Ph ₂ PCH ₂) ₂ C ₆ H ₄	10	95	61.9 : 6.1 :	10:22		
Rh ₄ (CO) ₁₂ /PPh ₂ H/P(OPh) ₃ 25°, 4 h, CO/H ₂ (1/1, 1 at	(1/2/4), C ₆ H ₆ , m)	I + II (78	i), I :II = 8.7			497
Pt ₂ Co ₂ (µ-CO) ₃ (CO) ₅ (PPh ₃) CO/H ₂ (1/1, 800 psi), 17 l) ₂ , PhMe, 100°,	I (64) + I	I (15) + III (7))		503
						50.4
MeCCo ₂ (CO) ₆ NiCp, THF, CO/H ₂ (1/1, 600 psi)	130°, 24 h,	I + II (88), I:II = 0.6; I	H + I V (11))	504
PhPFeCo ₂ (CO) ₉ , THF, 130 CO/H ₂ (1/1, 600 psi)	1°, 24 h,	I + II (89), I:II = 1.4; II	$\mathbf{II} + \mathbf{IV} (1)$		504
Co4(CO)8(µ2-CO)2(µ4-PPh)) ₂ , 130°, 23 h,	I + II + I	II + IV +	Ţ	ั้งเ	489
CO/H ₂ (1/1, 62.0-55.4 bar)			СНО		
		I + D	(+ VI (95), I/($\mathbf{II} + \mathbf{VI}) = 2$	2.7; III + IV (3)	
Co4(CO)6(µ2-CO)2(PPh3)2(μ ₄ -PPh) ₂ ,	I + II + V	T (52), I/(II +	VI) = 3.8; I	III + IV (5)	489
PPh ₃ , 150°, 72.3 h, CO/H	(1/1, 41.4 bar)					
Pt(PhCN) ₂ Cl ₂ /1,2-(Ph ₂ PC) SpCl ₂ (1/1/5) CO/H ₂ (1/	H ₂) ₂ - <i>c</i> -C ₄ H ₆ / 1 100 atm) 70°	I+II+2 I+1	2-pestene (8) +	• n-pentane ((4)	505
C_6H_6 , 2 h	1, 100 auii), 70 ,	1+1	H (89), I . H = 9			
Ru(CO) ₃ (PPh ₃) ₂ , PPh ₃ , P/I CO/H ₂ (1/1, 1000 psi), 14	Ru = 20, C ₆ H ₆ , 10°	I + II (—	-), I:II = 3.4			506
Ru(CO) ₃ (Ph ₂ P-polystyrend 1% divinylbenzene resin)	e- 2, P/Ru = 3.1,	I + II (-), I:II = 3.7			506
C ₆ H ₆ , CO/H ₂ (1/1, 1000)	psi), 140°					
Co ₂ (CO) ₈ , Phosphine, P/C	$c_0 = 2.2, C_6 H_6,$					507
CO/H ₂ (4/5, 45 atm), 160	10					
Phosphine	Relative rate	(I+III):	(<u>II+IV+VI</u>)			
DBP-Ph	1.3	72:2	8			
PPh ₃	1.0	66 : 3	4			
DBP-Et	0.9	77:2	3			
PPh ₂ Et	0.7	79:2	1			
$P(Bu-n)_3$	0.6	87:1	3			
RhH(CO)(PPh ₃) ₃ , phosphi CO/H ₂ (1/1 100 psi) Cd	ne, P/Rh = 21, H ₄ , 80°					490
Phosphine		Convers	ion (%) 1/(1)	I+VD		
Phosphine		00	25	.+ • • •		
Nolle		22	2.5			
PPh ₃		98	0.7			
Ph ₂ P(CH ₂) ₂ PPh ₂		92	1.1			
Ph ₂ P(CH ₂) ₃ PPh ₂		89	0.9			
Ph ₂ P(CH ₂) ₄ PPh ₂		93	1.2			
Styrene-divinylbenzene (19	%) resin-	I + II (89	9), I:II = 2.7			490
(C ₆ H ₄ PPh(CH ₂) ₂ PPh ₂)Rh	H(CO)(PPh ₃),					
$P/Rh = 2.1. CO/H_2 (1/1.2)$	200 psi),					
CaHe, 60°, 21 h						
~0~+0, vv , ~1 II						
			LIE 23.2			E06

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs			
	$Rh(CO)_2Cp$ -20% divinylbenzenc- polystyrene copolymer, PPh ₃ , P/Rh = 20, C_6H_6 , 110°, CO/H ₂ (1/1, 1500 psi), 5 h	I + II (91), I:II = 2.06	509			
	Pt(PPh ₃) ₂ Cl ₂ , SnCl ₂ ·2H ₂ O, CO/H ₂	CHO I () + CHO II () $+ CHO II () I:II:III = 33:58:9$ $erythro:threo = 21:79$	484			
	Pt(PPh ₃) ₂ Cl ₂ , SnCl ₂ ·2H ₂ O, CO/H ₂	$I + \Pi + \Pi (erythro:threo = 32:68)$ $I:\Pi:\Pi = 32:57:11$	484			
X	RhH(CO)(PPh ₃) ₃ , C ₆ H ₆ , 80°, CO/H ₂ (1/1, 80 kg/cm ²)	Сно I + Ц (97), сно I:II = 95:5	375			
	$Rh_6(CO)_{16}, C_6H_6, CO/H_2 (1/1, 80 \text{ kg/cm}^2), 80^\circ$	I + II (91), I : II = 96:4	375			
	[Rh(COD)(OAc)] ₂ , CO/H ₂ , 25°	I (57-80)	316			
	Rh(acac)(CO) ₂ , P(OC ₆ H ₃ Me-4-Bu- <i>t</i> -2) ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 70°	I (64)	468			
	[Pt(C ₂ H ₄)(DPPB)]/CH ₃ SO ₃ H (1/1), 100°, CH ₂ Cl ₂ , CO/H ₂ (1/1, 100 atm), 19 h	I + II +OH (17) I + II (65), I:II = 97.6:2.4	259			
$\sim\sim$	Ru ₃ (CO) ₁₂ -2,2'-bipyridine, PhMe, CO/H ₂ (1/1, 50 bar), 100°, 66 h	ОНС I (21) + II (30)	510			
			510			
	$Ru_3(CO)_{12}=2,2^2$ -bipyridine, PhMe, Et ₃ N, CO/H ₂ (1/1, 50 bar), 100°, 17 h	$[\mathbf{x} + \mathbf{n}](2) + \mathbf{n}(4) + \mathbf{v}(20)$				
	$Ru_3(CO)_{12}$ -2.2'-bipyridine on silica f22, CO/H ₂ (1/1, 50 bar), 100°, 17 h, PhMe	[I + II] (0) + III (36) + IV (17) I (29) + II (13) + III (13) + IV (3)				
	Ru ₃ (CO) ₁₂ -2,2'-bipyridine on magnesium silicate x-104/2, CO/H ₂ (1/1, 50 bar), 100°, 17 h, PhMe					
	Rh(SOX)(COD), PPh ₃ , L/Rh = 5, PhMe, CO/H ₂ (1/1, 0.1 MPa), 60° , 10 h	I + II (), I:II = 83.9:16.1	511			
	Rh(SOX)(COD), DPPE, L/Rh = 5, PhMe, CO/H ₂ (1/1, 0.1 MPa), 60°, 10 h	I + II (), I:II = 45.3:54.7	511			
	Rh(SOX)(CO) ₂ , CO/H ₂ (1/1, 1.0 MPa, PhMe, 60°	Ligand P/Rh Conv. (%) I:II P(OPh)3 2 12 73:27 PPh3 2 29 81:19 DPPE 2 37 51:49 DPPP 2 94 48:52	512			
	[Rh(SBu-t)(CO)] ₂ (C ₅ H ₅)Zr(CH ₂ PPh ₂) ₂ , CO/H ₂ (1/1, 20 bar), THF, 80°, 2 h	I + II (99), I:II = 1.9:1	513			
	[RhCl(CO) ₂] ₂ , PPh ₃ , L/Rh = 5, Et ₃ N, PhMe, CO/H ₂ (1/1, 20 bar), 80°, 20 min	I + II (6), I : II = 71:29	514			
	[RhCl(CO) ₂] ₂ , DMTPPN, L/Rh = 5, Et ₃ N, PhMe, CO/H ₂ (1/1, 20 bar), 80°, 20 min	I + II (27), I : II = 68:32	514			
	[RhCl(CO) ₂] ₂ , PPPN, L/Rh = 5, Et ₃ N, PhMe, CO/H ₂ (1/1, 20 bar), 80°, 20 min	I + II (62), I : II = 68:32	514			
	Rh ₂ (µ-SBu- <i>t</i>) ₂ (CO) ₂ (TPPTS) ₂ , TPPTS, 80°, L/Rh = 6, CO/H ₂ (1/1, 10 bar), H ₂ O, 18 h	1 + Π (100), I : Π = 36:1	515, 23			
	RhH(C ₂ H ₄)[CH ₃ C(CH ₂ PPh ₂) ₃], THF, CO/H ₂ (1/1, 30 atm), 100°, 3 h	I + II (), I : II = 80:20	516			

Reactant			Conditions					Pro	xduct(s) and	Yield(s)	(%)		Ref
	Pt(DIOP)Cl ₂ /5 C ₆ H ₆ , CO/H ₂	SnCl ₂ , p 2 (1/1, 1	ropylene ca 00 atm), 90	urbonate, 1°, 2 h		I (52) + I	I (—)	+ n-hexane	e III (20)	I:II =	1.9:1	245	1
	Pt(DIOP)Cl ₂ /S C ₆ H ₆ , CO/H ₂	Sn/e ⁻ , pr	opylene car 00 atm), 90	bonate, 1°, 4 h		I (87) + I	I (—)	+ III (7) +	2-hexene (1	5)	I:II = 57:1	245	í
	CO/H ₂ (1/1, 5	atm), C	CICH ₂ CH ₂ C	1, 80°	ы. т :	(b .)		(<i>1</i> 7.)	1.11			517	ı
	Catalyst			<u> </u>	<u>.n 11</u>	me (n)	<u>_</u>	<u></u>	1:1				
				5 ODI \ 10) \	2	, 	5.4:1				
		P(OPI)	3)2JCIO4/P(OPh)3 10	12	,	4	.2	4.6:1				
		OMe)] ₂	/P(OMe) ₃	5	-	,	2	0	5.3:1				
	[Rh(COD)(P(OMe) ₃	5		s ,	1	8	4.6:1				
		UAC)]2/	P(OPn) ₃	5		,	2		1.5:1				
		UAC)]2/	PPh ₃	2	-	5	5	52	2.8:1				
	[Rh(COD)(OAc)] ₂ /	PPh ₃	10	-	5		18	5.3:1				
	[2,6-(CH ₂ O(C [ZnCl(µ-Cl)]	H ₂) ₃ PP Rh(CO)	h2)2C5H3N]]BF4, CO/H	- 2		I + Π (—	-)					518	
	[Rh(COD)(spi	ro(4-ter	t-butylcycle	ohcxanc)		I + II (26	5). I:II	[= 1.7:1				519	,
	diaziridine)] CO/H2 (1/1.)	ClO ₄ , Pl 5 atm)	Ph ₃ , 80°, 5.5	5 h,			,						
	Ph(acac)(CO)	/	wohine C L	H. 34°								122	
	CO/H ₂ (1/1.	∠, arpno 6 atm)	-spanie, c61	~0, - ^{, ,} ,								520	,
	Diphosphine	;				I:II	Yic	ld (%)				520	
	BISBI			-		66.5:1	(—)					
	T-BDCP					12.1:1	(,)					
	DIOP					8.5:1	(,)					
	DIPHOS					2.1:1	`—	,)					
	2 5-bis(dipb	nvinho	sphinometh	wl)-		2 9.1	(,)					
	bicyclo[2.2	Ilhant	one	... ,		2.7.1	`	,					
	CO/H ₂ (2/1,	100 bar), 150°, 20	h				\sim					
	Rh ₄ (CO) ₁₂ , C	O/H ₂				I + II +	+	↓ сно	V I:	II:V = 54	4:38:8 (—)	367	1
	CO/H ₂ (1/1, 1 Catalyst	000 psi), PhMe, 10	00°, 3 h -		<u>I:П:V</u>		Yield (%)				522	:
	[Rh(CO)(Pl	Ph3)2]48	SiW ₁₂ O ₄₀			57:36:	7	(95)					
	[Rh(CO)(Pl	$[h_3)_2]_3F$	$W_{12}O_{40}$			51:39:	10	(95)					
	[Rh(CO)(Pl	$Ph_3)_2]_3F$	PM012O40			54 : 38 :	8	(92)					
	[Rh(CO)(Pl	$[h_3)_2]_4S$	SiM012O40			60 : 34 :	5	(93)					
	[Rh(CO)(Pl	Ph3)2]4F	VM011O40			64 : 33 :	3	(96)					
	Rh ₂ (OAc) ₄ , P 100 °	E13, L/F	λh = 11.4, so	cCO ₂ (250 t	var),							523	ţ
	P _{CO} (bar)	P _{H2} (b	ar) Time	e (h) C7-al	dehvde	es(%) I/	II	heptanol (%)				
	10	10	1	38		2.	5		<u> </u>				
	5	20	1	35		2.	6	_					
	20	20	1	82		2.	4	2.3					
	20	20	2	89		2.	5	8.1					
		_ *	-					1					
	[Rh(Hdmg) ₂ (I THF, 80°	PPh3)]2,	CO/H ₂ (1/	1, 1MPa),		I + II + '	V +	онс人	vi	< +,	\sim $()_3$	VII 524	ł
	[Rh] (x 10 ⁻⁶	mol)	Additive	Time (min	<u>v</u>	<u>(%)</u> VI ((%)	VII (%)	I+II (%)	I/II			
	7.0		_	440	3	29	-	4	65	2.0			
	7.8			205	3	26		16	55	1.9			
	7.6		_	250	1	26		4	68	2.5			
	11.6		PPh ₃	130		25			75	3.4			
	4.8			280	_	27		3	68	2.4			
	9.5			245	_	28		6	65	2.3			
	53		PPh.	105		20		5	72	3.1			
	2.2				_	2.5		~					

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Rh(R^1COCHCOR^1)(CO)_2$, Ligand, CO/H_2 (2/1 1 atm) PhMe 50° 6 h	$\mathbf{I} + \mathbf{\Pi} + n - \Pr(\mathbf{VI})$	525
		$\frac{\mathbf{I} + \mathbf{II}}{(2\mathbf{I})} = \frac{\mathbf{VII}}{(2\mathbf{I})} = \frac{\mathbf{VII}}{(2\mathbf{I})}$	
	Me $P(OCH_2)_3CEt$	(21) 6.3 (8)	
	$4 - C_8 n_{17} - C_6 n_4 = P(CC n_2)_3 - C_1$	(29) n.7 (11) (26) 6.4 (16)	
	Me $P(OCH_2)_3CC_8H_{17}$	(26) 6.4 (16)	
	$4-c_8n_{17}Oc_6n_4 = P(OCn_2)_3CC_8n_{17}$	(20) 8.8 (7)	
		(23) 9.6 (13)	
	$M_{2} = P(OCH_{2})_{3}CCH_{2}O_{2}CC_{6}H_{13}$	(21) 9.5 (13)	
	$Me = P(OCH_2)_3CCH_2O_2CC_{11}H_{23}$	(17) 8.0 $(15)(22)$ 8.2 (12)	
	$4 - C_{2}H_{10}OC_{2}H_{10} = P(OEt)_{2}$	(22) 50 (3)	
	$Me = P(OPb)_{0}$	(2) 5.0 (3)	
	$4 C_{2}H_{2}OC_{2}H_{2} = B(OPb)_{2}$	(17) 5.5 (25)	
	$\mathbf{M}_{\mathbf{R}} = \mathbf{P}(\mathbf{OC}, \mathbf{H}_{\mathbf{M}}, \mathbf{M}_{\mathbf{R}}, \mathbf{f}, 2),$	(21) (23) 1.2 (75)	
	4-CoHurOCoHu PPha	(5) 63 (4)	
		(3) 0.5 (4)	
	CO/H ₂ (1/1, 30 atm), n-C ₇ H ₁₆ , 120°, 24 h	$\mathbf{I} + \mathbf{\Pi} + \mathbf{VI} + \text{EtCH=CHEt} (\mathbf{VII})$	526
	Catalyst Conversion (%)	Ι Π VI VΠ	
	$Ru_2(CO)_4(OAc)_2(PBu_3)_2$ 18.6	(3) (1) (13) (1)	
	Ru(CO) ₄ (PBu ₃) 59.8	(2) (1) (55) (2)	
	$Ru_4(CO)_8(OAc)_4(PBu_3)_2$ 71.7	(7) (2) (60) (3)	
	Ru(CO) ₅ 86.5	(11) (2) (69) (5)	
	$Ru(CO)_2(OAc)_2(PBu_3)_2 = 0.1$	(tr) (0) (0) (0)	
	$Ru(CO)_3(PBu_3)_2 \qquad 2.7$	(tr) (tr) (tr) (1)	
	$Co_4(CO)_8(\mu_2-CO)_2(\mu_4-PC_6H_5)_2/SiO_2,$	$\mathbf{I} + \mathbf{\Pi} + \mathbf{I}\mathbf{\Pi} + \mathbf{I}\mathbf{V} (100)$	527
	PhMe, CO/H ₂ (1/1, 40 kg/cm ²), 130°, 6 h		
	Rh ₂ (µ-Shu-I ₂ (CO) ₂ [P(OMe) ₃] ₂ , 80°, CO/H ₂ (5 bar)	1 + It (100)	528-531
	[Co(CO) ₃ (Ph ₂ PCH ₂ CH ₂ NMe ₃)] ₂ (PF ₆) ₂ on macroreticular resin, C ₆ H ₆ , 100°, CO/H ₂ (2/3, 80 atm), 24 h	I (70) + II (30)	532
	[Co(CO) ₃ (PMePh ₂)] ₂ , C ₆ H ₆ , 100°, CO/H ₂ (2/3, 80 atm), 24 h	I (82) + II (18)	532
	C _{P2} Zr(CH ₂ PPh ₂) ₂ RhH(PPh ₃), 3 PPh ₃ , THF, CO/H ₂ (1/1, 20 bar), 80°, 160 min	I (72) + II (28)	533
	Cp ₂ Zr(CH ₂ PPh ₂) ₂ , RhH(PPh ₃) ₄ , THF, CO/H ₂ (1/1, 20 bar), 80°, 140 min	I (73) + II (26)	533
	Cation-exchanged Rh zeolite A (2% Rh), PhMe, 50°, 22 h, CO/H ₂ (1/1, 20 atm)	I(42) + II(42) + V(13)	534
	Rh(acac)[P(OPh) ₃] ₂ , P(OPh) ₃ , L/Rh = 4, CO/H ₂ (1/1, 11 atm), C ₆ H ₆ , 40°, 5 h	I(73) + II(16) + VI(7)	535
	Rh(acac)[P(OPh) ₃] ₂ , P(OPh) ₃ , L/Rh = 2, CO/H ₂ (1/1, 1 atm), C ₆ H ₆ , 40°, 5 h	I (61) + II (3) + VI (27)	535
	$Co_2(CO)_g/Ru_3(CO)_{12}$, $Ru/Co = 0.99$, 110°, CO/H_2 (1/1, 80 kg/cm ²), C_6H_6 , 1.5 h	I + II (50), I : II = 3.1	536
	$Co_2(CO)_8/[NP(OPh)_{1.7}(OC_6H_4PPh_2)_{0.3}]_n$, P/Co = 4, CO/H ₂ (1:2, 2000 psi), 190-195°, 7 h	I (3) + III (85)	537
	$Co_2(CO)_8/PPh_2$ -linked polystyrene, P/Co = 2.7, CO/H ₂ (1:2, 2000 psi), 190-195°, 7 h	I (33) + III (52)	537
	K[Ru(EDTA-H)Cl]·2H ₂ O, 130°, 12 h, CO/H ₂ (1/1, 50 atm), EtOH/H ₂ O (80/20)	I (100)	538
	[Rh(CO) ₂ (PPh ₃) ₃][HC(SO ₂ CF ₃) ₂], CO/H ₂ (1/1, 1000 psi), PhMe, 20 h	1 (73)	539

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

Reactant	Conditions			Product(s) and Yield(s) (%)	Refs.
	Cp ₂ Zr(µ-PPh ₂) ₂ RhH(CO)(PPh ₃), C ₆ H ₆ , CO/H ₂ (1/1, 1 atm), 50°, 60 h	I (80) + II (5)		540
	CO/H ₂ (1/1, 5 bar), PhMc, 80°				541
	Catalyst Time (h)	<u>I+II</u>	I:II	Conversion (%)	
	$Rh_2(\mu$ -SBu- $t)_2(CO)_2(DPPB)$ 8	(—)	70.5:29.5	96	
	$Rh_2(\mu-SBu-t)_2(CO)_2(DPPP) = 6$	(—)	64.3:35.7	97	
	$Rh_2(\mu-SBu-t)_2(CO)_2(DPPF) = 5$	()	83.1:16.9	95	
	$Rh_2(\mu-SBu-t)_2(CO)_2(DPPR) = 5$	()	73.0:27.0	98	
	$[Rh(COD)(DPPP)]CIO_4 = 8$	()	/8.3:21./	98	
		(—)	00.1.11.9	75	
	RhH[MeC(CH ₂ PPh ₂) ₃](C ₂ H ₄), THF, 100°, CO/H ₂ (1/1, 30 atm), 3 h	I + I	I (69), I:II = 8	3.9:16.1	542
	CO/H ₂ (1/1, 5 bar), PhMe, 80° Catalyst Time	<u>e (min)</u> I	II I:D	<u>L</u>	543
	$Rh_2(\mu-pz)(\mu-SBu-t)(CO)_2[P(OMe)_3]_2$ 10-	4 (9	8) 1.5	6	
	$Rh_2(\mu-pz)(\mu-SBu-t)(CO)_2[P(OPh)_3]_2$ 110	0 (9	8) 1.2	7	
	Rh ₂ (µ-pz)(µ-SBu-t)(CO) ₂ (PPh ₃) ₂ 12:	5 (8	0) 1.3	8	
	$Rh_2(\mu-btz)(\mu-SBu-t)(CO)_2[P(OMe)_3]_2$ 184	4 (9	9) 1.5		
	$Rh_2(\mu-btz)(\mu-SBu-t)(CO)_2[P(OPh)_3]_2$ 20	0 (9	6) 1.0	8	
	$Rh(acac)[P(OPh)_3]_2, P(OR)_3, P/Rh = 1.1,$				544
	PhMe, CO/H ₂ (1 atm), 40°				
	$P(OR)_3, R =$	<u>I + I</u>	I I:П	VI	
	$2-MeC_6H_4$	(70)	10.0	(30)	
	$3-\text{MeC}_6\text{H}_4$	(80)	5.4	(20)	
	$3,5-Me_2C_6H_3$	(75)	7.4	(25)	
	$2,4,6-Me_3C_6H_2$	(66)	5.2	(33)	
	$2,6-Me_2C_6H_3$	(67)	5.0	(33)	
	$2-CiC_6H_4$	(71)	2.6	(29)	
	2-02NC6A4	(03)	2.9	(37)	
	PtCl ₂ (PPh ₃) ₂ , SnCl ₂ , CH ₂ Cl ₂ , CO/H ₂ (1/1, 100 atm), 80°, 3 h	I + I I	I + n-hexane (; + П (63), I:П	5) + hexenes (28) = 93:7	545-548
	$[Rh(\mu-SC_6F_3)(CO)_2]_2$, PPh ₃ , L/Rh = 2, CO/H ₂ (1/1, 5 bar), ClCH ₂ CH ₂ Cl, 80°, 20 h	I + I	I (82), I : Π = 3	.5	549
	$[Rh(\mu-SC_6H_4F)(CO)_2]_2$, PPh ₃ , L/Rh = 2, CO/H ₂ (1/1, 5 bar), ClCH ₂ CH ₂ Cl, 80°, 20 h	I + I	I (94), I:II = 3	.2	549
	Rh(acac)[P(OPh) ₃] ₂ /3-picoline (1.1), CO/H ₂ (1/1, 1 atm), 40°, 3-4 h	I + I	I (90), VI (10)		550
	RhH(PEt ₃) ₃ , PEt ₃ , THF, 120°, 16 h, CO/H ₂ (55 atm)	I + I	I (80), I:II = 1	.58; III + IV (27), III:IV = 5.08	551
	RhH(PEt ₃) ₃ , EtOH, 120°, 16 h, CO/H ₂ (65 atm)	III +	IV (100), III:	IV = 2.07	551
	RhH(PEt ₃) ₃ , McOH, 144°, 16 h, CO (20 atm)	Ш +	IV (85), III:I	$\mathbf{V} = 1.4$	552
	K[Ru(saloph)Cl ₂], EtOH, 130°, CO/H ₂ (1/1, 21 atm)	I + I	I (), I:II = 7	5:25	553
	Rh ₂ (µ-SBu- <i>t</i>) ₂ (CO) ₂ [P(C ₆ H ₄ SO ₃ Na- <i>m</i>) ₃] ₂ , CO (8 x 10 ⁵ Pa), H ₂ O, pH 4.8, 80°, 15 h	I + I	I (75), I:II = 2	3:1	554-557
	HRh(CO)(PPh ₃) ₃ , PPh ₃ , L/Rh = 20, 50°, CO/H ₂ (1/1, 300 psi), 22 h	I (73) + II (27)		558-560
	RhH(CO)(PPh ₃) ₃ , Cp ₂ Zr(CH ₂ PPh ₂) ₂ , CO/H ₂ (1/1, 5 bar), 80°, PhMe, 1 h	I + I	I (95), I:II = 2	.6:1	561
	RhH(CO)(PPh ₃) ₃ , [Cp ₂ Zr(CH ₂ PPh ₂)] ₂ O, CO/H ₂ (1/1, 5 bar), 80°, PhMe, 0.5 h	I + I	I (95), I : II = 2	.7:1	561
	RhNaY, PEt ₃ , CO/H ₂ (1/1, 300 psi), PhMe, 100°, 14 h	I + I	I (90), I:II = 2	.3:1	562

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

Keactant Conditions	·· · ·····		Product(s) and Yield(s) (%)	Refs.
CO/H ₂ (1/1, 5 bar), 80°				563,
Catalyst precursor	Solvent	Turnover (1	\min^{-1}) ^a I / II	564
$Rh_2(\mu-Tz)_2(CO)_4/2PPh_3$	PhMe	3.37	1.7	
$Rh_2(\mu-Tz)_2(CO)_4/2P(OMe)_3$	PhMe	1.75	1.6	
$Rh_2(\mu-Tz)_2(CO)_4/2P(OPh)_3$	PhMe	1.10	2.1	
Rh ₂ (µ-Tz) ₂ (COD) ₂ /2PPh ₃	PhMe	3.07	1.5	
$Rh_2(\mu-Tz)_2(COD)_2/2P(OMe)_3$	PhMe	5.18	2.4	
$Rh_2(\mu-Tz)_2(COD)_2/2P(OPh)_3$	PhMe	3.30	1.3	
$Rh_2(\mu-Ttz)_2(CO)_4/2PPh_3$	PhMe	0.70	2.4	
$Rh_2(\mu-Ttz)_2(CO)_4/2P(OMe)_3$	PhMe	1.50	1.3	
$Rh_2(\mu-Ttz)_2(CO)_4/2P(OPh)_3$	PhMe	6.28	1.5	
$Rh_2(\mu-Pz)_2(CO)_2[P(OPh)_3]_2$	PhMe	6.00	2.77	
$Rh_2(\mu$ - $Pz)_2(CO)_4/2P(OPh)_3$	$n - C_7 H_{16}$	7.90	3.07	
$Rh_2(\mu-MePz)_2(CO)_4/2P(OPh)_3$	n-C7H16	7.70	2.93	
$Rh_2(\mu-Pz)_2(COD)_2/2P(OPh)_3$	n-C7H16	20.6	2.32	
Rh ₂ [µ-S(CH ₂) ₃ NMe ₂] ₂ (COD) ₂ , PP	h3,	I + II (87),	I:II = 93:7	565
L/Rh = 40, CO/H ₂ (1/1, 5x10 ⁵ Pa)), 80°,			
CICH ₂ CH ₂ Cl				
Co Ph (CO) on support C H 2	00			544
$CO_2 Kn_2 (CO)_{12}$ on support, $C_6 H_6$, s $CO/H_2 (1/1.2, 55 \text{ kg/cm}^2)$. 8 h	0-,			200
Support		I/II	Conversion (%)	
None		1.0	96.4	
Poly(N-vinyl-2-pyrrolidone)		0.75	95.9	
Poly(styrene-co-maleic anhydride	e)	0.86	97.1	
Aminated copolymer of styrene-r	naleic	0.63	95.1	
Aminated copolymer of styrene-r	naleic	0.58	95.3	
Poly(2-vinylpyridine)		1.05	88.1	
[Rh ₂ (COD)(4-thio-1-methylpiperid [BF ₄] ₂ /P(OMe) ₃ (1/2), CO/H ₂ (1/1 ClCH ₂ CH ₂ Cl, 80°, 5 h	ine) ₂] , 5 bar),	I + II (40),	Ι:Π = 3.4	567
Pt(DIOP) ₂ Cl ₂ /Sn/e ⁻ , CO/H ₂		I + II (—),	I:II = 98:2	244
$[Rh(CO)_2Cl]_2, phosphine, P/Rh = 1$, Et3N,			568,
PhMe, CO/H ₂ (1/1, 20 bar), 80°, 3	0 min			569
Phosphine		1+11	<u> </u>	
TPP		(95)	80:20	
PPh ₃		(91)	71:29	
PPP		(50)	73:27	
t-BDMP		(25)	68:32	
DMPP		(13)	b/:33	
n-BDMP		(5)	65:35	
Rh(anthranilate)(CO) ₂ , P(OPh) ₃ , P/Rh = 2.7, CO/H ₂ (1/1, 1 atm), P	hMe, 40°	I + II (83)	+ VI (17)	570
HCo(CO) ₂ (PBu ₃) ₂ , PBu ₃ , <i>h</i> ν, MeO CO (1.5 atm), H ₂ (40 atm), 30°, 6	H, h	I (30) + II	(tr) + III (3) + hexane (14)	571
PtCl(TPPTS) ₂ (SnCl ₃) on glass, P/P CO/H ₂ (1/1, 1000 psi), PhMe, 100	t = 2, 9°, 120 h	I + II (26),	I : II = 11.5	572
HRh[P(OPh) ₃] ₄ /Cp ₂ Zr(CH ₂ PPh ₂) ₂ CO/H ₂ (1/1, 5 bar), C ₆ H ₆ , 55°, 70	(1/2.6), min	I + II (85),	I:II = 5.5	573
PhCCo ₃ (CO) ₉ , CO/H ₂ (1/1, 900-10 PhMe, 100°, 26 h)15 psi),	I (64) + II	+ V II + V (20)	574
(OC) ₉ Co ₃ CCO ₂ CH ₂ CH ₂ COMe=Cl derived polymer, CO/H ₂ (1/1, 100 PhMe, 100°, 23 h	H ₂ - 10 psi),	I (64) + II	+ V II + V (19)	574

Reactant		Conditi	ions				Product(s) an	d Yield(s) (%)	Refs.
	CO/H ₂ (1/1, 1300 psi), C ₆ H ₆ ,	110°, 1 h	I + II ((), I: II	= 2:3				575
	[~_] _{0.1} [~_]	6.8	10.1							
			4							
	Ļ	\mathbf{Y}	4							
	\bigcirc Rh(CO) ₂									
	$Rh(AA)[P(OPh)_3]_2, I$	P(OPh)3.	C.H. 85°.							576
	CO/H ₂ (1/1, 12.6-12	2.7 atm),	.1h							
	AA			<u>I:П</u> :((2+3-hex	enes) : <i>n</i>	-hexane			
	8-hydroxyquinoline	•		62.5 : 1	3.5 : 18.	0:11.0				
	benzoylacetone			54.0:2	21.0: 0.0	9:24.0 0:28.0				
	trifluoroacetylaceto	ne		75.0 : 1	8.0: 4.	0:20.0 0:8.0				
	naphthoyltrifluoroa	cetone		42.0 : 1	3.0 : 25.	0:14.0				
	benzoyltrifluoroace	tone		54.0 : 1	9.0 : 15.	0 : 23.0				
		a 1 . co	(15 otm)	I (42) -	+ II (35)					577
	$RnH_2(O_2COH)[P(PT-I)]$ H_2O THE 115° 20	n _{3]2} , CO h	(15 atm),	- (72)	(55)					
	[Rh(NBD)Cl]2. PhaPe	 CH2CH2	NMe3 ⁺ NO3 ⁻ .	I + D +	- Ш + Г	+ hexe	nes (5) + hex	ane (3)		578
	AMPHOS/Rh = 3, C	CO/H ₂ (1	/1, 40 atm),	I+	II (86), I	[: II = 4.0	6; III + IV (1	.)		-
	$pH = 6.8, H_2O, 90^\circ,$	24 h								
	trans-[RhCl(CO)L2]	, C ₆ H ₆ , 8	30°, 4 h,							579
	CO/H ₂ (1/1)			_	-					
	Ligand	Pro	essure (atm)	<u>I</u>		V	1-hexene	2-hexene	hexane	
	PPh ₃	10	0	(26)	(15)	(3)	(U) (III)	(57) (52)	(0) (4)	
	P(CeH4Bu-n-4)	10	0	(27)	(14)	(J) (tr)	(1)	(27)	(0)	
	$P(C_6H_4C_5H_{11}-n-4)$, 10	0	(12)	(5)	(0)	(79)	(5)	(tr)	
						. /				
	P(Bu- <i>n</i>) ₃		100	(20)	(21)	(8)	(tr)	(51)	(tr)	
	$P(Bu-n)_3$		80	(9)	(7)	(2)	(tr)	(82)	(1)	
	$P(C_8H_{17}-n)_3$		80	(4)	(2)	(0)	(82)	(12)	(0)	
	$P(C_{16}H_{33}-n)_3$		80	(tr)	(tr)	(0)	(94)	(5)	(0)	
	Pt(PR ₃)(CO)Cl ₂ /SnC acetone, CO/H ₂ (1/	Cl ₂ ·2H ₂ O 1, 600 p) (1/2), 80°, si), 2 h							580
	PR3	_, p	,, =	I	Internal	aldchvd	lc			
	$P(C_6H_4F_4)_3$			(47)	(3)		_			
	$P(Bu-n)_3$			(45)	(4)					
	PEt ₃			(37)	(3)					
	PPh ₃			(34)	(2)					
	$P(C_6H_4Me-4)_3$			(34)	(2)					
	$P(C_6H_{11})_3$			(27)	(4)					
	RhH(CO)(PPh ₃)[P(p	y) ₃] ₂ /P(<u>1</u>	(1/20), (1/20), (1/20)	I + II ((—), I:II	= 13:1				581
	PRCOME, CU/H ₂ ()	1/1, 2 att	Ligand							582
	CO/H ₂ (1/1, 793 kP	a), PhM	e							302
	Phosphine ligand	L/Rh	Temp	I : II :	(VI + VI	I) : hexa	ane			
	PEtPh ₂	20	100°	73.0 : 2	23.0 : 4.0	: 0.0				
	DPPE	5	105°	54.6 : 4	45.2 : 0.2	: 0.0				
	DPPP	5	105°	57.7 : 4	47.3 : 0.0	: 0.0				
	DPPB	5	105°	75.0 : 2	24.0 : 0.0	: 0.4				
	(+)-DIOP	2	106°	83.0 : 1	17.0:0.2	: 0.1				
	t-BDCB	2	106°	87.0:	11.0:1.0	: 0.6				
	C-BDCB	5 5	100° 103°	78.0:2	21.0:0.6 46.0 · 1.0	: U.6 - 0.0				
	I-BUCH	3	105	32.0:4	+0.0 : 1.0	. 0.0				
	[Rh(COD)(PPh3)(py))]PF ₆ , PI	Ph_3 , P/Rh = 4,	I + II (—), I:II :	= 89.5:	10.5			583
	Et ₃ N, CO/H ₂ (1.05/	1, 50 cm	Hg), 25°, C ₆ H ₆	÷						50 4
	RhCl(CO)[PPh2-poly	y(methy)	Isiloxanes)] ₂ ,	I (47) -	+ II (50)	+ 2-hex	ene (2)			584
	CO/H ₂ (1/1, 1000 p	951), C ₆ H	16, 100°, 3 h							

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

Catalyst, amine, CO/H ₂							
Catal	(1/1, 50 t	Saluert	1.11.17	1//11 - 375	III - IN/	TT /TV	
Eacl	Amine	50ivent	<u>1+11+V</u>	1/(11+V)	(1)	111/14	
FeCl ₃		EIOH	(0)	_	(0)		
FeCl ₃	Et_3N	EtOH	(0)	_	(0)		
RuCl ₃ ·3H ₂ O		acetone	(6)	_	(0)		
RuCl ₃ ·3H ₂ O	Ei3N	acetone	(16)		(0)		
CoCl ₂ -6H ₂ O	_	acetone/PhMe	(97)	0.7	(0)	_	
CoCl ₂ ·6H ₂ O	Et ₃ N	acetone/PhMe	(75)	2.4	(0)	_	
RhCl ₃ ·3H ₂ O		EtOH	(41)	0.2	(0)	_	
RhCl ₃ ·3H ₂ O	Et ₃ N	PhMe	(1)	-	(98)	0.7	
IrCl ₃	_	PhMe	(18)	0.2	(1)		
IrCl ₃	Et ₃ N	PhMe	(12)	1.0	(2)		
Fe ₃ (CO) ₁₂	_	PhMe	(7)		(0)		
Ru ₃ (CO) ₁₂		PhMe	(96)	1.0	(2)	—	
Os ₃ (CO) ₁₂		CH ₂ Cl ₂	(14)	2.2	(0)	—	
$Co_2(CO)_8$		PhMe	(84)	2.0	(1)	_	
Co ₂ (CO) ₈	Et ₃ N	PhMe	(85)	1.7	(0)		
Cor(CO)	_	PhMe	(74)	2.8	(1)		
$\Gamma_{0}(\Gamma_{0})_{12}$	Et _a N	PhMe	(82)	22	(0)	_	
Ph-(CO)/Cl-	131314	PhMe	(99)	0.8	(0)	_	
Rh ₂ (CO) ₄ Cl ₂	Er-N	PhMe	(0)		(97)	0.7	
Rin2(CO)4C12	EI3IN	DhMa	(05)	0.6	(0)	0.7	
$Rn_4(CO)_{12}$		Philie	(95)	0.0	(0)		
$\operatorname{Kn}_4(\operatorname{LO})_{12}$	Et ₃ N	PhMe	(0)		(100)	1.0	
$Rh_4(CO)_8[P(OPn)_3]_4$	—	PhMe	(96)	1.0	(1)	—	
$Rh_4(CO)_8[P(OPh)_3]_4$	Et ₃ N	PhMe	(94)	1.2	(1)		
$Co_2Rh_2(CO)_{12}$	_	PhMe	(95)	0.3	(0)		
$Co_2Rh_2(CO)_{12}$	Et ₃ N	PhMe	(0)	-	(98)	0.8	
[PPN][RuRh5(CO)16]	—	PhMe/CH ₂ Cl ₂	(98)	0.7	(0)	_	
[PPN][RuRh5(CO)16]	Et ₃ N	PhMe/CH ₂ Cl ₂	(77)	0.7	(16)	1.5	
NaY zeolites entrapped i	rhodium	carbonyl	I + II + V	(—), I:II:V =	51:41:8		
NaY zeolites entrapped a clusters, C ₆ H ₁₄ , CO/H ₂	rhodium (1/1, 80	carbonyl atm), 80°, 3 h	I + II + V	(—), I:II:V =	51:41:8		
NaY zeolites entrapped a clusters, C ₆ H ₁₄ , CO/H ₂ Rh(acac)(CO)(PPh ₃)/PPI	rhodium (1/1, 80 h ₃ (1/13	carbonyl atm), 80°, 3 h 4), amine,	I + II + V	(—), I:II:V =	51:41:8		
NaY zeolites entrapped a clusters, C ₆ H ₁₄ , CO/H ₂ Rh(acac)(CO)(PPh ₃)/PPI CO/H ₂ (1/1, 1 MPa), PI	rhodium (1/1, 80 h ₃ (1/13. hMc, 353	carbonyl atm), 80°, 3 h 4), amine, 8 K	I + II + V	(), I:II:V =	51:41:8		
NaY zeolites entrapped 1 clusters, C ₆ H ₁₄ , CO/H ₂ Rh(acac)(CO)(PPh ₃)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u>	rhodium (1/1, 80 h ₃ (1/13. hMe, 353 ne/Rh	carbonyl atm), 80°, 3 h 4), amine, 4 K	I + Π + V <u>I+Π+V</u>	(), I:II:V = <u>I/(II+V)</u>	2-hex	tene	
NaY zeolites entrapped i clusters, C ₆ H ₁₄ , CO/H ₂ Rh(acac)(CO)(PPh ₃)/PPI CO/H ₂ (1/1, 1 MPa), Pi <u>Amine</u> None —	rhodium (1/1, 80 h ₃ (1/13. hMe, 353 ne/Rh	carbonyl atm), 80°, 3 h 4), amine, 4 K	$\mathbf{I} + \mathbf{II} + \mathbf{V}$ $\frac{\mathbf{I} + \mathbf{II} + \mathbf{V}}{(69)}$	(), I:II:V = <u>I/(II+V)</u> 5.5	2-hex (12)	sene	
NaY zeolites entrapped 1 clusters, C ₆ H ₁₄ , CO/H ₂ Rh(acac)(CO)(PPh ₃)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10	rhodium (1/1, 80 h ₃ (1/13. hMc, 353 he/Rh	carbonyl atm), 80°, 3 h 4), amine, 4 K	$\mathbf{I} + \mathbf{II} + \mathbf{V}$ $\frac{\mathbf{I} + \mathbf{II} + \mathbf{V}}{(69)}$ (85)	I /(I + V) 5.5 5.8	51:41:8 2-hex (12) (—)	sene	
NaY zeolites entrapped 1 clusters, C ₆ H ₁₄ , CO/H ₂ Rh(acac)(CO)(PPh ₃)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10	rhodium ((1/1, 80 h ₃ (1/13, h ₃ (1/13), h ₃ (1/13, h ₃ (1/13), h ₃ (1/13, h ₃ (1/13), h ₃ (1/13),	carbonyl atm), 80°, 3 h 4), amine, ⁴ K	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71)	I /(II + V) 5.5 5.8 5.8 2 7	2-hex (12) (—) (8)	tene	
NaY zeolites entrapped i clusters, C ₆ H ₁₄ , CO/H ₂ Rh(acac)(CO)(PPh ₃)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10	rhodium ((1/1, 80 h ₃ (1/13. hMc, 353 ne/Rh	carbonyl atm), 80°, 3 h 4), amine, 4 K	I + II + V <u>I+II+V</u> (69) (85) (71) (73)	I (Π + V) 5.5 5.8 5.8 3.7	2-hex (12) (-) (8) (4)	ene	
NaY zeolites entrapped 1 clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), Pf <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf	rhodium (1/1, 80 h ₃ (1/13. hMc, 352 <u>ne/Rh</u> x MWA- hMc, 100	carbonyl atm), 80°, 3 h 4), amine, 5 K - I resin, °, 17 h	I + II + V (69) (85) (71) (73) П (2) + П	$\frac{I/(\Pi + V)}{5.5}$ 5.8 5.8 3.7 II (39) + IV (5)	51:41:8 2-hex (12) () (8) (4) 6)	sene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine</u> Amin None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf	rhodium (1/1, 80 h ₃ (1/13. hMe, 353 <u>ne/Rh</u> x MWA- nMe, 100 x MSC 1	carbonyl atm), 80°, 3 h 4), amine, • K • K • I resin, •°, 17 h	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) Π (2) + Π $I + \Pi$ (20)	$I(\Pi + \mathbf{V})$ 5.5 5.8 5.8 3.7 $I(39) + IV (5)$	2-hex (12) (—) (8) (4) 6)	tene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine</u> Amin None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (SO ₂ N ₂) resin CO/H	rhodium ; (1/1, 80 h ₃ (1/13, nMe, 353 ne/Rh x MWA- nMe, 100 x MSC-1 (1/1, 50	carbonyl atm), 80°, 3 h 4), amine, 5 K 4 resin, 1 resin, 1°, 17 h	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$	I /(II + V) 5.5 5.8 5.8 3.7 I (39) + IV (5), I : II = 0.9	2-hex (12) (—) (8) (4) 6)	tene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PP <u>Amine</u> Amin None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PbMa 10 ^{ce} 17 b	rhodium ; (1/1, 80 h ₃ (1/13, nMe, 353 ne/Rh x MWA- nMe, 100 x MSC-1 (1/1, 50	carbonyl atm), 80°, 3 h 4), amine, 4 K 4 resin, 1 resin, 1 resin, 1 resin, 1 n bar),	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$	I (□), I : II : V = I (II + V) 5.5 5.8 5.8 3.7 II (39) + IV (5), I : II = 0.9	2-hex (12) () (8) (4) 6)	tene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H2 Rh(acac)(CO)(PPh3)/PPi CO/H2 (1/1, 1 MPa), Pi Amine Amin None Ph3N 10 (PhCH2)3N 10 PhNH2 10 Co2Rh2(CO)12 on Dowe CO/H2 (1/1, 50 bar), Pf Co2Rh2(CO)12 on Dowe (-SO3Na) resin, CO/H2 PhMe, 100°, 17 h Nor	rhodium (1/1, 80 h ₃ (1/13. nMe, 353 <u>ne/Rh</u> x MWA- nMe, 100 x MSC-1 (1/1, 50	carbonyl atm), 80°, 3 h 4), amine, 4 K 4 resin, 1 resin, 1°, 17 h bar),	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$	(), I:II:V = <u>I/(II+V)</u> 5.5 5.8 3.7 II (39) + IV (5), I:II = 0.9	2-hex (12) () (8) (4) 6)	tene	
NaY zeolites entrapped 1 clusters, C ₆ H ₁₄ , CO/H ₂ Rh(acac)(CO)(PPh ₃)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2	rhodium (1/1, 80 h ₃ (1/13. hMe, 353 <u>ne/Rh</u> x MWA- hMe, 100 x MSC-1 (1/1, 50 2.6) on D	carbonyl atm), 80°, 3 h 4), amine, 4 K 4 resin, 1 resin,	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (0)$	1 (−), I : II : V = 1 /(II + V) 5.5 5.8 5.8 3.7 II (39) + IV (5), I : II = 0.9 99), III : IV = 1	51:41:8 2-hex (12) () (8) (4) 6)	tene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh_3)/PPI CO/H ₂ (1/1, 1 MPa), PI Amine Amin None Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /Co ₄ (CO) ₁₂ (2) (CO) ₁₂ (C)	rhodium (1/1, 80 h ₃ (1/13. hMe, 353 <u>ne/Rh</u> x MWA- hMe, 100 x MSC-1 (1/1, 50 2.6) on D (1/1, 50 t	carbonyl atm), 80°, 3 h 4), amine, • K • I resin, •°, 17 h • bar), • owex ar),	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (9)$	I (II + V) 5.5 5.8 3.7 II (39) + IV (5), I : II = 0.9 99), III : IV = 1	51:41:8 2-hex (12) () (8) (4) 6)	tene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh_3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine</u> Amine Ph3N Rh(CH) ₁₂ Co2Rh2(CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pft Co2Rh2(CO) ₁₂ on Dowe (-SO3Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh4(CO) ₁₂ /Co4(CO) ₁₂ (C) PhMe, 100°, 17 h	rhodium (1/1, 80 h ₃ (1/13. nMe, 353 <u>ne/Rh</u> x MWA- nMe, 100 x MSC-1 (1/1, 50 2.6) on D 1/1, 50 b	carbonyl atm), 80°, 3 h 4), amine, • K • I resin, •°, 17 h • bar), owex par),	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (9)$	I /(II + V) 5.5 5.8 5.8 3.7 I (39) + IV (5), I : II = 0.9 99), III : IV = 1	51:41:8 (12) () (8) (4) 6)	tene	
NaY zeolites entrapped i clusters. C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI Amine Amin None Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /Co ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ PhMe, 100°, 17 h Rh(QAC) ₃ , P/Rh = 6.7. p Rh	rhodium (1/1, 80 h ₃ (1/13. hMe, 353 ne/Rh x MWA- hMe, 100 x MSC-1 (1/1, 50 2.6) on D (1/1, 50 t 0H = 5.2.	carbonyl atm), 80°, 3 h 4), amine, • K • I resin, •°, 17 h bar), owex par), 155°,	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (2)$ $I (30) + \Pi$	(→), I:II:V = I/(II+V) 5.5 5.8 3.7 II (39) + IV (5), I:II = 0.9 99), III:IV = 1 I (→), I:II = 9	51:41:8 2-hex (12) () (8) (4) 6) .1 4.6:5.4	<u>tene</u>	
NaY zeolites entrapped i clusters. C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI Amine Amin None Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /Co ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ PhMe, 100°, 17 h Rh(QAC) ₃ , P/Rh = 6.7, p CO/H ₂ (1/1, 725 psi), Pf	rhodium (1/1, 80 h ₃ (1/13. hMe, 353 ne/Rh x MWA- hMe, 100 x MSC-1 (1/1, 50 2.6) on D (1/1, 50 t 0H = 5.2, 1-0	carbonyl atm), 80°, 3 h 4), amine, • K • I resin, •°, 17 h bar), owex har), 155°,	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (1)$ $I (30) + \Pi$	I/(II+V) 5.5 5.8 3.7 II (39) + IV (5 99), III = 0.9 99), III:IV = 1 I (−-), I:II = 9	51:41:8 2-hex (12) (—) (8) (4) 6) .1 4.6:5.4	tene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H2 Rh(acac)(CO)(PPh3)/PPI CO/H2 (1/1, 1 MPa), PI Amine Amin None Ph3N 10 (PhCH ₂) ₃ N 10 PhNH2 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H2 (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H2 (-SO ₃ Na) resin, CO/H2 PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H2 (2 PhMe, 100°, 17 h Rh(OAc) ₃ , P/Rh = 6.7, p CO/H2 (1/1, 725 psi), H SO ₂ Nn	rhodium (1/1, 80) $h_3 (1/13.)$ $h_4 (1/13.)$ $h_7 (1/13.)$	carbonyl atm), 80°, 3 h 4), amine, • K 4 resin, •, 17 h bar), owex har), 155°,	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (0)$ $I (30) + \Pi$	(−), I:II:V = <u>I/(II+V)</u> 5.5 5.8 3.7 II (39) + IV (5), I:II = 0.9 99), III:IV = 1 (−), I:II = 9.0	51:41:8 (12) () (8) (4) 6) 1 4.6:5.4	<u>tene</u>	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh ₃)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ (PhMe, 100°, 17 h Rh(OAc) ₃ , P/Rh = 6.7, p CO/H ₂ (1/1, 725 psi), F SO ₃ Na	rhodium (1/1, 80) $h_3 (1/13.)$ hMe, 353 hMe, 353 hMe, 100 x MWA- hMe, 100 x MSC-1 (1/1, 50) (1/1, 50) (1/1, 50) hH = 5.2, h_2 O	carbonyl atm), 80°, 3 h 4), amine, • K 4 resin, •°, 17 h bar), owex har), 155°,	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (0)$ $I (30) + \Pi$	(−), I:II:V = <u>I/(II+V)</u> 5.5 5.8 3.7 II (39) + IV (5), I:II = 0.9 99), III:IV = 1 (−), I:II = 9.9	51:41:8 (12) () (8) (4) 6) 1 4.6:5.4	<u>tene</u>	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ (PhMe, 100°, 17 h Rh(OAc) ₃ , P/Rh = 6.7, p CO/H ₂ (1/1, 725 psi), F SO ₃ Na	rhodium (1/1, 80) $h_3 (1/13.)$ $h_4 (1/13.)$ $h_6 (353)$ $h_7 (Rh)$ x MWA-1 $h_6 (100)$ x MSC-1 (1/1, 50) (1/1, 50) $h_1 = 5.2$, $h_2 O$ $Na-m)_2$, $-$	carbonyl atm), 80°, 3 h 4), amine, • K ¹ resin, •, 17 h bar), owex ar), 155°, Ph _n	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (9)$ $I (30) + \Pi$	I (II + V) 5.5 5.8 5.8 3.7 II (39) + IV (5), I : II = 0.9 99), III : IV = 1 I (−−), I : II = 9.9	51:41:8 (12) () (8) (4) 6) 1 4.6:5.4	tene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ (PhMe, 100°, 17 h Rh(OAc) ₃ , P/Rh = 6.7, p CO/H ₂ (1/1, 725 psi), F SO ₃ Na P(C ₆ H ₄ SO ₃	rhodium (1/1, 80) $h_3 (1/13.)$ $h_4 (1/13.)$ $h_6 (353)$ $h_7 (Rh)$ x MWA-1 $h_6 (100)$ x MSC-1 (1/1, 50) (1/1, 50) $h_1 = 5.2$, $h_2 O$ $Na-m)_{2-m}$	carbonyl atm), 80°, 3 h 4), amine, 4 K 4 resin, 1°, 17 h bar), owex har), 155°, Ph _n	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (9)$ $I (30) + \Pi$	I (II + V) 5.5 5.8 5.8 3.7 II (39) + IV (5), I : II = 0.9 99), III : IV = 1 I (−−), I : II = 9.9	51:41:8 (12) () (8) (4) 6) 1 4.6:5.4	tene_	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ (PhMe, 100°, 17 h Rh(OAc) ₃ , P/Rh = 6.7, p CO/H ₂ (1/1, 725 psi), H SO ₃ Na P(C ₆ H ₄ SO ₃	rhodium (1/1, 80) $h_3 (1/13.)$ $h_4 (1/13.)$ $h_6 (353)$ $h_7 (Rh)$ x MWA-100 x MSC-1 (1/1, 50) (1/1, 50) (1/1, 50) $h_1 = 5.2$, $h_2 O$ $Na-m)_{2-m}$	carbonyl atm), 80°, 3 h 4), amine, 4 K 4 resin, 1°, 17 h bar), owex har), 155°, Ph _n	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (9)$ $I (30) + \Pi$	I (II + V) 5.5 5.8 5.8 3.7 II (39) + IV (5), I : II = 0.9 99), III : IV = 1 I (−−), I : II = 9.9	51:41:8 (12) () (8) (4) 6) 1 4.6:5.4	ene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ (PhMe, 100°, 17 h Rh(OAc) ₃ , P/Rh = 6.7, p CO/H ₂ (1/1, 725 psi), F SO ₃ Na $($ $P(C_6H_4SO_3)$	rhodium (1/1, 80) $h_3 (1/13.)$ $h_4 (1/13.)$ $h_7 (1/13.)$	carbonyl atm), 80°, 3 h 4), amine, 4 K 4 resin, 1 resin,	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (0)$ $I (30) + \Pi$	I (II + V) 5.5 5.8 5.8 3.7 II (39) + IV (5), I : II = 0.9 99), III : IV = 1 I (−−), I : II = 9.4	51:41:8 2-hex (12) (—) (8) (4) 6) 1 4.6:5.4	ene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ (PhMe, 100°, 17 h Rh(OAc) ₃ , P/Rh = 6.7, p CO/H ₂ (1/1, 725 psi), H SO ₃ Na $($ $)$ $)$ $)$ $P(C_6H_4SO_3h)$) $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$	chodium (1/1, 80) $h_3 (1/13.)$ $h_4 (1/13.)$ $h_6 (353)$ $h_7 (Rh)$ x MWA-1 $h_6 (100)$ x MSC-1 (1/1, 50) $h_1 (1/1, 50)$ $h_2 (1/1, 50)$ $h_3 (1/1, 50)$	carbonyl atm), 80°, 3 h 4), amine, 4 K 4 resin, 1°, 17 h bar), owex har), 155°, Ph _n .1	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (0)$ $I (30) + \Pi$	(−), I:II:V = <u>I/(II+V)</u> 5.5 5.8 3.7 II (39) + IV (5), I:II = 0.9 99), III:IV = 1 I (−), I:II = 9.9	51:41:8 (12) () (8) (4) 6) 1 4.6:5.4	ene	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ (PhMe, 100°, 17 h Rh(OAc) ₃ , P/Rh = 6.7, p CO/H ₂ (1/1, 725 psi), F SO ₃ Na (Polymer, N=C), Ph(acoc	rhodium (1/1, 80 h ₃ (1/13. hMe, 353 <u>ne/Rh</u> x MWA- hMe, 100 x MSC-1 (1/1, 50 2.6) on D (1/1, 50 bH = 5.2, H_2O Na-m) _{2-n} n = 0 ((CO) P	carbonyl atm), 80°, 3 h 4), aniine, • K · I resin, •, 17 h · bar), owex har), 155°, Ph _n .1	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (1)$ $I (30) + \Pi$	I(-), I:II:V = I/(II+V) 5.5 5.8 3.7 II(39) + IV(5) I(39) + IV(5) I(39) + IV(5) I(-), I:II = 0.9 I(-), I:II = 9.9	51:41:8 <u>2-hex</u> (12) () (8) (4) 6) .1 4.6:5.4	<u>tene</u>	
NaY zeolites entrapped i clusters, C_6H_{14} , CO/H_2 Rh(acac)(CO)(PPh3)/PPI CO/H ₂ (1/1, 1 MPa), PI <u>Amine Amin</u> None — Ph ₃ N 10 (PhCH ₂) ₃ N 10 PhNH ₂ 10 Co ₂ Rh ₂ (CO) ₁₂ on Dowe CO/H ₂ (1/1, 50 bar), Pf Co ₂ Rh ₂ (CO) ₁₂ on Dowe (-SO ₃ Na) resin, CO/H ₂ PhMe, 100°, 17 h Rh ₄ (CO) ₁₂ /CO ₄ (CO) ₁₂ (2 MWA-1 resin, CO/H ₂ (PhMe, 100°, 17 h Rh(OAc) ₃ , P/Rh = 6.7, p CO/H ₂ (1/1, 725 psi), F SO ₃ Na (Polymer-N=C) ₂ Rh(acac CO/H ₂ (1/1, 12 MPa)	chodium (1/1, 80 h ₃ (1/13. hMe, 353 <u>ne/Rh</u> x MWA- hMe, 100 x MSC-1 (1/1, 50 2.6) on D (1/1, 50 bH = 5.2, H_2O Na-m) _{2-n} n = 0 ()(CO), P (20° 5 b	carbonyl atm), 80°, 3 h 4), aniine, • K · I resin, •, 17 h · bar), owex iar), 155°, Ph _n .1 hMe,	$I + \Pi + V$ $\frac{I + \Pi + V}{(69)}$ (85) (71) (73) $\Pi (2) + \Pi$ $I + \Pi (90)$ $\Pi + IV (2)$ $I (30) + \Pi$ $I (12) + \Pi$	I/(II+V) 5.5 5.8 5.8 3.7 II (39) + IV (5 99). III:IV = 1 ((), I:II = 9) I (), I:II = 9)	51:41:8 2-hex (12) (-) (8) (4) 6) .1 4.6:5.4	<u>tene</u> (6) +	

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

ctant	Cond	itions			Prod	uct(s) and Y	1eid(s) (%)		Kel
[Pt(C ₂ H CO/H	4)(DPPB)]/CH ₃ SO ₃ (1/1, 100 atm), 100	H (1/1), PhMe, °, 24 h	I +	- II (58), I:II =	= 94.9:5.1; I	H + IV (5)			259
Co2(CC (CPG PhMe,) ₆ [P(C ₆ H ₄ SO ₃ Na- <i>m</i> 340), CO/H ₂ (1/1, 8 190°, 8 h	1) ₃] ₂ /glass 00 psi), H ₂ O,	I +	- II (—), I:II =	= 2.2; III + J	₩ (—), Ш	IV = 1.12		590
RhCl(C CO/H	O)(DPPB), C_6H_6 , 5: (1/1, 90 atm)	5°, 12 h,	I (53) + II (46)					486
[Rh ₂ (C) [BF ₄] ₂ C CH	DD)(4-thio-1-methy /P(OPh) ₃ (1/2), CO/ ₂ CH ₂ Cl, 80°, 5 h	lpiperidine) ₂] H ₂ (1/1, 5 bar),	I	+ Ⅱ (82), I:Ⅱ =	= 1.7				567
RuCl ₂ [] CO/H	$N(CH_2CH_2PPh_2)_3], 1$ (1/1, 100 atm), 101	PhMe, 150°, h	Ι (—) + <i>n</i> -hexan	e (—) I:n-	hexane = 3.	5:65		591
	Rh (1) . CO/H2		I÷	H (85)				~ ~	592
RhH2(C THF,	9₂COH)(PPr-i₃)₂, (C 120°, 20 h	H ₂ O) _n ,	I +	- 11 + 111 + 1V	+ \}_4	CO ₂ Me	IX +	$\bigvee_{\mathrm{CO}_2\mathrm{Me}} \mathbf{X}$	593
				I + II (67), I:I	I = 41:59; I	II + IV (4),	$\mathbf{III}:\mathbf{IV}=61$:39;	
				IX + X (13),	IX : X = 80:3	20, <i>n</i> -hexan	e (3)		
	CO₂Me ↓								
	Rh(CO)2								594
MeO ₂ C	CO ₂ Me	, PhMe							J 7 4
	(Ph Tome Th	ne (h) D (hor)	CU/II-	I-II-V	I+II+V				
PPh ₃	100° 24		1/1	44.44.12	(90)				
U 4	80° 3.3		4/6	75.25.0	(91)				
, ,	60° ¹⁰	0 56	4/6	75.25.0	(75)				
5	12				``				
Catalys	t	Temp Time	e (h) P (bar) CO/H ₂	Solvent	I:II:V	I+II+V		594
(MeO ₂	CCp)Rh(CO)2	100° 3.5	70	1/1	PhMe	51:44:5	(85)		
(Cp)Rh	(CO) ₂	100° 5.0	70	1/1	PhMe	55:38:7	(87)		
(MeO ₂	CCp)Rh(CO) ₂ /5 PPt	13 80° 3.0	42	4/6	PhMe	74:26:0	(90)		
(Cp)Rh	(CO) ₂ /5 PPh ₃	80° 6.0	42	4/6	PhMe	75:25:0	(29)		
Catalua	- ~	PR.	р/рь	Solvent	CO/H- (1)	(Lhar) C	onv. (%)	ĿĦ	505
Ph.(u	S(CH_)_S)(COD)-		r/Mi	PhMe	30	1, 0ar) C	6	52.48	575
Rh ₂ (μ-	S(CHa) S(COD)-		_	PhMe	70	5	6	56.44	
Rhs/U-	S(CHa)-S)(COD)-	PPha	2	PhMe	30	بر بو	К	73.26	
Rh ₂ (µ-	S(CHa)-SVCODA	PPha	2	PhMe	70	24 04	~ 7	74-27	
ν	S(CHa)-SVCOD	PPh ₂	2 1	PhMe	30	7 0.	, 1	75:25	
τ.u2(μ- Dh_(u)	S(CHa) S)(COD)	PPha	4	PhMe	70	9- 01	R	73.27	
ν.u ₂ (μ-	S(CH _a) ₂ S(COD) ₂	PPh ₂	- -	(CH_Ch_	30	9. 0.	4	74.76	
Rh ₂ (µ-	CHARS/COD)-	PIOC/H.Bu_r 2)	- - 2	(CH ₂ Cl)	30	24	5	65:35	
κυ2(μ-) Rh ₂ (u-)	CHANSYCODY-	P(OPh)-	∡ ر 7	(CH ₂ CI)2	30	اد بە	u n	77-26	
τ.u ₂ (μ-	S(CH_a) (S)(COD)	PPh.	2 1	(CH_Ch)	50 5	0.	4	68-21	
Dh_(***	$S(CH_{4})$, $S(COD)_{2}$	PPh.	2	(CH ₂ CI) ₂	5		- -	77.78	
кn ₂ (µ-	n(CH2)45)(CUD)2	ern ₃	2	(Cr12Cl)2	.)	91	J.	12:28	
Rh(aca CO/H	(1/1, 10 atm)	, C_6H_6 , 90 min,			1.17	VT	VII		596
1.0	60° 10	n			- 1.11	(10)	(3)		
1.8	200 100		(6	n) (17) 30) (17)	3.I * 1	(19)	(3)		
2.8	00° 10	U E	(6	(15) (15)	4.1	(14) (P)	(2)		
4.1	.30° 53.	د. ۲	(4	H) (2)	21.7	(8)	(U) (D)		
4.1	40° 90.	. <i>.</i>)	(7	a) (3)	51.0	(10)	(U) (D)		
4.1	60° 10	<i>.</i>	(7	(/) (/)	9.9	(23)	(0)		
4.1	70" 10)	(6	(10)	5.5	(24)	(2)		
4.1	80° 10) -	(6	4) (14)	4.0	(20)	(2)		
5.4	60° 10)	(7	(4)	19.8	(25)	(0)		
7.1	60° 10)	(8	(3)	29.9	(21)	(0)		
DL/		/DF 10	-	(П) 2			06 2) 1.17	. 19	775
Kn(aca	$(CO)_2$, xantham, L	VRH = 10,	1-	+ 11 + 2-nexen	ic + 5-nexen	c 1+11 (90.2), I:II =	+0	223
PhMe	CO/H ₂ (1/1, 20 atr	1), 80 °, 24 h							

Reactant			Condition	s				Prod	uct(s) a	nd Yield	(s) (%)		Refs
	Rh(acac)(CO)2, P(NC4H4)3, P/R	h = 2.8,									596
	CO/H ₂	(1/1, 10 a	tm), C ₆ H ₆ , 60	°, 90 min									
	- (۱۳۴۱/۲۱	-hevenel	TON		т	п		ĿП	vī	vr	I		
	2.5	-liexenej	4800		(68)	(11)	6.1	(20)	(0)	_		
	41		2900		(65)	(12	ý 9	4.9	(22)	(1)			
	51		2300		(65)	(15	à	3.7	(18)	(3)			
	67		1800		(66)	(14	n	4.1	(18)	(2)			
	87		1500		(68)	(15	i)	4.0	(15)	(2)			
	19.0		632		(69)	(15	à	4.1	(14)	(2)			
					, ,		·		. ,				507
	Rh(acac	:)(CO) ₂ , Pl	Ph(NC ₄ H ₄) ₂ , (.tm) 60 °	C ₆ H ₆ ,									590
	D/Dh	(1)1, 10 a	a (h)		T	п		ĿП	vī	vi	т		
	17	15	<u>k (ll)</u>		(66)		8	3.4	(15)	(2)			
	26	1.5			(66)	(21) D	2.1	(10)	(4)	, 1		
	4.7	1.5			(75)	(11	0	6.1	(12)	(1))		
	6.0	1.5			(83)	(7)		11.5	(10)	(0))		
	8.0	1.5			(85)	(6)		14.8	(9)	(0))		
	13.0	3			(81)	(6)		14.5	(4)	(0))		
													506
	Rh(acac	;)(CO) ₂ , Pl	$rn_2(NC_4H_4), ($	-6 H 6,	t + 11	+ VI							590
	H ₂ /CO	(1/1, 10 a	tm), 60 °		т		1	тл	VI				
	$\frac{P/Rn}{2.2}$	Temp	Time (min)	Conversion (%)	1 (65)	(7	2)	<u> </u>	<u></u>				
	2.3	60°	90	88.9	(03)	(2	2) 0)	3.6	(3)				
	4.7	60°	90	92.4	(73)	(2	0) 0)	3.8	(2)				
	0.4	60	30	94.5	(73)	(1	5) 5)	3.0 4 Q	(2)				
	9.2	70°	00	91.5	(75)	(1	5) 6)	4.2	(3)				
	9.2	70 60º	100	92.8	(74)	(1 /0	٥ <i>)</i>	86	(3)				
	15.0	00	190	07.1	()+)	0	, 	0.0	(1)				
	Co ₂ (CO) ₆ (L) ₂ , H ₂ / e 150° 31	/CO (8/1, 45 a h	tm),									597
	Ligand	1			I	п	v	ш	IV	VIII	hexane	hexenes	
	CO				(30)	(13)	(6)	(25)	(15)	(2)	(8)	(1)	
	P(Bu-	1)3			(42)	(19)	(7)	(11)	(6)	(2)	(10)	(4)	
	P(C ₃ H	60CH3)3			(41)	(18)	(8)	(12)	(7)	(2)	(9)	(4)	
	P(CH ₂	CH ₂ CO ₂ C	(H ₃) ₃		(38)	(17)	(7)	(15)	(8)	(3)	(9)	(4)	
	P(CH ₂	CH ₂ CN) ₃			(26)	(17)	(7)	(6)	(5)	(tr)	(10)	(29)	
	Rh(acac)(CO) ₂ , lig	(and, L/Rh = 1)	0, PhMe,	I (90)	+ 11 (2)	+ int	ernal isoi	mers (8)	, I:∐ = 4	19		224
	CO/H ₂	(1/1, 20 a)	un), 80 , 20 h										
	<	<u>`_</u> /	\mathbf{N}										
	<i>/</i>	$\langle \rangle$	$\langle \neg \neg$										
		у́—РРһР	hP-{ >										
				0.00		(00)	T 0	00					509
	[Kh(CO)	$_{2}CI_{2}$, liga	und, L/Rh = 1,	ου, 	1+1[(89), I:I	a = 0	.68					278
	CO/H ₂	(1/1, 20 at	m), H ₂ O/PhM	ie (1/1)									
	-	$\chi \times$	P(O)(ONa) ₂										
	Ph	<i>μ</i> .Ρ//											
	Rh(CO)	hClh lim	and $L/Rh = 1$	80^.	I+II	(66) I·I	I = 1						598
	CO/H	(1/1 20 at	tm) $H_0(Ph)$	le (1/1)	1 . 11	(00), 1.1							570
	com	N /		le (1/1)									
	-	$\mathcal{T}_{\mathbf{p}}^{ \mathcal{X} }$	rh										
	Ph	pr-	(O)(ONa) ₂										
	Co ₃ (CO) ₉ CSi(OH))3, CO/H2 (1/1	, 126 atm),	I + II	+ V (), I:(I	(I+V) = 3	.75				599
	PhMe,	120°, 12 h					·-						
	Califo).CSIOC	ч.)(ОСЧ. С	H.) OHB.	ьл	+ V (5 1 -7	T+V) - ^	73				590
	CO/U	/9C31[U(C	$I_{12} I_{2} (U \cup H_{2} \cup I_{2} \cup I_$	112/nO11j3, 00° 8 b	1+11	≁ ♥ (—	9, I:(J						377
	CO/H ₂	(1/1, /U a	un), r'nMe, 12	.0,01									

Reactant	Condition	s				Produc	ct(s) and	l Yield(s) (%)		Refs.
	CO/H ₂ (70 bar), 120°, 18 h, tolu	ene E							-		600
		r									
		R =									
	OTHE OSI										
	$V_{O} = V_{O} / V_{R}$			3							
	R ^{CO} THF	(C	O)3								
	E Conversion (%)	TON	I + II	I:	II inu	ernal he	xenes				
	Al 86.9	4633	(96)	2		(3)					
	Ga 87.5 In 460	3525	(91)	1.	6 9	(7)					
	DtCl (shosphine) SaCl D/Dh	- 2 DbMa	(32)	U.	0	(37)					601
	CO/H ₂ (1/1, 1000 psi), 100°, 8	h									001
	Ligand TOF	4	I + II	I	.П						
	P(CH ₂ Ph) ₃ 71		(17)	3	.5						
	$P(C_2H_4Ph)_3$ 62		(49)	5	.6						
	$P(C_3H_6Ph)_3$ 53		(42)	7	.2						
	PtCl ₂ (phosphine) ₂ on glass, Sn	Cl ₂ , P/Rh = 2,									601
	CO/H2 (1/1, 1000 psi), PhMe/H	I ₂ O, 100°, 8 h									
	Ligand TOF		<u>I + II</u>	I:I	1						
	TPPTS 5.7		(5)	10	.3						
	IBEIS 4.5 TEIPTS 3.0		(4)	3.7	, ,						
	TERTS 5.0		(2)	5.0 8.7	,						
			(_)	0.7							(00
	$HRh[P(OPh)_3]_4, Cp_2ZrH(CH_2P)$	Ph ₂),									602
	CO/n_2 (1/1, 10 aun), Phille, 8	,									
	[Zr]:[Rh] Time (min)		Conv.	(%)	I + II	I:II	v	2-hexenes	_		
	0 160		100		(77)	3.0	(8)	(26)			
	1 95		100		(40)	4.0	(1)	(45)			
	2 345		100		(71)	3.4	()	(35)			
	4 280		100		(45)	2.8	()	(35)			
	a 515		47		(18)	2.1	(—)	()			
	HRh(CO)[P(OPh)3]3, Cp2ZrH(CH ₂ PPh ₂),									602
	CO/H ₂ (1/1, 10 atm), PhMe, 8	30°	_								
	$\frac{[Zr]:[Rh] Time (min)}{0}$		Conv.	(%)	I + II	I:II	V (21)	2-hexenes	5		
	1 200		100		(71)	0.5	(24)	(4)			
	1.7 100		97		(59)	32	(2)	(28)			
	3 235		100		(58)	3.2	()	(44)			
	9.2 505		66		(15)	2.0	(—)	(43)			
	Co ₂ (CO) ₆ (phosphine) ₂ , phosph	ine,									597
	dioxane, H ₂ /CO (8/1, 45 atm)	, 3 h									
	Phosphine Temp.	P/Rh	I	п	ш	IV	v	vm	hexane	hexenes	
	$P(C_3H_6OMe)_3$ 150°	0	(41)	(18)	(12)	(7)	(8)	(2)	(9)	(4)	
	$P(C_3H_6OMe)_3$ 150°	1.3	(10)	(2)	(1)	(tr)	(1)	(0)	(4)	(81)	
	$P(C_3 H_6 O M_8)_3 = 150^{\circ}$	0.) 6.5	(7)	(I) (I)	(1)	(0)	(tr)	(0)	(5) (15)	(86)	
	$P(C_3H_2OMe)_3 = 150^{\circ}$	10	(10) (2)	(1) (tr)	(11) (tr)	(2) (0)	(1) (0)	(I) (I)	(15)	(J9) (07)	
	P[(CH ₂) ₂ CN] ₃ 150°	0	(26)	(a) (17)	(6)	(5)	(7)	(U) (tr)	(10)	(29)	
	P[(CH ₂) ₂ CN] ₃ 150°	10	(tr)	(tr)	(0)	(0)	(0)	(0)	(tr)	(99)	
	P[(CH ₂) ₂ CO ₂ Me] ₃ 150°	0	(38)	(17)	(15)	(8)	(7)	(4)	(9)	(4)	
	$P[(CH_2)_2CO_2Mc]_3$ 150°	10	(tr)	(tr)	(0)	(0)	(tr)	(0)	(5)	(95)	
	(C5Me5)Rh(C6F5)2, PPh3, L/Rh	u = 3, 80°,	I:II=7	5:25, 1	I + II (55)					603
	$(C_5Me_5)Rh(HC_6F_{4^-}p)_2$, PPh ₃ , I H ₂ /CO (1/1, 30 bar), 24 h	JRh = 3, 80°,	I:II=7	3:27, 1	l + II (78))					603

Reactant	Conditions					Prod	uct(s) and	Yield(s) (%)	Refs.
	Rh(acac)(CO) ₂ , ligand, 100°, CO/H ₂ (1/1, 110 psi) $F \qquad F \qquad$		J	I + II (—;), I:11= 7	2			604
	F F	2h - 10							605
	H ₂ /CO, 120°, 17 h	ui - 10,							005
	PR ₃ H ₂ /CO (atm) Solve	ent_	<u> </u>	<u>I + II</u>	I:II D	II + IV	III:IV	Diethyl acetals	
	PPh ₃ 50 PhMe	8	((79)	3.3 (2	21)	3.5	()	
	PPh ₃ 50 EtOF	I	((38)	2.9 (5	52)	100:0	(10)	
	PEt ₃ 50 EtOF	I	((—) ·	- (8	30) 100)	2.5	()	
	$PEt_3 = 20 = EtOF$ P(Pr, w), = 50 = EtOF	1 T	(() ·	(I	100) 20)	2.4	()	
	PEt_Ph 50 EtOF	Ĩ		() ·	(4	40)	21	(30)	
	PEt ₂ Ph 20 EtOF	- E	,	(<u>)</u> ·	— (e	50)	10.1	(30)	
	Rh(CO)2-zeolite Y, phosphine, P/	Rh = 10,							605
	H ₂ /CO (50 atm), 120°, 17 h								
	PR ₃ Solvent		1	I+II I	H I	<u>II + IV</u>	III:IV	Diethyl acetals	
	PPh ₃ PhMe		((60) (3.8) (1	15)	(3.9)	()	
	PPh ₃ EtOH			(35) (5) (3	36)	(100:0)	(30)	
	PEt ₃ EtOH		(() (—) (î	70)	(5.1)	()	
	P(Pr-n) ₃ EtOH		((—) (() (—) (a	30) 20)	(3.3)	()	
	H ₂ O/MeOH/isooctane (1/1/1), 8 O_3S PPh_2 PPh_2 Pph_2	0°, 5 h		+ 2-hex	enes (33	((1) H	enes (2)		607
	[Co(CO) ₄], CO/H ₂ (1/2, 2000 psi PhMe, 170°, 3 h	i) ,		I + II (7);	, III + IV	(61), 11 :1	IV = 1.9		607
	Co ₂ (CO) ₈ , ligand, L/Co = 5, 190 ° H ₂ /CO (800 psi)	*							601
	Ligand Medium	H ₂ /CO	Time (h)) <u>1+I</u>	I:II	<u>Ш</u> +Г	<u>v ш</u> :г	v hexane	
	P(CH ₂ Ph) ₃ PhMe	1/1	4	(39)	3.1	(13)	_	()	
	$P(C_2H_4Ph)_3$ PhMe	1/1	4	(24)	5.3	(9)	—	()	
	$P(C_3H_6Ph)_3$ PhMe	1/1	4	(21)	9.4	(30)	31	(16)	
	$P(C_3H_6Ph)_3$ PhMe	9/1	4	(0)		(53)	8.8	(19)	
	$P(C_3H_6Ph)_3$ PhMe TP-PTS PhMe (1) O (201)	1/9	4	(25)	10.6	(13)	50	(13)	
	TPrPTS $PhMe/H_2O(2/1)$	1/1 Q/1	0 9	(35)	1.3	(1) (0)	1.2	(18)	
	TPrPTS PhMe/H_ Ω (2/1)	1/9	8	(38)	0.7 2 2	(0) (0)		(14)	
	TPrPTS glass (PhMe/H ₂ O)	1/1	8	(15)	3.6	(0)	_	(31)	
	TPrPTS glass (PhMe/H ₂ O)	9/1	8	(9)	3.6	(0)	_	(44)	
	TPrPTS glass (PhMc/H ₂ O)	1/9	8	(27)	3.7	(0)		(20)	
	Rh(acac)(CO) ₂ , $Cp_2ZrH(CH_2PPh_2)$), PhMe,							608
	H_2/CO (1/1, 10 atm), 80°, 3.5 h		,	I . IT	2		r		
	<u>24/101 (%)</u> 1.4 56		<u>-</u>	<u>іти</u> (35)	2-nexe	<u>וו: 18</u> אך	-7		
	2.7 84			(69)	(15)	1.0	-2		
				(/	·~~/	1.0	-		

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs
	Rh(acac)(CO) ₂ , Cp ₂ Zr(CH ₂ PPh ₂) ₂ , PhMe, H ₂ /CO (1/1, 10 atm), 80°, 3.5 h		608
	Zr/Rh Conv. (%) 0.9 86 1.2 99	I + II 2-hexene I:II (52) (34) 1.8-2 (85) (13) 1.8-2	
R	RhCl ₃ , phosphine, P/Rh = 13, 100°, 7 h, PhMe/H ₂ O (2/3), pH = 6, CO/H ₂ (1/1, 5 MPa)	R CHO I + R CHO II	243
	$P + \left[\begin{array}{c} (OCH_2CH_2)_{18}OH \\ B \\ \hline \\ C \\ H_2 \\ \hline \\ C \\ H_2 \\ \hline \\ 93 \\ 6 \\ \hline \end{array} \right]_3$	<u>I+П</u> (01)	
	C_6H_{13} 97.9 $C_{10}H_{21}$ 96.0	(86) (83)	
\sim	Ru ₃ (CO) ₁₂ -2,2'-bipyridine on silica f22, CO/II ₂ (1/1, 50 bar), 150°, 17 h, PhMe	I + Π (0), Π + ΓV (33-97), Π : ΓV = 1.1-0.9	510
	[Rh(CO)(PPh ₃) ₂] ₄ SiW ₁₂ O ₄₀ , PhMe, CO/H ₂ (1/1, 1000 psi), 100°, 3 h	I + II + V (96), I : Π : V = 13:57:30	522
1-C5H11	Pt(acac) ₂ , TfOH, DPPF, H ₂ /CO (700 psi), 100°, 20 min	I + II + V + III (609
	HRh[P(OPh) ₃] ₄ , CO/H ₂ (1/1, 10 atm), PhMe, 80°, 260 min	I (13) + II (48) + V (34)	602
	HRh(CO)[P(OPh) ₃] ₃ , CO/H ₂ (1/1, 10 atm), PhMe, 80°	I(16) + II(53) + V(32)	602
	HRh(CO)[P(OPh) ₃] ₃ , Cp ₂ ZrH(CH ₂ PPh ₂), Zr/Rh = 1.5, CO/H ₂ (1/1, 10 atm), PhMe, 80°	I(10) + II(51) + V(43)	602
\sim	[Rh(CO)(PPh ₃) ₂] ₄ SiW ₁₂ O ₄₀ , PhMe, CO/H ₂ (1/1, 1000 psi), 100°, 3 h	I + II + V (92), $I:II:V = 10:40:50$	522
	[Rh(COD)(diphosphine)]BF ₄ , PPb ₂ 60°, 70 h, H ₂ O (30% DMF), CO/H ₂ (1/1, 100 atm)	II + V (), V:II = 90:4	223
Bu Bu	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na-m) ₃ , H ₂ O, per(β-cyclodextrin-(Me-o) ₂ -2,6), P/Rh=5, CO/H ₂ (1/1, 50 atm), 80°, 6 h	Bu Bu I (2) CHO	610
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i>) ₃ , H ₂ O, P/Rh=5, CO/H ₂ (1/1, 50 atm), 80°, 6 h	I (2)	610
\downarrow	[Rh(COD)OAc] ₂ , PPh ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 90°	сно I (78)	468
	Rh(acac)(CO) ₂ , P(OC ₆ H ₃ Me-4-Bu- <i>t</i> -2) ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 70 ^{\circ}	I (64)	468
\sim	[Rh(COD)OAc] ₂ , PPh ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 90 °	OHC I(91)	468
	Rh ₂ O ₃ , PPh ₃ , C ₆ H ₆ , CO/D ₂ (1/1, 70 atm), 100°, 20 h	ODC (89) + D (11)	611
\bigcirc	RhH(CO)(PPh ₃) ₃ , C ₆ H ₆ , rt, 4 d, CO/H ₂ (1/2, 1 atm)	CHO (34)	368
\bigcirc	[Rh(OAc)(COD)] ₂ , P(OPh) ₃ , L/Rh = 2.5, CO/H ₂ (1/1, 5 bar), CICH ₂ CH ₂ Cl, 80°	CHO I ()	517
	Rh_2O_3 , C_6H_6 , CO/H_2 (1/1, 150 atm), 100°, 2 h	I (82-84)	452

$Rh(acac)(CO)_2$, $P(C_6H_4SO_3Na-m)_3$, H_2O ,	I (5)			610
per(β -cyclodextrin-(Me- o) ₂ -2,6), P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 2 h				
Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i>) ₃ , H ₂ O, P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 2 h	I (4)			610
Co(acac) ₂ , <i>n</i> -C ₇ H ₁₆ , CO/H ₂ (1/1, 150 atm), 110°, 12 h	I (74)			452
Co ₂ (CO) ₈ , C ₆ H ₆ , CO/H ₂ (1/1, 150 atm), 120°, 8 h	I (80)			452
Rh(acac)(CO) ₂ , P/Rh=2, PhMe, CO/H ₂ (1/1, 20 atm), 80°, 23 h OP(OPh) ₂ OP(OPh) ₂	I (78)			612
Rh(acac)(CO) ₂ , P/Rh=2, PhMe, CO/H ₂ (1/1, 20 atm), 80°, 23 h (PhO) ₂ PO (PhO) ₂ PO (PhO) ₂ PO (PhO) ₂ PO	I (80)			612
CO/PL (1/1 56 stm) toluene 90°	D	Conversion after 1 h (%)	L (%)	613
$\begin{array}{c} CO_{2}H \\ R \\ OC \\ Rh \\ R$	H Me	37 40	37 40	
1 CO ₂ H	R	Conversion after 1 h (%)	I (%)	613
R = O $N - Rh - P - Ph$ $N + Rh - P - Ph$ R R	H Me	11 3)	9 31	
Rh(COD)(OAc), P(OC ₆ H ₄ Bu- <i>t</i> -2) ₃ , L/Rh = 10, C ₆ H ₆ , 90°, 0.5-2 h, CO/H ₂ (1/2, 18 har)	I(~)			614
CO/H ₂ (1/1, 80 atm), C ₆ H ₆ , 120°, 8 h <u>Catalyst</u> Rh ₂ (µ-Cl)(µ-SCH ₂ -polystyrene resin)(CO) ₂ (PH Rh ₂ (µ-Cl)[µ-S(C ₆ H ₄ Me-4)](CO) ₂ (PPh ₂ -polyst Rh ₂ (µ-Cl)[µ-S(C ₆ H ₄ Cl-4)](CO) ₂ (PPh ₂ -polysty Rh ₂ (µ-Cl)[µ-S(CH ₂) ₃ SiO ₃ -silica 60](CO) ₂ (PB Rh ₂ (µ-Cl)[µ-S(CH ₂) ₃ SiO ₃ -alumina 90](CO) ₂ (PB	Bu-t ₃) ₂ yrene resin) ₂ yrene resin) ₂ u-t ₃) ₂ PBu-t ₃) ₂	- I () () () ()		615
$[(\eta^{5}-C_{5}H_{5})Rh_{2}(\mu-CO)(\mu-Ph_{2}PPy)(CO)CI],$	I (~93)			616

			· · · •
	cis -{Rh{P(Bu-t) ₃ }(CO)] ₂ (µ-Cl){µ-P(Bu-t) ₂ }, CO/H ₂ (1/1, 80 atm), PhMe, 120°, 20 h	I (94) + cyclohexane (6)	617
	Poly(N-vinyl-2-pyrrolidone)- Co ₂ Rh ₂ (CO) ₁₁ , CO/H ₂ (1/1.2, 55 kg/cm ²), C ₆ H ₆ , 80°, 8 h	I + OH II + II (), I:II = 64.1:35.9	566
	Ru ₃ (CO) ₁₂ , P(C ₆ H ₁₁) ₃ , HCO ₂ Me, H ₂ O, 180°, 10 h	II (60) + cyclohexane (9)	493
	[Pt(C ₂ H ₄)(DPPB)]/CF ₃ SO ₃ H (1/1), PhMe, CO/H ₂ (1/1, 100 atm), 100°, 48 h	I (24) + II (2) + cyclohexane (1)	259
	Rh ₂ (CO) ₂ [P(Bu-t) ₃] ₂ (μ-Cl)(μ-SBu-t), CO/H ₂ (1/i, 80 atm), 120°, 23 h	I (100)	618
	Rh ₂ (CO) ₂ [P(Bu-t) ₃] ₂ (µ-Cl)[µ-S(CH ₂) ₂ SiO ₃ - silica gel], CO/H ₂ (1/1, 80 atm), 120°, 20 h	I (75)	618
	Rh ₂ (CO) ₂ [P(Bu- <i>t</i>) ₃] ₂ (µ-Cl){µ-S(CH ₂) ₃ SiO ₃ - silica gel], CO/H ₂ (1/1, 80 atm), 120°, 20 h	I (85)	618
	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 34 atm), 125°, <i>n</i> -hexane	I (—)	619
	K[Ru(saloph)Cl ₂], EtOH, 130°, CO/H ₂ (1/1, 21 atm)	I (—)	553
	cis-PtCl ₂ (PPh ₃) ₂ /SnCl ₂ ·2H ₂ O (1:5), CO/H ₂ (1/1, 100 bar), CHCl ₃ , 90°, 6 h	I (53) + Cyclohexane (3)	492
	Rh ₄ (CO) ₁₂ /P(OPh) ₃ (1/6), PhMe, 50°, 48 h, CO/H ₂ (1/1, 1 atm)	1 (90)	620
	Co ₂ Rh ₂ (CO) ₁₂ /P(OPh) ₃ (1/6), PhMe, 50°, 48 h, CO/H ₂ (1/1, 1 atm)	I (51)	620
	$Co_2(CO)_8$, $Ru_3(CO)_{12}$, $Ru/Co = 9.9$, THF, CO/H ₂ (1/1, 80 kg/cm ²), 110°, 4 h	I (100)	621, 536 622
	Rh(acac)[P(OPh) ₃] ₂ , P(OPh) ₃ , 80°, CO/H ₂ (10 atm), 4.5 h	I (44)	260
	Co(acac) ₂ (H ₂ O) ₂ , C ₆ H ₆ , 353 K, 4 h, CO/H ₂ (1/1, 9.4x10 ³ KN/m ²)	$I(20) + \Pi(19) + cyclohexane (13)$	623
	Co ₂ Rh ₂ (CO) ₁₂ on Dowex MWA-1 resin, CO/H ₂ (1/1, 50 bar), PhMe, 100°, 16-19 h	H (77)	588
Bu	Na ₂ [Rh ₁₂ (CO) ₃₀], H ₂ /CO (1/1, 120 atm), 100°, 90 min	t-Bu CHO (56) + CH ₂ OH (tr)	624
\sim	[Rh (COD)OAc] ₂ , PPh ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 90°	СНО (77)	468
\swarrow	Rh(acac)(CO) ₂ , P(OC ₆ H ₃ Me-4-Bu- <i>t</i> -2) ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 70°	CHO I (79) + alkenes (15)	468
	[Rh(COD)OAc] ₂ , PPh ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 90 $^{\circ}$	I (85)	468
$\sim \downarrow \sim$	[Rh(COD)OAc] ₂ , PPh ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 90 $^{\circ}$	(91)	468
A	Pt(C ₂ H ₄)(DPPB)/MeSO ₃ H, PhMe, CO/H ₂ (1/1, 100 atm), 100°, 5 h	I (98)	625
	Pt(C ₂ H ₄)(DPPB)/MeSO ₃ H, PhMe, CO/H ₂ (1/1, 50 atm), 100°, 5 h	I (93)	625
	HRh(CO)(PPh ₃) ₃ , PhMe, 1 h CO/H ₂ (1/1, 100 atm), 100°	I (99)	625

C₇

Reactant	Conditions	Product(s) and Yield(s) (%)	Re
		N	
	Pt(C ₂ H ₄)(DPPB)/MeSO ₃ H, PhMe,	CDO (81)	625
	CO/D ₂ (1/1, 50 atm), 100°, 5 h	<u>///</u> D	
		AA	
		\wedge \checkmark \checkmark	
	1. $Co_2(CO)_8$ -Ru ₃ (CO) ₁₂ , C ₆ H ₆ , 90°, 4 h,		626
	CO/H_2 (1/1, 80 kg/cm ²)		
	2. NaBH ₄	I TH TH	
		n m	
	Catalyst Co:Ru	Conv. (%) I II III	
	1:0	41 (9) (19) (1)	
	0:1	3 (1) (tr) (0)	
	1:1	83 (29) (21) (4)	
	1:5	93 (38) (12) (3)	
	1:10	99 (55) (15) (tr)	
		Ν	
	Ru ₃ (CO) ₁₂ , P(C ₆ H ₁₁) ₃ , HCO ₂ Me,	I (86) + (9)	493
	H ₂ O, 180°, 10 h		
· · ·	CONT (1/1 100) THE 708 16 h	СНО	748
\sim \sim \sim	CO/H2 (1/1, 100 auti), THF, 70 , 10 ii		240
	1-HU ₂ C		
	0, , , , , , , , , , , , , , , , , , ,	1 + 11 (); 1:11 = 60:40	
	O - P - O (CH ₂) = Rb ⁺ (COD) BE		
	0-P-0		
	Ó CO ₂ Pr-i		
	i-PrO ₂ Ċ		
			251
	$Rh(COD)BPn_4, CO/H_2 (1/2, 200 ps1),$	I() + II() + starting material (11) I:II = 48:52	251
	CHCl ₃ , 47, 20 fi		
	$[Rh(COD)(PPh_3)_2]CIO_4/PPh_3, L/Rh = 10,$	I + II (), I:II = 1:3.7	517
	CO/H ₂ (1/1, 5 atm), (ClCH ₂) ₂ , 80°, 5 h	<u></u>	
		OH	
	Pt(COD) ₂ , Ph ₂ POH, phosphines, C_6H_6 ,		627-6
	Catalyst	I + II I:II III + IV III:IV heptane heptenes	
	Pt(COD) ₂ /PPh ₂ OH/PPh ₃ (1/1/1)	(10) 10:90 (9) 10:90 (1) (30)	
	Pt(COD) ₂ /PPh ₂ OH/PPh ₃ (1/1/2)	(3) 10:90 (6) 10:90 (tr) (10)	
	$Pt(COD)_2/PPh_2OH$ (1/2)	(4) 10:90 (2) 10:90 (2) (80)	
	Pt(COD) ₂ /PPh ₂ OH/DPPE (1/1/1)	(24) 10:90 (3) 10:90 (1) (33)	
		1	
	$[RhCl(COD)]_2$, PPh ₃ , P/Rh = 1, C ₆ H ₆ ,	$n-C_{s}H_{11}$ CHO I + $n-C_{s}H_{11}$ CHO I +	631
	CO/H ₂ (1/1, 30 bar), 45°		
		$n-Bu$ $m + \frac{1}{n-Bu}$ $N + \frac{1}{n-Bu}$	
		n-Pr	
		I:II:III:IV:V:VI = 69:31:34:13:4:3	
	[RhCl(COD)] ₂ , PPh ₂ -polystrene, P/Rh = 1,	I:II:III:IV:V:VI = 51:49:31:16:7:4	631
	C ₆ H ₆ , CO/H ₂ (1/1, 30 bar), 45°		
	Rh(anthranilate)(CO)2, P(OPh)2.	I + II (78) + hent-2-ene (22)	570
	$P/Rh = 3.1, CO/H_2 (1/1, 1 atm). PhMe. 40^{\circ}$		270
	• • • • • • • • • • • • • • • • • • • •		
	$[\mathbf{Rh}_2(\mu\text{-}\mathbf{S}(\mathbf{CH}_2)_3\mathbf{NMe}_2(\mathbf{CH}_2\mathbf{Ph}))_2(\mathbf{COD})_2]$		632
	[PF ₆] ₂ , 2 PR ₃ , CO/H ₂ (1/1, 5 bar), 80°,		
	CICH ₂ CH ₂ Cl		
	PR ₃ Time (min)	Conv. (%) I/II	
	PPh ₃ 330	93 2.57	
	$P(OPh)_3$ 570	40 0.70	

FABLE I. HYDROFORMYL	ATION OF ALKYI	SUBSTITUTED	MONOOLEFINS ((Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	[Rh ₂ (μ-S(CH ₂) ₃ NMε ₂ (CH ₂ Ph)) ₂ (CO) ₄] [PF ₆] ₂ , 10 PPh ₃ , CO/H ₂ (1/1, 5 bar), 80°, ClCH ₂ CH ₂ Cl, 5 h	I + II (78), I : II = 3.33	632
	Rh ₄ Cl ₄ (CO) ₄ (O ₂) ₂ (PPh ₂ OBu- <i>i</i>) ₂ , PPh ₂ OBu- <i>i</i> , CO/H ₂ (1/1, 1000 psi), DMA, 90°, 24 h	1 + II (), 1:II = 69:22	633
	$[Rh(NBD){P(C_6H_4R-4)_3}_2]ClO_4, CO/H_2$	$\mathbf{I} + \mathbf{II} + n$ -BuCH(Et)CHO VII (—)	634
	R Time (min) for 50% conversion	<u>I</u> : (II + VII)	
	MeO 29	68:32	
	Me 27	68 : 32	
	F 18	64 : 36	
	Cl 21	47 : 53	
	Catalyst, CO/H ₂ (1/1, 50 atm), Me ₂ CO, 80° Catalyst	Selectivity n-octanal (I/Products)	635
	$[\mathbf{Rh}(\mathbf{Pz})\{\mathbf{P}(\mathbf{OPh})_3\}_2]_2$	58	
	$[\mathbf{Rh}(\mathbf{Pz})(\mathbf{CO})\mathbf{P}(\mathbf{OPh})_3]_2$	43	
	$[Rh(Pz)(COD)]_2$	37	
	$[\mathbf{Rn}(\mathbf{rz})(\mathbf{COD})]_2 + 10 \ \mathbf{Prn}_3$ $[\mathbf{Pb}(\mathbf{M}_{\mathbf{r}}\mathbf{P}_{\mathbf{r}})(\mathbf{COD})]_2 + 16 \ \mathbf{PPh}_3$	74	
	$[\mathbf{Rh}(\mathbf{Me}_{2}\mathbf{Pz})(\mathbf{COD})]_{2}$	37	
	$[Rh(Pz)(CO)PPh_3]_2 + 2 PPh_3$	63	
	$[Rh(MePz)(CO)PPh_3]_2 + 2 PPh_3$	64	
	$[Rh(Pz)(CS)PPh_3]_2 + 2 PPh_3$	68	
	$[Rh(Me_2Pz)(CS)PPh_3]_2 + 2 PPh_3$	70	
	$[\mathbf{Rh}(\mathbf{HMe}_{2}\mathbf{Pz})(\mathbf{CS})(\mathbf{PPh}_{3})_{2}]\mathbf{ClO}_{4}$	64	
	HRh(CO)(PPh_)_PPhnolvstyrene	$1(45) + \Pi(10) + n - C_0 H_{10} CHO(12)$	636
	polystyrene-PPh ₂ =CH ₂ , THF, CO/H ₂ (1/1, 120 lb/in ²), 60°, 16 h	+ n -C ₁₁ H ₂₃ CHO (2) + n -C ₁₃ H ₂₇ CHO (tr)	
	[Rh(NBD)Cl] ₂ /PPh ₃ (1/10), Me ₂ CO, 100°, CO/H ₂ (3/11, 38 atm)	I + II (), I:II = 83.5:16.5	637
	$[Rh(COD)OAc]_2$, PPh ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 90 °	I (77)	468
	[Rh(COD)OAc] ₂ , PPh ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 90 $^{\circ}$	СНО (77)	468
\times	Rh ₄ (CO) ₁₂ , C ₆ H ₆ , CO/D ₂ (1/1, 200), 100°		638
	Co ₂ (CO) ₈ , C ₆ H ₆ , CO/D ₂ (1/1, 200), 100°	$\begin{array}{c} H_{2.50}D_{0.50} C & H_{0.63}D_{0.17} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	638
\bigcirc	'n	CH ₂ OH I (33) + II (40)	493
\bigcup	u	I (50) + II (6)	493
~~~	Rh(COD)(OAc), P(C ₆ H ₄ OBu-t-2) ₃ , L/Rh = 10, C ₆ H ₆ , 70°, 30-60 min, CO/H ₂ (1/2, 18 bar)	СНО ()	614
$\bigcirc$	Rh(COD)(OAc), P(C ₆ H ₄ OBu- <i>t</i> -2) ₃ , C ₆ H ₆ , 75°, CO/H ₂ (1/2, 20 bar)	СНО ()	614
$\bigcirc$	Rh(acac)[P(OPh) ₃ ] ₂ , P(OPh) ₃ , 80°, CO/H ₂ (10 atm), 3 h	CHO (24)	260
	Ru ₃ (CO) ₁₂ , P(C ₆ H ₁₁ ) ₃ , HCO ₂ Me, H ₂ O, 180°, 10 h	OH (60) + (24)	493

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
		СНО	
~ ~			
	CO/H ₂ (1/1), THF, 70°, 16 h		248,
	i-PrO ₂ C		639
	$O^{-CO_2 Pr-i}$	Pressure (atm) I II Yield (%)	
	$\dot{\mathbf{O}} - \dot{\mathbf{P}} - \dot{\mathbf{O}}$	1000000000000000000000000000000000000	
	$(CH_2)_3$ Rh ⁺ (COD) BF ₄	24   75:25  ()	
	0-P-0 0 \	56   98.2   ()	
	CO ₂ Pr-i	100   975:25   ()	
	i-PrO ₂ C	100 97.5.2.5 ( )	
	[Rh(CO) ₂ Cl] ₂ , PPhMe ₂ , C ₆ H ₆ , CO/H ₂ , 60°	<b>I</b> + Π (), <b>I</b> :Π = 96:4	640
	Rh(COD)BPh4, CO/H2 (1/2, 200 psi), CHCl ₃ , 47°, 22 h	I (—) + II (—) + starting material (11) I:II = 97.3:2.7	251
	$[RhCl(CO)_2]_2$ , L/Rh = 5, Et ₃ N/Rh = 10,		641,
	CO/H ₂ (1/1, 20 bar), PhMe, 40°, 6 h		642
	Ligand	Conv. (%) I:II I + II	
	TPP	100 84:16 (90)	
	PPh ₃	87 94:6 (99)	
	PPPN	82 91:9 (99)	
	o-TDPP	75 80:20 (84)	
	РРР	49 87:13 (100)	
	DMTPPN	32 94:6 (100)	
	t-BDMP	0 — (0)	
	[Rh(NBD)(2,5-bis(diphenylphosphino-	<b>I</b> + Π (), <b>I</b> :Π = 97:3	247
	methyl)bicyclo[2.2.1]heptane)ClO ₄ ,		
	[Rh(COD)Cl] ₂ , CO/H ₂ (1/1, 600 psi), CHCl ₃ , 80°		643
	[Rh(COD)Cl] ₂ , CO/H ₂ (1/1, 600 psi), CHCl ₃ , 80° Ligand Time (h)	Yield (%) I:II	643
	[Rh(COD)Cl] ₂ , CO/H ₂ (1/1, 600 psi), CHCl ₃ , 80° <u>Ligand</u> Time (h) Ph ₂ P(CH ₂ ) ₂ PPh ₂ 4	Yield (%)         I:II           (32)         92:8	643
	$[Rh(COD)Cl]_{2}, CO/H_{2} (1/1, 600 \text{ psi}), \\ CHCl_{3}, 80^{\circ} \\ \underline{\text{Ligand}} \\ \overline{\text{Ph}_{2}P(CH_{2})_{2}PPh_{2}} \\ 4 \\ Ph_{2}P(CH_{2})_{2}C_{5}H_{4}N-2 \\ 1 \\ \end{bmatrix}$	Yield (%)         I:II           (32)         92:8           (76)         91:9	643
	$[Rh(COD)Cl]_2, CO/H_2 (1/1, 600 \text{ psi}), \\ CHCl_3, 80^\circ \\ \hline \\ \underline{Ligand} \\ \hline \\ Ph_2P(CH_2)_2PPh_2 \\ 4 \\ Ph_2P(CH_2)_2C_5H_4N-2 \\ 1 \\ Ph_2PCH_2NMe_2 \\ 1.5 \\ \hline \label{eq:eq:expectation}$	Yield (%)         I:II           (32)         92:8           (76)         91:9           (59)         94:6	643
	$[Rh(COD)Cl]_2, CO/H_2 (1/1, 600 psi), CHCl_3, 80° \\ Ligand Time (h) \\ Ph_2P(CH_2)_2PPh_2 4 \\ Ph_2P(CH_2)_2C_3H_4N-2 1 \\ Ph_2PCH_2NMe_2 1.5 \\ Ph_2P(CH_2)_2NMe_2 1.5 \\ Ph_2P(CH_2)_2NMe_2 1.5 \\ ]$	Yield (%)         I:II           (32)         92:8           (76)         91:9           (59)         94:6           (87)         91:9	643
	$[Rh(COD)Cl]_2, CO/H_2 (1/1, 600 psi), CHCl_3, 80° \\ Ligand Time (h) \\ Ph_2P(CH_2)_2PPh_2 4 \\ Ph_2P(CH_2)_2C_3H_4N-2 1 \\ Ph_2PCH_2NMe_2 1.5 \\ Ph_2P(CH_2)_2NMe_2 1.5 \\ Ph_2P(CH_2)_3NMe_2 2.5 \\ Ph_2P(CH_2)_3NMe_2 2.5 \\ Ph_2P(CH_2)_3NMe_3 \\$	Yield (%)         I:II           (32)         92:8           (76)         91:9           (59)         94:6           (87)         91:9           (85)         97:3	643
	$[Rh(COD)Cl]_2, CO/H_2 (1/1, 600 psi), CHCl_3, 80° \\ \underline{Ligand} Time (h) \\ Ph_2P(CH_2)_2PPh_2 4 \\ Ph_2P(CH_2)_2C_3H_4N-2 1 \\ Ph_2PCH_2NMe_2 1.5 \\ Ph_2P(CH_2)_2NMe_2 1.5 \\ Ph_2P(CH_2)_3NMe_2 1.5 \\ Ph_2PC_3H_4N-2 \\ Ph_2PC_3H$	Yield (%)         I:II           (32)         92:8           (76)         91:9           (59)         94:6           (87)         91:9           (85)         97:3           (66)         98:2	643
	$[Rh(COD)Cl]_2, CO/H_2 (1/1, 600 psi), CHCl_3, 80° \\ \hline Ligand Time (h) \\ \hline Ph_2P(CH_2)_2PPh_2 4 \\ Ph_2P(CH_2)_2C_5H_4N-2 1 \\ Ph_2PCH_2NMe_2 1.5 \\ Ph_2P(CH_2)_2NMe_2 1.5 \\ Ph_2P(CH_2)_3NMe_2 1.5 \\ Ph_2P(CH_2)_3NMe_2 1.5 \\ Ph_2PC_3H_4N-2 1.5 \\ (\mu_3-MeC)Co_3(CO)_7(\mu-Ph_2PCH_2PMe_2), PhMe, CO/H_2 (1/1, 80 bar), 105°, 67 h \\ \end{tabular}$	Yield (%)       I·II         (32)       92:8         (76)       91:9         (59)       94:6         (87)       91:9         (85)       97:3         (66)       98:2         I+II       (23)	643 644
	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Yield (%)       I:II         (32)       92:8         (76)       91:9         (59)       94:6         (87)       91:9         (85)       97:3         (66)       98:2         I + II (23)       II () + II (74) + III (8)	643 644 245
	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Yield (%)       I:II         (32)       92:8         (76)       91:9         (59)       94:6         (87)       91:9         (85)       97:3         (66)       98:2         I + II (23)       III (8)       I:II = 1:4         I () + II (74)       +       III (8)       I:II = 1:4	643 644 245 245
	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Yield (%)       I:II         (32)       92:8         (76)       91:9         (59)       94:6         (87)       91:9         (85)       97:3         (66)       98:2         I + II (23)       III (8)         I () + II (74)       +         I () + II (90), I:II = 1:9         I + II (), I:II = 65:35	643 644 245 245 645
		Yield (%)       I:II         (32)       92:8         (76)       91:9         (59)       94:6         (87)       91:9         (85)       97:3         (66)       98:2         I + II (23)       II () + II (74) + III (8)         I () + II (90), I:II = 1:9       III (8)       I:II = 1:4         I () + II (90), I:II = 1:9       I + II (), I:II = 65:35         I + II + III (), I:II:III = 9:90:1       III ()	643 644 245 245 645 244
	$      [Rh(COD)CI]_2, CO/H_2 (1/1, 600 psi), CHCl_3, 80° \\            Ligand Time (h) \\            Ph_2P(CH_2)_2PPh_2 4 \\            Ph_2P(CH_2)_2C_5H_4N-2 1 \\            Ph_2P(CH_2)_2C_5H_4N-2 1.5 \\            Ph_2P(CH_2)_2NMe_2 1.5 \\            Ph_2P(CH_2)_3NMe_2 1.5 \\            Ph_2P(CH_2)_3NMe_2 1.5 \\            Ph_2P(CJ_3)_3NMe_2 1.5 \\            Ph_2P(CJ_3)_3NMe_2 1.5 \\            (\mu_3-MeC)CO_3(CO)_7(\mu-Ph_2PCH_2PMe_2), PhMe, CO/H_2 (1/1, 80 bar), 105°, 67 h \\            Pt(DIOP)Cl_2/Sn/e*, propylene carbonate, C_6H_6, CO/H_2 (1/1, 100 atm), 90°, 7 h \\            Pt(DIOP)Cl_2/Fe/e*, propylene carbonate, C_6H_6, CO/H_2 (1/1, 100 atm), 90°, 7 h \\            Pt(DIOP)Cl_2/Fe/e*, propylene carbonate, C_6H_6, CO/H_2 (1/1, 100 atm), 90°, 7 h \\            PtCl_2(PPh_3)_2, SnCl_2·2H_2O, MEK, 70°, CO/H_2 (1/1, 100 atm), 4 h \\            1. Pt(DIOP)_2Cl_2/Fe/e*, propylene carbonate/ C_6H_6 (40/60) \\            2. CO/H_2 (4/1, 100 bar), 90°, 24 h \\            $	$\frac{\text{Yield } (\%)  \textbf{I: II}}{(32)  92:8}$ (76) 91:9 (59) 94:6 (87) 91:9 (85) 97:3 (66) 98:2 I + II (23) I () + II (74) + (III (8)) I: II = 1:4 I () + II (90), I: II = 1:9 I + II (), I: II = 65:35 I + II + III (), I: II: III = 9:90:1 OH	643 644 245 245 645 244
	$      [Rh(COD)Cl]_2, CO/H_2 (1/1, 600 psi), CHCl_3, 80°                                   $	$\frac{\text{Yield (\%)}}{(32)} \qquad \begin{array}{c} \textbf{I} \cdot \textbf{II} \\ \hline (32) & 92:8 \\ \hline (76) & 91:9 \\ \hline (59) & 94:6 \\ \hline (87) & 91:9 \\ \hline (85) & 97:3 \\ \hline (66) & 98:2 \\ \textbf{I} + \textbf{II} (23) \\ \textbf{I} () + \textbf{II} (74) + ( \textbf{III} (\textbf{III} = \textbf{I}) \\ \textbf{I} () + \textbf{II} (74) + ( \textbf{IIII} (\textbf{III} = \textbf{I}) \\ \textbf{I} () + \textbf{II} (90), \textbf{I} \cdot \textbf{II} = \textbf{I} : \textbf{I} \\ \textbf{I} () + \textbf{II} (90), \textbf{I} \cdot \textbf{II} = \textbf{I} : \textbf{9} \\ \textbf{I} + \textbf{II} (), \textbf{I} \cdot \textbf{II} = \textbf{65} : \textbf{35} \\ \textbf{I} + \textbf{II} + \textbf{III} (), \textbf{I} \cdot \textbf{II} : \textbf{III} = \textbf{9} : \textbf{90} : \textbf{1} \\ \textbf{I} + \textbf{II} + \textbf{III} (5) + ( \textbf{V} + \textbf{V} + ( $	<ul> <li>643</li> <li>644</li> <li>245</li> <li>245</li> <li>645</li> <li>244</li> <li>646</li> </ul>
	$      [Rh(COD)CI]_2, CO/H_2 (1/1, 600 psi), CHCl_3, 80°             Ligand Time (h)             Ph_2P(CH_2)_2PPh_2 4             Ph_2P(CH_2)_2C_5H_4N-2 1             Ph_2P(CH_2)_2C_5H_4N-2 1.5             Ph_2P(CH_2)_2NMe_2 1.5             Ph_2P(CH_2)_3NMe_2 1.5             Ph_2P(CH_2)_3NMe_2 1.5             Ph_2P(CJ_2)_3NMe_2 1.5             Ph_2P(CJ_2)_3NMe_2 1.5             (µ_3-MeC)CO_3(CO)7(µ-Ph_2PCH_2PMe_2), PhMe, CO/H_2 (1/1, 80 bar), 105°, 67 h             Pt(DIOP)Cl_2/Sn/e*, propylene carbonate, C6H6, CO/H_2 (1/1, 100 atm), 90°, 7 h             Pt(DIOP)Cl_2/Fe/e*, propylene carbonate, C6H6, CO/H_2 (1/1, 100 atm), 90°, 7 h             Pt(DIOP)Cl_2/Fe/e*, propylene carbonate, C6H6, CO/H_2 (1/1, 100 atm), 90°, 7 h             PtCl_2(PPh_3)_2, SnCl_2·2H_2O, MEK, 70°, CO/H_2 (1/1, 100 atm), 4 h             1. Pt(DIOP)_2Cl_2/Fe/e*, propylene carbonate/ C6H6 (40/60)             2. CO/H_2 (4/1, 100 bar), 90°, 24 h             Pt(C_2H_4)((+)-DIOP)/3 MeSO_3H, PhMe, CO/H_2 (1/1, 100 atm), 100°, 4 h$	$\frac{\text{Yield } (\%)  \textbf{I:H}}{(32)  92:8}$ (76) 91:9 (59) 94:6 (87) 91:9 (85) 97:3 (66) 98:2 $\textbf{I+H} (23)$ $\textbf{I} () + \textbf{II} (74) + (\textbf{III} (8)  \textbf{I:H} = 1:4)$ $\textbf{I} () + \textbf{II} (90), \textbf{I:H} = 1:9$ $\textbf{I} + \textbf{II} (), \textbf{I:H} = 65:35$ $\textbf{I} + \textbf{II} + \textbf{III} (), \textbf{I:H} = 9:90:1$ $\textbf{I} + \textbf{II} + \textbf{III} (5) + (\textbf{J} + \textbf{III} + \textbf{IIII} + \textbf{IIII} + \textbf{IIII} + \textbf{IIII} + \textbf{IIII} + \textbf{IIIII} + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	<ul> <li>643</li> <li>644</li> <li>245</li> <li>245</li> <li>645</li> <li>244</li> <li>646</li> </ul>
	$ [Rh(COD)Cl]_2, CO/H_2 (1/1, 600 psi), CHCl_3, 80°  \frac{Lig and Time (h)}{Ph_2P(CH_2)_2PPh_2 4}  Ph_2P(CH_2)_2C_3H_4N-2 1  Ph_2PC(H_2)_2C_3H_4N-2 1.  Ph_2PC(H_2)_2NMe_2 1.5  Ph_2P(CH_2)_2NMe_2 1.5  Ph_2P(CH_2)_3NMe_2 1.5  Ph_2PC_3H_4N-2 1.5  (\mu_3-MeC)Co_3(CO)7(\mu-Ph_2PCH_2PMe_2),  PhMe, CO/H_2 (1/1, 80 bar), 105°, 67 h  Pt(DIOP)Cl_2/Sn/e°, propylene carbonate,  C_6H_6, CO/H_2 (1/1, 100 atm), 90°, 7 h  Pt(DIOP)Cl_2/Fe/e°, propylene carbonate,  C_6H_6, CO/H_2 (1/1, 100 atm), 90°, 7 h  Pt(DIOP)Cl_2/Fe/e°, propylene carbonate,  C_6H_6, CO/H_2 (1/1, 100 atm), 90°, 7 h  Pt(Cl_2(PPh_3)_2, SnCl_2·2H_2O, MEK, 70°,  CO/H_2 (1/1, 100 atm), 4 h  1. Pt(DIOP)_2Cl_2/Fe/e°, propylene carbonate/  C_6H_6 (40/60)  2. CO/H_2 (4/1, 100 bar), 90°, 24 h  Pt(C_2H_4)((+)-DIOP)/3 MeSO_3H, PhMe,  CO/H_2 (1/1, 100 atm), 100°, 4 h  Pt(C_2H_4)((+)-DIOP)/SnCl_2, PhMe,  CO/H_2 (1/1, 100 atm), 100°, 4 h  Pt(C_2H_4)((+)-DIOP)/SnCl_2, PhMe,  CO/H_2 (1/1, 100 atm), 100°, 4 h$	$\frac{\text{Yield (\%)}}{(32)} = \frac{\text{I} \cdot \text{II}}{92:8}$ $(76) = 91:9$ $(59) = 94:6$ $(87) = 91:9$ $(85) = 97:3$ $(66) = 98:2$ $\mathbf{I} + \mathbf{II} (23)$ $\mathbf{I} () + \mathbf{II} (74) + (\mathbf{III} + \mathbf{III} (8)) = \mathbf{I} \cdot \mathbf{III} = \mathbf{I} \cdot 4$ $\mathbf{I} () + \mathbf{II} (90), \mathbf{I} \cdot \mathbf{II} = \mathbf{I} \cdot 9$ $\mathbf{I} + \mathbf{II} (), \mathbf{I} \cdot \mathbf{III} = 65 \cdot 35$ $\mathbf{I} + \mathbf{III} + \mathbf{III} (), \mathbf{I} \cdot \mathbf{III} = 9 \cdot 90 \cdot \mathbf{I}$ $\mathbf{I} + \mathbf{III} + \mathbf{III} (5) + (\mathbf{IIII} = 9 \cdot 90 \cdot \mathbf{I})$ $\mathbf{I} + \mathbf{IIII} + \mathbf{IIII} (5) + (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	<ul> <li>643</li> <li>644</li> <li>245</li> <li>245</li> <li>245</li> <li>244</li> <li>646</li> <li>646</li> </ul>

TABLE I. HYD	ROFORMYLATION	OF ALKYL-SUBSTI	TUTED MONOOLEE	INS (Continued)

					(0) 41.0 1 1014(3) (70)	
PtCl ₂ ((+) CO/H ₂	)-DIOP)/3 Sn (1/1, 100 atm	nCl ₂ , PhMc, n), 100°, 4 h	I + II (77),	I:II = 49.8:50.	2; 111 (14)	e
PPN[HR DMF, 1	u(CO) ₄ ], CO 150°, 16.5 h	/H ₂ (1/1, 300 atm),	I + II (43), IV + V (5	<b>I</b> : <b>II</b> = 95.9:4.1 52), <b>IV</b> : <b>V</b> = 93.	; III (3); 2:6.8	4
PtCl ₂ (bis CO/H ₂	sphosphine), S (1/1, 80 bar),	SnCl ₂ , PhMe, 100°, 4 h				1
Biphosp	ohine		Conv. (9	6) I + II	1:11	
Ph ₂ PCH	I2PPh2		2	(80)	55:45	
Ph ₂ P(C)	H ₂ ) ₂ PPh ₂		9	(72)	72:28	
Ph ₂ P(C)	H ₂ ) ₃ PPh ₂		76	(86)	27:73	
Ph ₂ P(C)	$H_2)_4PPh_2$		71	(80)	43:57	
cis-PtCl ₂ CO/H ₂	(PPh ₃ ) ₂ /SnC (1/1, 100 bar	l₂·2H₂O (1:5), ), CHCl₃, 90°, 4 h	I + 1I + III	(4) I + Π (5	0), <b>I:II = 46:54</b>	2
HRh(CO CO/H2	)(PPh ₃ ) ₃ , PPl (5 bar), 80°, 2	h ₃ , L/Rh ≈ 5, PhMe, 2 h	<b>I</b> + <b>II</b> (100)	), <b>I:II</b> = 58:42		6
Rh2(µ-Sl CO/H2	Bu-t) ₂ (PPh ₃ ) ₂ (5 bar), ClCH	, PPh ₃ , L/Rh = 10, I₂CH₂Cl, 80°, 2 h	<b>I + II</b> (100)	), <b>I:II = 89</b> .2:10	9.6	d
۔ Rh2(µ-SI CO/H2	Bu-t) ₂ [P(OPh (5 bar), 80°, 1	)3]2, PhMe, 2 h	I + II (100)	), I:II = 33.5:66	.5	e
- [Rh(COI CO/H ₂ (	)(TPPTS) ₂ ]( (1/1, 5 bar), 1	CIO ₄ , H ₂ O, 80°, 18 h	I + II (86),	I:Ⅲ = 70:30		
- Rh ₂ (μ-SI CO/Hγ	Bu-t) ₂ (CO) ₂ (1 (1/1, 5 bar). 1	ГРРТЅ) ₂ , H ₂ O, 80°, 18 h	<b>I + II</b> (100)	o, <b>I:Ⅲ =</b> 78.8:21	.2	
RhH ₂ (O ₂ H ₂ O, T	COH)[P(Pr-i HF, 115°, 20	h ₃ ] ₂ , CO (15 atm), h	I (23) + II (	(57) + III (16)		:
Rh ₂ Cl ₂ (	CO)4, Phosph	nine, P/Rh = 4, PhMe,				:
Rh ₂ Cl ₂ ( CO/H ₂ Phosph	CO)4, Phosph (1/1, 100 atn bine	nine, P/Rh = 4, PhMe, n), 140°	Relative R	ate I : II		4
Rh ₂ Cl ₂ ( CO/H ₂ <u>Phosph</u> DBP-F	CO) ₄ , Phosph (1/1, 100 atn <u>nine</u> Ph	nine, P/Rh = 4, PhMe, n), 140°	Relative Ra	ate <b>I</b> : <b>II</b> 77 : 2:	-	ŝ
Rh ₂ Cl ₂ ( CO/H ₂ <u>Phosph</u> DBP-F PPh ₃	CO) ₄ , Phosph (1/1, 100 atn <u>nine</u> Ph	nine, P/Rh = 4, PhMe, n), 140°	Relative Ra	ate <b>I</b> : <b>II</b> 77 : 2: 74 : 20	- 3 6	5
Rh ₂ Cl ₂ ( CO/H ₂ <u>Phospi</u> DBP-F PPh ₃ DBP-E	CO)4, Phosph (1/1, 100 atm nine th Et	nine, P/Rh = 4, PhMe, n), 140°	<u>Relative Ra</u> 1.1 1.0 0.9	ate <b>I</b> : <b>II</b> 77 : 2 74 : 20 86 : 14		5
Rh ₂ Cl ₂ ( CO/H ₂ <u>Phosph</u> DBP-F PPh ₃ DBP-E PPh ₂ E	CO)4, Phosph (1/1, 100 atn <u>nine</u> Ph St	nine, P/Rh = 4, PhMe, n), 140°	<u>Relative R:</u> 1.1 1.0 0.9 0.7	ate I : II 77 : 2: 74 : 20 86 : 14 77 : 2:		5
Rh ₂ Cl ₂ (I CO/H ₂ <u>Phosph</u> DBP-F PPh ₃ DBP-E PPh ₂ E P(Bu- <i>r</i>	CO) ₄ , Phosph (1/1, 100 atn <u>nine</u> Ph St t t	nine, P/Rh = 4, PhMe, n), 140°	<u>Relative R:</u> 1.1 1.0 0.9 0.7 0.2	ate I : II 77 : 22 74 : 24 86 : 14 77 : 22 83 : 1		5
Rh ₂ Cl ₂ (/ CO/H ₂ <u>Phosph</u> DBP-F PPh ₃ DBP-E PPh ₂ E P(Bu-7 RhH(CC	CO)4, Phosph (1/1, 100 atn hine th Et t a)3 D)(PPh3)3, PP	nine, P/Rh = 4, PhMe, n), 140° 'h3, C6H6.	Relative Ra 1.1 1.0 0.9 0.7 0.2	ate I : II 77 : 22 74 : 20 86 : 14 77 : 22 83 : 17	3 6 4 3 7	5
Rh ₂ Cl ₂ (/ CO/H ₂ <u>Phosph</u> DBP-F PPh ₃ DBP-E PPh ₂ E P(Bu-7 RhH(CC CO/H ₂	CO) ₄ , Phosph (1/1, 100 atn <u>vine</u> Ph Et t t 1) ₃ D)(PPh ₃ ) ₃ , PP (1/1)	nine, P/Rh = 4, PhMe, n), 140° th3, C6H6,	Relative R: 1.1 1.0 0.9 0.7 0.2	ate I : II 77 : 2: 74 : 24 86 : 14 77 : 2: 83 : 1	3 6 4 3 7	5
Rh ₂ Cl ₂ ( CO/H ₂ Phosph DBP-F PPh ₃ DBP-E PPh ₂ E P(Bu-7 RhH(CC CO/H ₂ P/Rh	CO) ₄ , Phosph (1/1, 100 atn <u>hine</u> bh Et t t t) 3)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u>	nine, P/Rh = 4, PhMe, n), 140° th3, C ₆ H ₆ , <u>b31) Temp.</u>	Relative R:           1.1           1.0           0.9           0.7           0.2           I+II	ate I : II 77 : 2: 74 : 24 86 : 14 77 : 2: 83 : 1 1: I:II	3 6 4 3 7	5
Rh ₂ Cl ₂ ( CO/H ₂ Phosph DBP-F PPh ₃ DBP-E PPh ₂ E P(Bu-7 RhH(CC CO/H ₂ <u>P/Rh</u> 3	CO) ₄ , Phosph (1/1, 100 atn <u>hine</u> th Et t a) ₃ D)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100	nine, P/Rh = 4, PhMe, n), 140° Ph3, C ₆ H ₆ , <u>bsi) Temp.</u> 60°	Relative R:           1.1           1.0           0.9           0.7           0.2           I+II           (100)	ate         I : II           77 : 2:         74 : 24           86 : 14         77 : 2:           83 : 1'         11           I:II         11.0           12.0         12.0	3 6 4 3 7	
Rh ₂ Cl ₂ (I CO/H ₂ Phosph DBP-F PPh ₃ DBP-E P(Bu-r RhH(CC CO/H ₂ <u>P/Rh</u> 3	CO) ₄ , Phosph (1/1, 100 atn <u>hine</u> Th Et t a) ₃ D)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100 400	nine, P/Rh = 4, PhMe, n), 140° Ph3, C ₆ H ₆ , b <u>3i) Temp.</u> 60° 60°	Relative R:           1.1           1.0           0.9           0.7           0.2           I + II           (100)           (100)	ate I : II 77 : 2: 74 : 24 86 : 14 77 : 2: 83 : 1 11.0 13.9 15 C	3 6 4 3 7	
Rb ₂ Cl ₂ (! CO/H ₂ Phosph DBP-F PPh ₃ DBP-E P(Bu-r RhH(CC CO/H ₂ <u>P/Rh</u> 3 3	CO) ₄ , Phosph (1/1, 100 atn <u>hine</u> bh Et t t) ₃ D)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100 400 800	nine, P/Rh = 4, PhMe, n), 140° Ph3, C ₆ H ₆ , Ph3, C ₆ H ₆ , <u>ssi) Temp.</u> <u>60°</u> 60°	Relative R:           1.1           1.0           0.9           0.7           0.2           I + II           (100)           (100)           (97)	ate I : II 77 : 2: 74 : 24 86 : 14 77 : 2: 83 : 17 I:II 11.0 13.9 15.0	3 5 4 3 7	
Rb ₂ Cl ₂ (! CO/H ₂ Phosph DBP-F PPh ₃ DBP-E P(Bu-r RhH(CC CO/H ₂ <u>P/Rh</u> 3 3 3	CO) ₄ , Phosph (1/1, 100 atn <u>hine</u> bh Et t t) ₃ D)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100 400 800 800	nine, P/Rh = 4, PhMe, n), 140° Ph3, C ₆ H ₆ , Ph3, C ₆ H ₆ , <u>ssi)</u> Temp. <u>60°</u> 60° 60° 80°	Relative R:           1.1           1.0           0.9           0.7           0.2           I + II           (100)           (100)           (97)           (96)	ate I : II 77 : 2: 74 : 24 86 : 14 77 : 2: 83 : 1 11.0 13.9 15.0 10.6	3 5 4 3 7	
Rb ₂ Cl ₂ (! CO/H ₂ Phosph DBP-F PPh ₃ DBP-E P(Bu-r RhH(CC CO/H ₂ <u>P/Rh</u> 3 3 3 3	CO) ₄ , Phosph (1/1, 100 atn <u>hine</u> bh Et t t) ₃ D)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100 400 800 800 800	nine, P/Rh = 4, PhMe, n), 140° h3, C ₆ H ₆ , h3, C ₆ H ₆ , h3) <u>Temp.</u> 60° 60° 60° 80° 120°	Helative Ri           1.1           1.0           0.9           0.7           0.2 <b>I + II</b> (100)           (100)           (96)           (100)	ate I : II 77 : 2: 74 : 24 86 : 14 77 : 2: 83 : 1 11.0 13.9 15.0 10.6 4.6	3 5 4 3 7	
Rb ₂ Cl ₂ (! CO/H ₂ Phosph DBP-F PPh ₃ DBP-E P(Bu-r RhH(CC CO/H ₂ P/Rh 3 3 3 3 3 3 5.3	CO) ₄ , Phosph (1/1, 100 atn <u>nine</u> ^b h St t t a) ₃ D)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100 400 800 800 800 800	tine, P/Rh = 4, PhMe, n), $140^{\circ}$ h), $C_6H_6$ , h), $C_6H_6$ , h), Temp. $60^{\circ}$ $60^{\circ}$ $60^{\circ}$ $80^{\circ}$ $120^{\circ}$ $60^{\circ}$	Helative Ri           1.1           1.0           0.9           0.7           0.2 <b>I + II</b> (100)           (100)           (96)           (100)           (100)           (100)	ate I : II 77 : 2' 74 : 24 86 : 14 77 : 2 83 : 1' I:II 11.0 13.9 15.0 10.6 4.6 14.7 12.0	3 5 4 3 7	
Rb ₂ Cl ₂ (! CO/H ₂ Phosph DBP-F PPh ₃ DBP-E P(Bu-r RhH(CC CO/H ₂ <u>P/Rh</u> 3 3 3 3 3 3 3 3 3 3 3 3	CO) ₄ , Phosph (1/1, 100 atn <u>nine</u> ^b h Ct t t t) ₃ D)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100 400 800 800 800 800 800 800 800 800	tine, P/Rh = 4, PhMe, n), $140^{\circ}$ h), $C_6H_6$ . b) Temp. $60^{\circ}$ $60^{\circ}$ $60^{\circ}$ $80^{\circ}$ $120^{\circ}$ $60^{\circ}$ $60^{\circ}$	Helative Ri           1.1           1.0           0.9           0.7           0.2 <b>I + II</b> (100)           (100)           (96)           (100)           (100)           (100)           (100)           (100)           (100)	ate         I : II           77 : 2:         74 : 24           86 : 14         77 : 2:           83 : 1'         11           I:II         11.0           13.9         15.0           10.6         4.6           14.7         13.0	3 5 4 3 7	•
Rh ₂ Cl ₂ (/ CO/H ₂ <u>Phosph</u> DBP-F PPh ₃ DBP-F P(Bu-7 RhH(CC CO/H ₂ <u>P/Rh</u> 3 3 3 3 5.3 14.3 Polystyr (C ₆ H ₄ F P/Rh =	CO) ₄ , Phosph (1/1, 100 atn <u>nine</u> ^h St t t ))(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100 400 800 800 800 800 800 800 800 800 8	nine, P/Rh = 4, PhMe, n), 140° th3, C ₆ H ₆ , <u>ssi)</u> <u>Temp.</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>60°</u> <u>80°</u> <u>120°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u>60°</u> <u></u>	Relative R:           1.1           1.0           0.9           0.7           0.2           I + II           (100)           (100)           (100)           (100)           (100)           (100)           (100)           (100)           (100)           (100)           (100)           (100)           (100)           (100)           (100)           (100)	ate         I: II $77: 2$ ; $74: 2$ ; $86: 1$ ; $77: 2$ ; $83: 1$ ; $77: 2$ ; $83: 1$ ; $110$ III         11.0           13.9         15.0           10.6         4.6           14.7         13.0           I:II = 12.9         11.0	3 6 4 3 7	5
Rh ₂ Cl ₂ (/ CO/H ₂ <u>Phospi</u> DBP-F PPh ₃ DBP-F P(Bu-7 RhH(CC CO/H ₂ <u>P/Rh</u> 3 3 3 5.3 14.3 Polystyr (C ₆ H ₄ J P/Rh = RhH(CC	CO) ₄ , Phosph (1/1, 100 atn <u>nine</u> h St t t i) ₃ D)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100 400 800 800 800 800 800 800 800 800 8	tine, P/Rh = 4, PhMe, n), 140° (h_3, C_6H_6, (h_3, C_6H_6, (h_4,	<u>Relative R:</u> 1.1 1.0 0.9 0.7 0.2 <u>I + II</u> (100) (100) (100) (100) (100) (100) I + II (98).	ate I : II 77 : 2 74 : 2 86 : 1 77 : 2 83 : 1 17 11.0 13.9 15.0 10.6 4.6 14.7 13.0 5.1 11.0 13.9 15.0 10.6 4.6 14.7 13.0 5.1 11.0 13.9	3 6 4 3 7	
Rh ₂ Cl ₂ (/ CO/H ₂ <u>Phospi</u> DBP-F PPh ₃ DBP-F P(Bu-7 RhH(CC CO/H ₂ <u>P/Rh</u> 3 3 3 5.3 14.3 Polystyr (C ₆ H ₄ J P/Rh = RhH(CC Ph ₂ P(C	CO) ₄ , Phosph (1/1, 100 atn <u>nine</u> h St t t i) ₃ D)(PPh ₃ ) ₃ , PP (1/1) <u>Pressure (p</u> 100 400 800 800 800 800 800 800 800 800 8	nine, P/Rh = 4, PhMe, n), 140° (h ₃ , C ₆ H ₆ , (h ₃ , C ₆ H ₆ , CO/H ₂ (1/1)	<u>Relative R:</u> 1.1 1.0 0.9 0.7 0.2 <u>I + II</u> (100) (100) (100) (100) (100) (100) (100) (100) (100) I + II (98).	ate I : II 77 : 2 74 : 2 86 : 14 77 : 2 83 : 17 11.0 13.9 15.0 10.6 4.6 14.7 13.0 , I:II = 12.9	3 6 4 3 7	
Rh ₂ Cl ₂ (/ CO/H ₂ Phospi DBP-F PPh ₃ DBP-F P(Bu-7 RhH(CC CO/H ₂ P/Rh 3 3 3 5.3 14.3 Polystyr (C ₆ H ₄ F P/Rh = RhH(CC Ph ₂ P(C P/Rh	CO) ₄ , Phosph (1/1, 100 atn inc h St t t i) ₃ D)(PPh ₃ ) ₃ , PP (1/1) Pressure (p 100 400 800 800 800 800 800 800 800 800 8	nine, P/Rh = 4, PhMe, n), 140° (h ₃ , C ₆ H ₆ , (h ₃ , C ₆ H ₆ , CO/H ₂ (1/1) (h ₃ , C ₆ H ₆ , CO/H ₂ (1/1) (h ₆ , CO/H ₂ (1/1) (h ₆ , CO/H ₂ (1/1)	$\frac{\text{Relative R:}}{1.1}$ 1.0 0.9 0.7 0.2 $\frac{\mathbf{I} + \mathbf{II}}{(100)}$ (100) (100) (100) (100) (100) (100) (100) I + \mathbf{II} (98).	ate I : II 77 : 2 74 : 2 86 : 1 77 : 2 83 : 1 17 11.0 13.9 15.0 10.6 4.6 14.7 13.0 , I:II = 12.9	3 6 4 3 7	
Rh ₂ Cl ₂ (/ CO/H ₂ Phospi DBP-F PPh ₃ DBP-F P(Bu-7 RhH(CC CO/H ₂ P/Rh 3 3 3 5.3 14.3 Polystyr (C ₆ H ₄ F P/Rh = RhH(CC Ph ₂ P(C P/Rh 3	CO) ₄ , Phosph (1/1, 100 atn ince th Ct t a) ₃ D)(PPh ₃ ) ₃ , PP (1/1) Pressure (p 100 400 800 800 800 800 800 800 800 800 8	hine, P/Rh = 4, PhMe, n), 140° (h), C ₆ H ₆ , (h), C ₆ H ₆ , (h), C ₆ H ₆ , (h), C ₀ ° (h), C ₀ °	$\frac{\text{Relative R:}}{1.1}$ 1.0 0.9 0.7 0.2 $\frac{\mathbf{I} + \mathbf{II}}{(100)}$ (100) (100) (100) (100) (100) (100) (100) I + \mathbf{II} (98). $\frac{\mathbf{I} + \mathbf{II}}{(24)}$	ate I : II 77 : 2 74 : 2 86 : 14 77 : 2 83 : 17 11.0 13.9 15.0 10.6 4.6 14.7 13.0 10.6 4.6 14.7 13.0 15.1 11.0 13.9 15.0 10.6 4.6 14.7 13.0 11.1 1.2 12.9	3 6 4 3 7	
Rh ₂ Cl ₂ (/ CO/H ₂ Phospi DBP-F PPh ₃ DBP-F P(Bu-7 RhH(CC CO/H ₂ P/Rh 3 3 3 5.3 14.3 Polystyr (C ₆ H ₄ F P/Rh = RhH(CC Ph ₂ P(C P/Rh 3 3 3 3 5.3 14.3	CO) ₄ , Phosph (1/1, 100 atn inc h St t t i) ₃ D)(PPh ₃ ) ₃ , PP (1/1) Pressure (p 100 400 800 800 800 800 800 800 800 800 8	hine, P/Rh = 4, PhMe, n), 140° (h ₃ , C ₆ H ₆ , (h ₆ )° (h ₆ )° (h ₆ )° (h ₆ )° (h ₆ )° (h ₇ ) _{3,x} , (C/H ₂ (1/1, 800 psi), 60° (h ₆ )° (h ₇ )° (h ₆ )° (h ₇ )° (h ₆ )° (h ₇ )° (h ₆ )° (h ₆ )°		ate I : II 77 : 2 74 : 2 86 : 14 77 : 2 83 : 17 11.0 13.9 15.0 10.6 4.6 14.7 13.0 10.6 4.6 14.7 13.0 15.1 11.0 13.9 15.0 10.6 4.6 14.7 13.0 14.7 13.0 15.1 14.7 13.0 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.2 14.7 14.7 14.2 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7	3 6 4 3 7	5
Rh ₂ Cl ₂ (/ CO/H ₂ Phospi DBP-F PPh ₃ DBP-F P(Bu-7 RhH(CC CO/H ₂ P/Rh 3 3 5.3 14.3 Polystyr (C ₆ H ₄ J P/Rh = RhH(CC Ph ₂ P(C P/Rh 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	CO) ₄ , Phosph (1/1, 100 atn ince th St t t i) ₃ D)(PPh ₃ ) ₃ , PP (1/1) Pressure (p 100 400 800 800 800 800 800 800 800 800 8	hine, P/Rh = 4, PhMe, n), 140° (h ₃ , C ₆ H ₆ , (h ₆ )° (h ₆ )°		ate I: II 77: 2 74: 2 86: 14 77: 2 83: 17 I:II 11.0 13.9 15.0 10.6 4.6 14.7 13.0 JEII = 12.9 I:II 1.4 9.0 11.9	3	
Rh ₂ Cl ₂ (I CO/H ₂ Phospi DBP-F PPh ₃ DBP-F P(Bu-7 RhH(CC CO/H ₂ P/Rh 3 3 5.3 14.3 Polystyr (C ₆ H ₄ J P/Rh = RhH(CC Ph ₂ P(C P/Rh 3 3 16.7	CO) ₄ , Phosph (1/1, 100 atn inne th St t t i) ₃ D)(PPh ₃ ) ₃ , PP (1/1) Pressure (p 100 400 800 800 800 800 800 800 800 800 8	hine, P/Rh = 4, PhMe, n), 140° (h_3, C_6H_6, (h_3, C_6H_6, (h_3, C_6H_6, (h_3, C_6H_6, (h_4, C_1)) (h_4, C_1) (h_4, C		ate I: II 77: 2: 74: 2: 86: 1- 77: 2: 83: 1' I:II 11.0 13.9 15.0 10.6 4.6 14.7 13.0 I:II = 12.9 I:II 1.4 9.0 11.9 26.5	3 6 4 3 7	5
Rh ₂ Cl ₂ (I CO/H ₂ Phospi DBP-F PPh ₃ DBP-F P(Bu-7 RhH(CC CO/H ₂ P/Rh 3 3 5.3 14.3 Polystyr (C ₆ H ₄ I P/Rh = RhH(CC Ph ₂ P(C P/Rh 3 3 16.7 16.7	CO) ₄ , Phosph (1/1, 100 atn inne th St t t i) ₃ D)(PPh ₃ ) ₃ , PP (1/1) Pressure (p 100 400 800 800 800 800 800 800 800 800 8	hine, P/Rh = 4, PhMe, n), 140° (h_3, C_6H_6, (h_3, C_6H_6, (h_3, C_6H_6, (h_3, C_6H_6, (h_3, C_6H_6, (h_4, C_0, C_1, C_1, C_1, C_1, C_1, C_1, C_1, C_1		ate I: II 77: 2: 74: 2: 86: 1- 77: 2: 83: 1' I:II 11.0 13.9 15.0 10.6 4.6 14.7 13.0 I:II = 12.9 I:II 1.4 9.0 11.9 26.5 21.8	3 6 4 3 7	5

Reactant
			· ·	1 (outer(3) a		((")	KCI
Co ₂ (CO) ₈ /pyridine (1/2), C ₆ H ₆ CO/H ₂ (1/1, 80 atm), 20.5 h	j, 60°,		I + II (35), I	l: <b>Ⅲ</b> = 87:13			649
[Rh(COD)Cl] ₂ , ligand, CHCl ₃ , CO/H ₂ (1/1, 600 psi)	80°, 1.5	h,					650
Ligand			Conv. (%)	<u>I:II</u>			
none			7	95:5			
2-PPh2-C5H4N			66	98:2			
$2-P(O)Ph_2-C_5H_4N$			61	92:8			
Ph ₂ PCH ₂ NMe ₂			59	94:6			
Ph ₂ P(O)CH ₂ NMe ₂			100	91:9			
Ph ₂ P(O)CH ₂ CH ₂ NMe ₂			74	91:9			
2-CH ₂ P(O)Ph ₂ -C ₅ H ₄ N			63	87:13			
$2-CH_2CH_2P(O)Ph_2-C_5H_4N$			23	91:9			
Rh ₄ (CO) ₁₂ , C ₆ H ₆ , CO/H ₂ (1/1, 20°, 15 h	170 atm	1),	I + II (—), I	: <b>II</b> = 98:2			651
Rh ₄ (CO) ₁₂ , C ₆ H ₆ , CO/H ₂ (1/1, 130°, 0.2 h	170 atm	1),	I + II (), I	: <b>Ⅲ</b> = 64:36			651
Rh ₄ (CO) ₁₂ /PPh ₃ (1/5), PhMe, 2 CO/H ₂ (1/1, 1 atm)	25°,		I + II (—), I	: <b>Ⅲ</b> = 14.5			620
Co ₂ Rh ₂ (CO) ₁₂ /PPh ₃ (1/3), PhM CO/H ₂ (1/1, 1 atm)	1e, 25°,		I + II (—), I	: <b>Ⅲ</b> = 8.6			620
{Pt(C ₂ H ₄ )(DPPB)]/CH ₃ SO ₃ H ( CO/H ₂ (1/1, 100 atm), 100°, 2	1/1), Ph 2 h	Me,	I + II (79), I	:II = 10.8:89.2; III (3);	IV + V (6)	I	259
RhH(CO)(PPh ₃ ) ₃ /Ph ₂ PPy (2/1) CO/H ₂ (1/1, 70 atm), 40°, 8 h	, C ₆ H ₆ ,		I + II (>99),	<b>I</b> : <b>II</b> = 16.0			616
MeCCo ₂ (CO) ₆ NiCp, THF, 60° CO/H ₂ (1/1, 800 psi)	, 141 h,		I + II (89), I	: <b>H</b> = 7.6			504
RhH2(O2COH)[P(Pr-i)3]3, (CH THF, 120°, 20 h	₂ O) _n ,		I + II + III +	+ IV + V +	VI + I + II (26)	, <b>I,II =</b> 37:63; <b>II</b> 4), <b>V:VI =</b> 25:75	593 I (23);
			$\checkmark$		VI + VII (	12), <b>VI:VII</b> = 1	7:83
$[Rh(COD)(OMe)]_2, CO/H_2$			I + II (79), I	I: <b>Ⅲ</b> = 95:5			316
Rh/C (5%), DPPB, HCO ₂ H, C DME, 100-105°, 18-24 h	O (8.5 a	tm),	<b>l + II</b> (67), l	<b>I:II</b> = 87:13			374
Rh/C (5%), DPPB, HCO ₂ H, C DME, 110-120°, 24 h	O (8.5 a	tm),	I + II (50), I	I: <b>II</b> = 58:42			374
Catalyst	<u>P (a</u>	tm) Temp.	<u>Conv. (%)</u>	( <b>I+II</b> )/( <b>I+II+III</b> ) (%)	1/11		652
[Ru(Ph2PPy)3Cl][Rh(CO)2Cl2	] 40	45°	17.50	97.15	17.98		
[Ru(Ph2PPy)3Cl][Rh(CO)2Cl2	] 40	75°	92.58	99.36	6.96		
[Ru(Ph2PPy)3Cl][Rh(CO)2Cl2	] 40	100°	97.31	98.88	2.33		
$[Ru(Ph_2PPy)_3Cl][Rh(CO)_2Cl_2$	] 60	45°	34.78	98.77	20.55		
[Ru(Ph2PPy)3Cl][Rh(CO)2Cl2	] 60	75°	98.68	99.62	20.06		
[Ru(Ph2PPy)3Cl][Rh(CO)2Cl2	] 60	100°	99.54	99.62	11.49		
[Ru(Ph2PPy)3Cl][Ir(CO)2Cl2]	50	75°	1.76	99.99	—		
$[Ru(Ph_2PPy)_3Cl][Ir(CO)_2Cl_2]$	60	75°	3.40	88.27	—		
[Ru(Ph ₂ PPy) ₃ Cl]Cl	60	75°	1.18	63.93	—		
[Rh(CO)2Cl2][AsPh4]	50	75°	12.61	71.42	~9.00		
Catalyst	Temp.	Time (h)	CO/H ₂ (bar)	Solvent	<u>I + II</u>	1:11	594
(MeO ₂ CCp)Rh(CO) ₂	100°	3	40/60 (70)	PhMe	(94)	73:27	
(Cp)Rh(CO) ₂	100°	3	40/60 (70)	PhMe	(92)	58:42	
	80°	3	40/60 (56)	PhMe	(99)	99:1	
(MeO ₂ CCp)Rh(CO) ₂ /5 PPh ₃	00	5	40/00 (50)		• •		
(MeO ₂ CCp)Rh(CO) ₂ /5 PPh ₃ (Cp)Rh(CO) ₂ /5 PPh ₃	80°	3	40/60 (56)	PhMe	(25)	<b>99</b> :1	

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

											-	
(CO) ₄ W(µ-PPh ₂ ) ₂ I CO/H ₂ (1/1, 380 J	khH(CO psi), 50°,	)(PPh ₃ ), , 20 h	C ₆ H ₆ ,		I + II (>	99), I:II	= 98:2					371
CO/H ₂ (1/1), PhMe	e				n	77	<b>T</b>		117		1.77	653
Catalyst			Rh/	PPh ₃	P (atm)	Temp.	Time (h)	) Conv.	(%)	1		
$Rh_2(OAc)_3[(C_6H$	4)PPh2](	(AcOH)	2 —		5	80°	20	95		(51)	1.0	
			_		30	80°	2	100		(74)	2.8	
$Rh_2(OAc)_2[(C_6H$	4)PPh ₂ ] ₂	(AcOH	) ₂ —		5	80°	20	/9		(47)	0.9	
(head-to-tail)					70	DAD	2	100		(75)	2.0	
					30	8U [.]	2	100		(13)	5.0	
			1/1		50	00°	20	100		(92)	22	
			1/1		30	0U 000	20	97		(09)	2.2 8 1	
Ph. (O.A.c). ((C. U	DDb 1	(1-04	1/1		30	60°	5	100		(03)	13.3	
(head-to-head)	4)FFH212	lacon	<i>p</i> ₂ —		50	00	0	100		()))	10.0	
(lieau-io-lieau)			1/1		5	80°	20	96		(71)	25	
Rh-(OAc).			1/1		30	80°	20	100		(85)	57	
" "			1/2		5	800	20	00		(76)	3.7	
HRh(CO)(PPh-)					5	80°	20	100		(58)	1.4	
"	5				30	80°	2	36		(87)	6.7	
HRh(CO)(PPb-)-	/AcOH		_		30	80°	- 2	40		(87)	6.8	
man(CO)(FFII3)3	y ACON		_		50	00	2	iv.		(01)	0.0	
CO ₂ 1	Me											
Ŕ	Rh(CO)	2										594
MeO ₂ C	✓ ^{CO} 2 ^Ń	Ae										
PPh./Ph Tam	n Tin	na (h)	со <b>л</b> . и	10/60 ha	n Soh	ant		т∡п	ъщ			
0 100°	<u>p. 10</u> 3		70	10700, Da	PhM	ent le		<u>/99)</u>	58.42	•		
5 80°	3		70 56		PhM	le le		(98)	94.6			
5 60°	10		56		PhN	ic Ic		(100)	97:3			
5 60°	10		56		DhM	 Ia/MaOL	1(1/4)	(04)	05.5			
tert-butyl-25,27-b	ois[(1-ph	enylethy	yl)									
carbamoylmetho	(y]-26,2	8-bis(dig	ohenyl-									
phosphinometho	(y)calix[	4]arene	}]BF4,									
CO/H ₂ (1/1, 40 at	tm), CH ₂	2Cl2/C6H	4 ₆ ,									
40°, 48 h												
DECKCOV(DBM)	malu/wie	mulhana	deriathal		1+11/5	<u>а)</u> і-п	61					655-6
ammonium chlor	-poiy(VII ide on si	hica 85º	· c-C/H.	<b>1</b> .	. F (J	~,, <b>1.11</b> -	3.1					
	Ho (1/1	.10a, 0J 750 nsi)	,	2,								
1120, ElOH, CO/	2 (1/1,	. 50 Pat)	,									
Rh(SOX)(COD), I	PhMe, 60	D°,										511
CO/H ₂ (1/1, 0.1 )	MPa)											
Phosphine or Pho	osphite	P/Rh	Turn	over	Yield (9	6) <b>I</b>	:II					
P(OPh) ₃		2	43		(—)	39.8	: 60.2					
DPPM		2	0		(—)	—						
DPPE		2	267		()	<b>96</b> .0	: 4.0					
DPPE		5	90		()	97.4	: 2.6					
DPPP		1	74		(—)	93.8	: 6.2					
DPPP		2	194		()	95.4	: 4.6					
DPPP		5	213		(—)	94.5	: 5.5					
Sin PAMAM DE	ንት, በዩኑ/	സംവ	la ርዜ-ሮ	1.	РАМА	M gener	tion conve	ersion(%)	I:1	I		658
H/CO (1/1 100	112, [Kil( () psi) - 24	5°. 22 h	12, CH2C	*2.	<u></u>	1		98	27 :	1		-
12/00 (1/1, 100	5 par), 23	الشمه م				י ז		.99	30 :	1		
						2	~ ~	.,,	50.	-		
DI		м.			T . FT /	`						650
Rh(acac)(CO) ₂ , lig	gand, Ph	Me,			I + II (-	—)						659
Rh(acac)(CO) ₂ , lig CO/H ₂ (1/1, 20 b	gand, Ph par)	Ме, Р/Рь	Temp	Time (	<b>І+П</b> (-	—)	ТО <b>F</b> (b ⁻¹	) Þ	11			659
Rh(acac)(CO) ₂ , lig CO/H ₂ (1/1, 20 b Ligand	gand, Ph par)	Me, <u>P/Rh</u>	Temp.	Time (	$I + II (-\frac{h}{R})$	—) nv. (%)_	TOF (h ⁻¹	<u>) l:</u> 24	<u>II</u>			659
Rh(acac)(CO) ₂ , li ₁ CO/H ₂ (1/1, 20 b Ligand PPh ₃ PPb	gand, Ph par)	Me, <u>P/Rh</u> 5 20	Temp. 25° 90°	<u>Time (</u> 3 73	I + II (- h) <u>Con</u> 8 28	—) <u>nv. (%)</u> 1	TOF (h ⁻¹ 7.5 2.9	) <u>l:</u> 24	<u>11</u> 4:1			659
Rh(acac)(CO) ₂ , lig CO/H ₂ (1/1, 20 b Ligand PPh ₃ PPh ₃	gand, Ph par)	Me, <u>P/Rh</u> 5 20	Temp. 25° 90° 25°	Time ( 3 73 3	I + II (- h) Con 8 28. 17	—) nv. (%) 1 6	TOF (b ⁻¹ 7.5 2.9 16.4	) <u>1</u> : 24 	<u>11</u> 4; 1  0: 1			659
Rh(acac)(CO) ₂ , lig CO/H ₂ (1/1, 20 b Ligand PPh ₃ P(OC ₆ H ₃ (Bu-f)	gand, Ph par) 2-2,4)3	Me, <u>P/Rh</u> 5 20 5 10	Temp. 25° 90° 25° 00°	Time ( 3 73 3	I + II (- h) <u>Con</u> 8 28. 17. 28	—) <u>nv. (%)</u> 1 6 8	TOF (h ⁻¹ 7.5 2.9 16.4 214	) <u>1:</u> 24  20	<u>11</u> 4;1  0:1			659

Reactant

Reactant	Conditions         Product(s) and Yield(s) (%)	Refs.
	$Rh(acac)(CO)_2$ , ligand, PhMe, $I + II ()$ $CO/H_2 (1/1, 20 bar)$	659
	Ph P P P P P P P P	
	$\mathbf{R}^{1}$ <b>P/R</b> h Temp Time(h) Conv. (%) TOF(h ⁻¹ ) <b>I</b> · <b>H</b>	
	Ph 5 $25^{\circ}$ 3 $30.8$ $28.7$ $20:1$	
	Ph 10 90° 1 28.6 214 —	
	Me 4 90° 1 12.2 92 —	
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, I + II (65), I:II=8 P/Rh=5, CO/H ₂ (1/1, 50 atm), 80°, 2 h	610
	$[Rh(CO)_2Ci]_2$ , PPhMe ₂ , C ₆ H ₆ , CO/H ₂ , 60° I + II (), I:II = 96:4	640
	Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe (RO) ₂ P-O-(CH ₂ ) _n -O-P(OR) ₂ P(OR) ₂ = t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu	660
	r-Bu Bu-r n I/Rh Temn Conv. (%) I:TI TOF	
	$\frac{1}{2}  \frac{1}{20}  \frac{1}{80^\circ}  \frac{1}{25}  \frac{1}{88:12}  \frac{1}{3710}$	
	3 2.5 40° 31 84:16 1890	
	$Pt(BDT)(P-P)_2$ , $SnCl_2$ , $Sn/Rh = 20$ ,	661
	H ₂ /CO (1/2, 100 atm), THF, 125*	
	P-P Time (h) I + II I:II PhEt Alcohol	
	$(PPh_3)_2$ 60 (50) 19:81 (6) (11)	
	DPPB 24 (11) 37:63 (4) (1)	
	PtCl ₂ (DPPP), SnX ₂ , AgY, H ₂ /CO (1/1), $\mathbf{I} + \mathbf{II} + \mathbf{III}$ PhMe, 100° X X Sn/Ag/Pt Time (b) Conv (%) $\mathbf{I} + \mathbf{II}$ III	60
	$\frac{1}{Cl} = \frac{2}{2} \frac{1}{1} \frac{1}{4} \frac{1}{76} \frac{1}{86} \frac{1}{27:73}$	
	Cl TfO 2/0.5/1 25 86 (73) 54:46	
	CI TFO 2/1/1 20 94 (75) 52:48	
	Cl TfO 2/2/1 35 98 (70) 67:33	
	F F 2/2/1 100 60 (72) 54:46	
	Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, H ₂ /CO (20 bar)	662
	t-Bu-N O R	
	RTemp.Time (h)Conv. (%)I:IITOFH $40^{\circ}$ $4.0$ 2 $80:20$ 10Bu-t $80^{\circ}$ $3.5$ $68$ $75:25$ $480$ Bu-t $40^{\circ}$ $23$ $20$ $89:11$ $25$	
	$cis-[RhCl(NBD){(R,R)-5,11,17,23-tetra-I+II(), I:II = 95:5}$ tert-butyl-25,27-bis[(1-phenylethyl) $carbamoylmethoxy]-26,28-bis(diphenyl-phosphinomethoxy)calix[4]arene}]BF_4,$ $CO/H_2 (1/1, 40 atm), CH_2Cl_2/C_6H_6,$ $40^\circ, 48 h$ BbC(CO)(DBM) = pab(sign) harmonic indicident in the II (II) III = 95:5	654
	$\mathbf{I} + \mathbf{II} (56), \mathbf{I}:\mathbf{II} = 6:1$ ammonium chloride on silica, 85°, c-C ₆ H ₁₂ , H ₂ O, EtOH, CO/H ₂ (1/1, 750 psi), 15 h	655-657
	Rh(COD)BPh4, CO/H2 (1/2, 200 psi),       I ( $-$ ) + II ( $-$ ) + starting material (11)       I:II = 97.3:2.7         CHCl ₃ , 47°, 22 h	251

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	Rh(acac)(CO) ₂ , ligand, L/Rh = 20, CO/H ₂ , PhMe t-Bu $t$ -Bu $t$ -B		660
	R         H ₂ /CO (bar)         Temp.         Conv. (%)           H         1 (20) $40^{\circ}$ 13           H         6 (35)         120^{\circ}         13           MeO         1 (20) $80^{\circ}$ 25           Ph         1 (20) $80^{\circ}$ 18	I:II         III         TOF $84:16$ ()         47 $16:84$ (16)         6175 $63:37$ ()         320 $51:49$ ()         320	
	Rh(acac)(CO) ₂ , BIPHEPHOS, L/Rh = 20, CO/H ₂ (1/1, 20 bar), PhMc, 40°	$I:II = 77:23, I + II (27)$ $EtO \longrightarrow OEt \qquad OEt$	660
	Rh ₂ (µ-OMe) ₂ (COD) ₂ , 10 PPh ₃ , HC(OEt) ₃ , PPTS, CO/H ₂ (1/1, 50 bar), 60°, 24 h	(93) + (7)	663
	Rh(acac)(CO) ₂ , phosphine, P/Rh = 2, CO/H ₂ (1/1, 50 atm), 20 °, 22 h	<b>Ι</b> (77) + <b>Π</b> (3), <b>Ι</b> : <b>Π</b> = 26.6	664
	Rh(acac)(CO) ₂ , phosphine, P/Rh = 20, CO/H ₂ (1/1, 50 atm), 20 °, 22 h $P\left(N \right)_{3}$	<b>Ι</b> (7) <b>+ Π</b> (1), <b>Ι,Π</b> =6	664
	Rh(acac)(CO) ₂ , phosphine, P/Rh = 20, CO/H ₂ (1/1, 50 atm), 20 °, 22 h	I (7) + II (1), I:II=6	664
	Rh(acac)(CO) ₂ , phosphine, P/Rh = 2, CO/H ₂ (1/1, 50 atm), 20 °, 22 h $Et_2N$ , P ⁺ ¬OTf $Et_2N$	I (4) + П (—), I:П=100:0	664
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, per(β-cyclodextrinMe ₂ - <i>o</i> -2,6), P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 2 h	<b>I</b> + <b>II</b> (100), <b>I</b> : <b>II</b> =11	610
	Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80° t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu		662
	Isomer         Time (h)         Conv. (%)           dt         23.0         3           meso         20.2         11	I:II         TOF           84:16         3           79:21         15	

Reactant	Conditions Product(s) and Yield(s) (	%) Refs.
	Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, $I + II (-), I:II = 74:26$ CO/H ₂ (20 bar), 40°, 21.5 h $i \cdot Pr$ , $N = 0$ , $p - 0$ , $p$	662
	Rh(acac)(CO) ₂ , ligand, L/Rh = 10, PhMc, $I + II (-)$ , I:II=92:8 CO/H ₂ (20 bar), 80°, 20.3 h i-Pr, O i-Pr, O i-Pr, O	662
	Rh(acac)(CO) ₂ , ligand, CO/H ₂ (20 bar), PhMe, 80 ° $R^2$ P-N Pr-i Pr-i	662
	$\frac{R^{2}}{R^{1}}$ $\frac{R^{1}}{R^{2}}$ $\frac{R^{1}}{R^{0}}$ $\frac{R^{2}}{R^{0}}$ $\frac{R^{1}}{R^{0}}$ $\frac{R^{2}}{R^{0}}$ $\frac{L/Rh}{R^{0}}$ $\frac{R^{0}}{42.3}$ $\frac{R^{0}}{66}$ $\frac{R^{0}}{3.7}$ $\frac{R^{0}}{90}$ $\frac{R^{0}}{80}$ $\frac{R^{0}}{3.0}$ $\frac{R^{0}}{97}$ $\frac{R^{0}}{85.5}$ $\frac{R^{0}}{800}$	
	Rh(sox)(CO)2, toluene, CO/H2 (1/1), 60°LigandP/RhP (MPa)Time (h)Conv. (%)I:IIPPh320.173.070:30PPh321598.0100:0DPPE20.1729.993:7DPPE21491.0100:0	512
x	A. $Co_2(CO)_{8}$ , $CO/H_2$ (1/1, 160 atm), 105°, 4-5 h B. Rh-Al ₂ O ₃ , $CO/H_2$ (1/1, 160 atm), 85°, 2-5 h III	HO II + 665

Reactant	Conditions			Product	(s) and Y	ield(s) (	%)		Refs.
				A			в		
						<u> </u>			
		<u>X</u>	<u>1</u> (44)	(31)	(25)	(80)	(10)	<u>(1)</u>	
		11 2-Me	(44)	(46)	(23)	(69)	(30)	(1)	
		3-Me	(41)	(30)	(29)	(76)	(20)	(4)	
		4-Me	(40)	(23)	(37)	(78)	(20)	(2)	
		2,6-(Me) ₂	(11)	(59)	(30)	(72)	(19)	(9)	
		2-OMe	(37)	(40)	(23)	(78)	(20)	(2)	
		3-OMe	(42)	(31)	(27)	(80)	(19)	(1)	
		2-Cl	(43)	(24)	(20)	(12)	(15)	(0)	
		2-Cl	(40)	(36)	(20)	(83)	(15)	(2)	
		4-Cl	(38)	(33)	(29)	(79)	(19)	(2)	
		2,6-(Cl) ₂	(11)	(79)	(10)	<b>(9</b> 7)	(1)	(2)	
		3,4-(Cl) ₂	(36)	(34)	(29)	(86)	(12)	(2)	
			сно				CUO		
	HRh(PPh ₃ ) ₄ , CO/H ₂ (1/1, 62 kg/cm ² ), 70°	$\sim$	Ļι	+		$\sim$		I	666
x		v L		x´					
		x v	T⊥D	ſ	т·п				
		NO ₂	(75)		96.2 : 3.8				
		Br	(100)	9	94.7 : 5.3				
		Cl	(100)	1	95.4 : 4.6				
		н	(100)	9	92.8 : 7.2				
		OPh	(93)	9	93.0 : 7.0				
		Me	(99) (97)		91.4:8.6 01.8 • 8.2				
		OME	(97)	:	91.0 . 0.2				
	[Rh(NBD)(ligand)]BF ₄ , PhH, 55°,								667
	CO/H ₂ (1/1, 200 psi), 24 h								
		<u>X</u>	<u>I:H</u>	-					
	ICCrEe)oPCHala	л н	3.3 13.3						
	DPPE	Me	3.2						
	$[(C_6F_5)_2PCH_2]_2$	Me	19						
	DPPE	MeO	4						
	$[(C_6F_5)_2PCH_2]_2$	MeO	16						
	DPPE	Cl	3.2						
	[(C ₆ F ₅ ) ₂ FCH ₂ ] ₂	NO.	10						
	[(CsFs))PCHo])		100:0	ŀ					
		2							
	Ph DEVU CO/H (1/1 414 arm) H O								242
	X Ligand Temp Time (b) Conv ( $\mathscr{G}$	6) I + II I	۰Ħ						242
	$H - 40^{\circ} 22 13$	(13) 1	7.3						
	H 10 PPh ₃ 40° 24 12	(12) 1	7.9						
	Cl 40° 24 12	(12) 1	5.3						
	Me — $40^{\circ}$ 22 14	(14) 9							
	Me — 28° 24 4	(4) 3	6.7						
			1						
	$CO/H_2$ (2/1, 500 psi),hexane, H ₂ O,	$\sim$		+	$\langle$	$\sim$	,СНО		668
x	40°, 22 h HO		I			п			
		x 🗸		X´	$\checkmark$				
	но ( ) (;_)								
	HO OH Rh ⁺ BF ₄ ⁻								

Reactant	Cond	itions			Prod	uct(s) and Yield(s) (%)	Refs
				R	I + II	1:11	
				н	100	95:5	
				F	100	91:9	
				Cl	100	93:7	
				Br	100	93:7	
				Me	100	92:8	
				MeO	90	90:10	
					20	20110	
	[Rh(COD)(OAc)]2, CH2Cl2	, 25°, 16 h,	X	I + II	I:	<u>u                                    </u>	316
	CO/H ₂ (1/1, 800-1000 psi)	)	н	(94)	96	5:4	
			OMe	(98)	9:	5:5	
			Mc	(98)	9:	5:5	
			Cl	(98)	9	7:3	
			$NO_2$	(92)	90	5:4	
$\sim \sim \sim$	Rh2(µ-SBu-t)2(CO)2(Res-P	Ph ₂ ) ₂ , 80°,	онс 🤇	$\sim\sim$	$\sim$	<b>I</b> (76) +	669
	CO/H ₂ (1/1, 0.37 MPa), 1	5 h	c	CHO			
			j	~ ~	~ ~	II (8) + internal o	ctenes (4)
			/	$\sim \sim$	$\sim$	_(,)	
	Rh(acac)(CO)2, CO/H2 (21)	0 psi),	I+II (8	3), <b>I:II</b> (91:9	)		670
	MeOH, H ₂ O, 25°						
	$\langle \rangle$						
	<u> </u>	<i>}′</i>					
	R(″)∕P	PR					
	Y	$\leq$					
	Ŕ	Ŕ					
	R=	SO ₃ Na					
	PH(SOV)(COD) DDL 1/D	h - 5 toluone	1 . 11 (	) 1.11 - 8/	6.15 4		511
		m = 3, toruene,	1 + u (*	), <b>1:11 = 0</b> -	1.0:13.4		511
	$CO/H_2$ (1/1, 0.1 MPa), 60°	, 10 h					
	Rh(SOX)(COD), DPPE, L/	Rh = 5, toluene.	I + II (-	), I:II = 54	4.5:45.5		511
	CO/H ₂ (1/1, 0.1 MPa), 60°	°, 10 h		.,			
		,					
	Rh(acac)(CO) ₂ , DPPETS, I	JRh = 3, 15 h,	I + II (-	—), I:II = 3.	2:1		671
	CO/H ₂ (1/1, 200 psi), MeO	OH/H₂O, 120°					
	Rhiacach(CO). TODTS I A	2h=10-15h	14114	) <b>I·II</b> = 4·	1		671
	COAL (1/1 200 ) 31	M = 10, 13  B,	<b>I + II</b> (-		ł		670
	$CO/H_2$ (1/1, 200 psi), MeC	$n_{1}n_{2}0, 120^{\circ}$					672
	Rh(acac)(CO)2, P(CH2C6H	4SO3Na-p)3, 15 h	I + II (-	—), <b>I</b> :II = 1.	6:1		672
	$L/Rh = 2.5, CO/H_2 (1/1, 2)$	00 psi), H ₂ O, 120	þ				
							(70)
	$\operatorname{Kh}(\operatorname{acac})(\operatorname{CO})_2, \operatorname{P}(\operatorname{CH}_2)_2 \operatorname{C}_0$	5H4SO3Na-p]3,	1+11 (-	—), 1: <u>11</u> = 2;	1		672
	$L/Rh = 2, CO/H_2 (1/1, 200)$	) psi), H ₂ O, 120°,	15 h				
	Rh2[µ-S(CH2)3Si(OMe)3]2	condensed with Si	$O_2, I + II (3)$	57), <b>I/II =</b> 12	2, octenes	(28)	673
	$P(OCH_3)_3$ , $P/Rh = 7.8$ . tol	lene,					
	H ₂ /CO (1/1, 1atm), 60°. 11	h					
	Rh(acac)(CO) ₂ , Ligand, L/I	xh = 20,					674
	CO/H ₂ (1/1, 20 bar), PhM	e, 80°					
	Ligand	Time (min)	Conv. (%)	<b>I</b> :1	II: intern	al octenes	
	PPh ₃	120	81.2	72.	6 : 25.9 :	1.5	
	Ph ₂ P(C ₆ H ₄ OH-3)	120	76.6	73.	1:26.1:	0.8	
	$Ph_2P(C_6H_4CO_2H-4)$	70	1.1	73.	6:26.4:	_	
	DE DIC H CH NET A	120	76.0	73	3:26.0:	0.3	
	ru2r(C6n4Cn2ivei2-4)	120	70.2	1.1.			
	$PhP(C_{6}H_{4}CH_{2}NEt_{7}-4)$	120	70.2	73.	0:26.1:	0.8	
	$Ph_{2}F(C_{6}H_{4}CH_{2}NEt_{2}-4)$ $Ph_{2}F(C_{6}H_{4}CH_{2}NEt_{2}-4)$ $Ph_{2}P(C_{4}H_{4}CH_{2}NPh_{2}-4)$	120	70.2 72.6 83.3	73.	0:26.1: 1:265	0.8	

85.0

92.9

86.3

94.9

PhP(C₆H₄CH₂NPh₂-4)₂ 120

120

120

120

4-PPh₂C₅H₄N

3-PPh2C5H4N

 $PhP(C_5H_4N-3)_2$ 

72.8 : 26.0 : 1.2

72.0 : 25.0 : 3.2

71.7 : 25.6 : 2.7

71.3 : 25.3 : 3.3

Conditions					rroduct(s) al	u 11010(S)	(10)	
{Rh(NBD)(2,5-bis(diphenylphosphino methyl)bicyclo[2.2.1]heptane)ClO ₄ , CO/H ₂ (1/1, 40 atm), C ₆ H ₆ , 50°, 6 h	2,5-bis(diphenylphosphino- cyclo[2.2.1]heptane)ClO ₄ , (1, 40 atm), C ₆ H ₆ , 50°, 6 h		I + II (—), I:II = 59:41					24
$[(CO)_2(PPh_3)Co(\mu-PBu-r_2)Rh(CO)(H)]$ CO/H ₂ (5/3, 40 bar), c-C ₆ H ₁₂ , 70°, 2	PBu-t ₂ )], 4 h	I + II	(—), <b>I</b> :]	<b>II =</b> 64:36				67.
RuO ₂ -2,2'-bipyridine, Bu ₄ PBr, 180°, 4	łh,	I (tr) -	+ II (tr)	+ но	$\sim \sim$	$\sim$	<b>III</b> (69)	67
CO/H ₂ (1/2, 1200 psi)				он				
		+	$\int$	~~	$\sim$	<b>V</b> (11)		
[Rha(H-SBH-i)a(CO)a(TPPTS)a] TPP	rs							67
$CO/H_2$ (1/1, 0.5 MPa), H ₂ O, cosolve	nt,							
80°, 15 h								
Cosolvent (22% w/w)		Conv	(%)	I/(I +	<u>U)</u>			
none		18		95.5				
EtOH		92		82.7				
МеОН		83		89.6				
MeCN		80		83.6				
Me ₂ CO		90		86.2				
Rh(acac)(CO) ₂ , Ligand, H ₂ O, MeOH, CO/H ₂ (19.5 atm), 120°								67
Ligand	I/Rh	I + П		1/11				
TPPTS	2	(47)		2.4				
$P(C_{6}H_{4}[(CH_{2})_{2}C_{6}H_{4}SO_{2}Na-p]-p)_{2}$	2	(88)		3.0				
$P(C_{s}H_{4}[(CH_{2})_{s}C_{s}H_{4}SO_{2}Na-p]-p)_{3}$	2	(84)		3.3				
TPPTS	10	(78)		3.6				
$P(C_{6}H_{4}[(CH_{2})_{3}C_{6}H_{4}SO_{3}Na_{7}p]-p)_{3}$	10	(85)		8.0				
$P(C_6H_4[(CH_2)_6C_6H_4SO_3Na-p]-p)_3$	10	(88)		9.5				
[Rh(COD)(OAc)] ₂ , CO/H ₂		I + II	(57-80)	, <b>I:II</b> = 52	:48			31
[Rh(COD)(OMe)] ₂ , CO/H ₂		I + II	(), I:	II = 55:45				31
[Rh(COD)(OCOCPh ₃ )] ₂ , CO/H ₂		I + II	(), I:	<b>II</b> = 55:45				31
Rh(acac)(CO)2. PhpP(4-HO2CC+H4).		1+11	(—), <b>I</b> :	<b>II</b> = 72.9:	25.9			67
$CO/H_2$ (1/1, 20 bar), 80°, THF, 250 a	min							
EtaN HaO PhMe 80° CO/Ha (1/1 3	MPa)							67
Catalyst	Time (h)	I	п	Octane	Oct-2-ene			
$Ru_2(\mu-O_2CMe)_2(CO)_4(PPh_3)_2$	20	(72)	(24)	(0)	(0)			
$Ru_2(\mu-O_2CMe)_2(CO)_4[P(OPh)_3]_2$	17	(65)	(25)	(6)	(0)			
$Ru_2(\mu-O_2CPh)_2(CO)_4(PPh_3)_2$	16	(63)	(19)	(0)	(0)			
$Ru_2(\mu\text{-}O_2CCF_3)_2(CO)_4(PPh_3)_2$	16	(45)	(14)	(0)	(0)			
$Ru_2(\mu-O_2CCMe_3)_2(CO)_4(PPh_3)_2$	18	(11)	(4)	(0)	(0)			
$Ru_2(\mu-O_2CCMe_3)_2(CO)_4[P(OPh)_3]_2$	22	(64)	(18)	(16)	(2)			
$Ru_2(\mu-O_2CMe)_2(CO)_4[P(OMe)_3]_2$	20	(73)	(24)	(0)	(0)			
$Ru_2(\mu-O_2CMe)_2(CO)_4(PBu_3)_2$	20	(3)	(1)	(0)	(0)			
		I (69)	+ II (29	9) + octan	e (2)			67
$Ru_2(\mu-O_2CPh)_2(CO)_4(PPh_3)_2, Et_3N,$ PhMe, 80°, CO/H ₂ (1/1, 3 MPa)								
Ru ₂ (μ-O ₂ CPh) ₂ (CO) ₄ (PPh ₃ ) ₂ , Et ₃ N, PhMe, 80°, CO/H ₂ (1/1, 3 MPa) [Ru ₂ (μ-OAc) ₂ (CO) ₄ (PPh ₃ ) ₂ ], P/Ru = 5 H ₂ O, THF, CO/H ₂ (1/1, 3 MPa) 85°	i. . 20 h	I (12)	+ II (4	)				68
$\begin{aligned} Ru_2(\mu-O_2CPh)_2(CO)_4(PPh_{3})_2, Et_3N, \\ PhMe, 80^\circ, CO/H_2 (1/1, 3 MPa) \\ [Ru_2(\mu-OAc)_2(CO)_4(PPh_{3})_2], P/Ru = 5 \\ H_2O, THF, CO/H_2 (1/1, 3 MPa), 85^\circ, CO/H_2 (1/1, 3 MPa), 80^\circ, CO/H_2 (1/1, 3 MPa$	i, 20 h	I (12)	+ II (4	)				68
$\begin{split} & Ru_2(\mu\text{-O}_2\text{CPh})_2(\text{CO})_4(\text{PPh}_{3)_2}, \text{Et}_3\text{N}, \\ & \text{PhMe, 80°, CO/H}_2 (1/1, 3 \text{ MPa}) \\ & [Ru_2(\mu\text{-OAc})_2(\text{CO})_4(\text{PPh}_3)_2], P/Ru = 5 \\ & H_2\text{O}, \text{THF, CO/H}_2 (1/1, 3 \text{ MPa}), 85°, \\ & \text{Cp}_2\text{Yb}(\eta\text{-OC})\text{Co}(\text{CO})_3, \text{Et}_2\text{O/THF} = 4 \\ & \text{CO/H}_2 (3/2, 6.5 \text{ MPa}), 135°, 5 \text{ h} \end{split}$	;, , 20 h 4/1,	I (12) I + II	+ II (4 (75), I:	) <b>II</b> = 1.10-	1.15			68 68
$\begin{aligned} & Ru_2(\mu-O_2CPh)_2(CO)_4(PPh_3)_2, Et_3N, \\ & PhMe, 80^\circ, CO/H_2 (1/1, 3 MPa) \end{aligned}$ $\begin{aligned} & [Ru_2(\mu-OAc)_2(CO)_4(PPh_3)_2], P/Ru = 5 \\ & H_2O, THF, CO/H_2 (1/1, 3 MPa), 85^\circ, CP_2Yb(\eta-OC)Co(CO)_3, Et_2O/THF = 4 \\ & CO/H_2 (3/2, 6.5 MPa), 135^\circ, 5 h \end{aligned}$ $\begin{aligned} & [(\eta^5-C_3H_3)Rh_2(\mu-CO)(\mu-Ph_2PPy)(CO) \\ & CO/H_4 (1/1, 80, 2tm), CM, 80^\circ, 110^\circ, $	;, , 20 h 4/1, C1],	I (12) I + II I (48)	+ П (4 (75), I: + П (3	) <b>II</b> = 1.10- 5) +	1.15	(7	7) +	68 68 61
$\begin{split} & \text{Ru}_{2}(\mu\text{-O}_{2}\text{CPh})_{2}(\text{CO})_{4}(\text{PPh}_{3})_{2}, \text{Et}_{3}\text{N}, \\ & \text{PhMe, 80^{\circ}, CO/H}_{2} (1/1, 3 \text{ MPa}) \\ & [\text{Ru}_{2}(\mu\text{-OAc})_{2}(\text{CO})_{4}(\text{PPh}_{3})_{2}], \text{P/Ru} = 5 \\ & \text{H}_{2}\text{O}, \text{THF, CO/H}_{2} (1/1, 3 \text{ MPa}), 85^{\circ}, \\ & \text{Cp}_{2}\text{Yb}(\eta\text{-OC})\text{Co}(\text{CO})_{3}, \text{Et}_{2}\text{O/THF} = 4 \\ & \text{CO/H}_{2} (3/2, 6.5 \text{ MPa}), 135^{\circ}, 5 \text{ h} \\ & [(\eta^{5}\text{-C}_{5}\text{H}_{5})\text{Rh}_{2}(\mu\text{-CO})(\mu\text{-Ph}_{2}\text{PPy})(\text{CO}) \\ & \text{CO/H}_{2} (1/1, 80 \text{ atm}), \text{C}_{6}\text{H}_{6}, 80^{\circ}, 14 \text{ h} \end{split}$	5, , 20 h 4/1, Cl],	I (12) I + II I (48)	+ Π (4 (75), Ι: + Π (3:	) <b>II</b> = 1.10- 5) +	1.15	СНО	7) +	68 68 61

Reactant

Reactant	Conditions	Product(s) and Yield(s) (%)	Ref
	Co(OAc) ₂ /P(Bu-n) ₃ (1/10), hv, MeOH, 85°, 26 h, CO/H ₂ (1/1, 80 bar)	<b>Ι + Π</b> (), <b>Ι</b> : <b>Π</b> = 90:10	461, 462 682
	Rh(acac)(CO) ₂ , P[(CH ₂ ) ₆ C ₆ H ₄ SO ₃ Na- $p$ ] ₃ , L/Rh = 2.5, CO/H ₂ (1/1, 200 psi), H ₂ O,	<b>I</b> + Π (—), <b>I</b> :Π = 2.2:1	672
	P(0) =	I + II () I I = 2.1	683
	$L/Rh = 50, CO/H_2 (1/7, 80 bar), PhMe, 80^{\circ}$	· · · · · · · · · · · · · · · · · · ·	005
	Rh/C (5%), P(OPh)3, CO/H2 (1/1), PhMe, 90°	<b>I + II</b> (72-84)	684
	Pressure (psi) Time (min)	I:II	
	80-100 50	86:14	
	280-300 20	80:20	
	560-600 25	74:26	
	2500 25	69:31	
	Rh/C (5%), PR ₃ , PhMe, CO/H ₂ (1/1, 80-100 psi)	I + II (72-84)	684
	- Pu 00° 225	71.20	
	n-bu <del>50</del> 223 Dh 00° 25	71:2 <del>9</del> 00:10	
	ru 70 33	02:10 81.10	
		01.17 96.14	
		86:14	
	$2-\text{MeC}_6\text{H}_4\text{O}$ 90° 52	78:22	
	$2-PhC_6H_4O = 90^\circ = 95$	52:48	
	$4-PhC_{6}H_{4}O$ 90° 70	85:15	
	4-ClC ₆ H₄O 90° 55	93:7	
	$4-MeOC_6H_4O$ 90· 270	83:17	
	Rh(acac)(CO) ₂ , P[(CH ₂ ) ₂ C ₆ F ₁₃ - $n$ ] ₃ , 100°, CO/H ₂ (1/1, 150 psi), <i>c</i> -C ₆ F ₁₁ CF ₃ , PhMe	<b>I</b> + <b>Π</b> (85), <b>I</b> : <b>Π</b> = 2.9	31
	Rh(acac)(CO) ₂ , CO/H ₂ (10 atm), NMP, AcOH, 70°, 1.5 h,	I (80), II (20)	685
	Ph ₂ P-SO ₃ Na		
	CO/H ₂ (1/1, 1500 psi), C ₆ H ₆ , 135°, 12 h	<b>I</b> + Π (), <b>I</b> :Π = 2.4	686
	CO/H ₂ (1/1, 1500 psi), C ₆ H ₆ , 135°, 12 h	I + II (—), I:II = 1.3	686
	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $		
	CO/H ₂ (1/1, 1000 psi), 24 h, <i>n</i> -C ₆ H ₁₄ , 50° $\xrightarrow{Ph} o \xrightarrow{Ph} ph$	<b>Ι + Π (—), Ι:Π =</b> 1.2	686

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs
	CO/H ₂ (1/1, 1000 psi), C ₆ H ₆ , 50°, 24 h	<b>I</b> + <b>II</b> (—), <b>I</b> : <b>II</b> = 0.6	686
	-{<		
	oc ^{Rh} .co		
	RhH(CO)(PPh ₃ ) ₃ /PPh ₃ (1/200), diphosphine, CO/H ₂ (1/1, 1 atm), PhMe, 85°		687
	Diphosphine	I:II:2-octene	
	None	77: 7:14	
	$Ph_2P(CH_2)_2PPh_2$	82:12: 5	
	$Pn_2P(CH_2)_3PPn_2$ PhoP(CH_2)_3PPho	81:13: 5 86:10: 3	
	1 1/21 (C112)/41 1 1/2		
	RhCl ₃ , NBD, <i>h</i> v, CO/H ₂ (1/1, 75 bar), MeOH, 20°, 21 h	$I(1) + \Pi(3) + MeO OMe$ (40) +	688
		OMe (30) +	
		CO ₂ Me (3) +	
		(13)	
		CO ₂ Me	
	Rh(COD)BF ₄ , ligand, 60°, PhMe, 18 h, L/Rh = 1.2, CO/H ₂ (1/1, 100 atm)	I + II ()	689
	Ligand	<u>1:11</u>	
	PhN(CH ₂ PPh ₂ ) ₂	62:38	
	p-CF ₃ C ₆ H ₄ N(CH ₂ PPh ₂ ) ₂	60:40	
	p-Me ₂ NC ₆ H ₄ N(CH ₂ PPh ₂ ) ₂	65:35	
		$\mathbf{U}_{(2)} = \mathbf{U}_{(4)} + \mathbf{i}_{(4)} + i$	224
	$CO/H_2$ (1/1, 20 atm), 80°, 21 h	1(69) + 11(4) + 1 merital isomers (7), $1.11 = 24$	224
	Ph ₂ P PPh ₂		
	Rh(acac)(CO) ₂ , ligand, L/Rh = 10, PhMe, CO/H ₂ (1/1, 20 aun), 80°, 20 h	I(90) + II(2) + internal isomers (8), I:II = 51	224
	$\langle N = PPh PhP - \langle N \rangle$		
	Rh(acac)(CO) ₂ , ligand, L/Rh = 10, PhMe, CO/H ₂ (1/1, 20 atm), 80°, 21 h	I (89) + II (3) + internal isomers (8), I:II = 30	224
	$\langle N = PPh PhP - \langle N \rangle$		
	Rh(hfacac)(COD), P[ <i>m</i> -F(CF ₂ ) ₆ (CH ₂ ) ₂ C ₆ H ₄ ] ₃ , L/Rh = 6, CO/H ₂ (1/1, 60 atm), 60 °, $scCOc^{4}$ (160 atm), 19 h	I:II = 4.6:1, I + II ()	690

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)



TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

[Rb(COD)(diphosphipe)]RF, 18 b		772
$H_{2}O(30\% \text{ DME}) = OOH_{2}(1/1 - 100 \text{ stm})$		263
$X \sim PPh_2$		
C c		
$\bigcirc$		
X Temp. TON	I:II	
CH ₂ 60° 3179	75:25	
CH ₂ S(CH ₂ ) ₂ 80° 3172	76:24	
$CH_2S(CH_2)_3 = 60^\circ$ 3170	69:31	
$CH_2S(CH_2)_A = 60^\circ$ 3170	67:33	
Rh(acac)(CO) ₂ , ligand, L/Rh = 10, PhMe, CO/H ₂ (1/1, 20 atm), 80°, 21 h	1(91) + II(3) + internal alkenes (6) I:II = 32	224
Et ₂ N	NEt ₂	
Rh (acac)(CO) ₂ , diphosphine ligand, PhMe,		225
$L/Kn = 10, CO/H_2 (1/1, 20 \text{ atm}), 80^\circ$		
Phosphine ligand Time (h) Conv. (%)	$1 + 11 \qquad 1 \text{ isomers}$	
POP 20 67.0	(100) 7.5 0.0	
POPpy 20 88.0	(99) 8.9 0.7	
POPam 21 71.5	(100) 7.3 0.0	
xanthos 24 61.6	(96) 46 3.9	
xantham 24 67.9	(96) 49 4.0	
Rh(acac)(CO) ₂ , ligand,		660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80°		660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) ₂ OP(OR) ₂		660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂		660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ <i>t</i> -Bu O ^{-P} O Bu- <i>t</i>	n L/Rh Conv. (%) I:II: internal alkenes TOF	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $t$ -Bu $O^{-P}O$ Bu- $t$ P(OR) ₂ =	n L/Rh Conv. (%) I:II:internal alkenes TOF 2 20 21 61.5:38.5:0 11100	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $t$ -Bu $O^{-P}O$ Bu- $t$ P(OR) ₂ =	n L/Rh Conv. (%) I:II:internal alkenes TOF 2 20 21 61.5:38.5:0 11100 3 2.5 27 55:25:20 1550	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $t-Bu \qquad 0^{-P} O Bu-t$ $P(OR)_2 = \bigvee_{t-Bu} Bu-t$	n L/Rh Conv. (%) <b>1:11:</b> internal alkenes TOF 2 20 21 61.5:38.5:0 11100 3 2.5 27 55:25:20 1550	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $t-Bu \longrightarrow t-Bu \longrightarrow t-Bu-t$ Bu-t Bh(acac)(CO) ₂ ligand 1 (Rb = 5 PhMe	n L/Rh Conv. (%) I:II:internal alkenes TOF 2 20 21 61.5:38.5:0 11100 3 2.5 27 55:25:20 1550	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ I = I = I = I = I = I = I = I = I = I =	n L/Rh Conv. (%) I:II:internal alkenes TOF 2 20 21 61.5:38.5:0 11100 3 2.5 27 55:25:20 1550	660 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ I = I = I = I = I = I = I = I = I = I =	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550	660 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \begin{array}{c} t-Bu & O^{-P} & O & Bu-t \\ P(OR)_2 = & & & & \\ t-Bu & & & & & \\ t-Bu & & & & & \\ H(acac)(CO)_2, ligand, L/Rh = 5, PhMe, \\ CO/H_2 (20 bar), 80°, 2 h \\ R & & & & & \\ \end{array} $	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $t-Bu \longrightarrow t-Bu - t$ P(OR) ₂ = $t-Bu \longrightarrow Bu-t$ Bu-t Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°, 2 h R \longrightarrow R	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $t-Bu \longrightarrow t-Bu \longrightarrow bu-t$ P(OR) ₂ = $t-Bu \longrightarrow bu-t$ Bu-t Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°, 2 h R \longrightarrow R	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF	660 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $t-Bu \longrightarrow t-Bu \longrightarrow t-t$ P(OR) ₂ = $t-Bu \longrightarrow Bu-t$ Bu-t Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°, 2 h R \longrightarrow r + CO/H ₂ (20 bar), 80°, 2 h	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650	660 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $t-Bu \longrightarrow t-Bu \longrightarrow t-t$ P(OR) ₂ = $t-Bu \longrightarrow bu-t$ Bu-t Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°, 2 h R \longrightarrow t-R + CO/H ₂ (20 bar), 80°, 2 h	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-f         72         71:16:13         810	660 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \underbrace{t-Bu} \qquad \qquad$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-t         72         71:16:13         810	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \underbrace{t-Bu} \qquad \qquad$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-t         72         71:16:13         810	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \underbrace{t-Bu} \qquad \qquad$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-t         72         71:16:13         810	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \underbrace{t-Bu} \qquad \qquad$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-r         72         71:16:13         810	660 662 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \underbrace{t-Bu} \qquad \qquad$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-r         72         71:16:13         810	660 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \underbrace{t-Bu} \qquad \qquad$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-r         72         71:16:13         810	660 662 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) ₀ OP(OR) ₂ $ \underbrace{t-Bu} \qquad \qquad$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-r         72         71:16:13         810	660 662 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _a OP(OR) ₂ $ \frac{t-Bu}{\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-\mu-$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-r         72         71:16:13         810	660 662 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \frac{t-Bu}{-Bu} \xrightarrow{O^{-P} O} \underbrace{Bu-t}_{Bu-t}$ Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°, 2 h $ \begin{array}{c} R \\ \downarrow \\ R \\ \downarrow \\ -Bu \\ Bu-t \\ \end{array}$ Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80° $ \begin{array}{c} R \\ \downarrow \\ R \\ -Bu \\ -Bu \\ -Bu \\ -Bu \\ -Bu \\ -Bu \\ -D \\ -P \\ -Q \\ -P \\ -P$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-t         72         71:16:13         810	660 662 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \frac{t-Bu}{\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+\mu+$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-t         72         71:16:13         810	660 662 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $ \frac{t-Bu}{\mu+J} + \frac{(P-P)}{\mu+J} + $	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-t         72         71:16:13         810	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $= \underbrace{I - Bu}_{I - Bu} \xrightarrow{O^{-P} - O}_{I - Bu - I} \xrightarrow{Bu - I}_{I - Bu}$ Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°, 2 h $= \underbrace{I - Bu}_{I - Bu - I} \xrightarrow{I - Bu}_{I - I}$ Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80° $I - Bu \xrightarrow{I - Bu}_{I - I} \xrightarrow{I - Bu - I}_{I - Bu}$ Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-t         72         71:16:13         810	660
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $\frac{t \cdot Bu}{P(OR)_2} = \frac{t \cdot Bu}{\int_{t-Bu} O^{-P} (O)} \frac{Bu \cdot t}{Bu \cdot t}$ Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°, 2 h $Rh(acac)(CO)_2, ligand, L/Rh = 5, PhMe, CO/H2 (20 bar), 80° \frac{V}{I-Bu} Bu \cdot t}{Bu \cdot t} Rh(acac)(CO)2, ligand, L/Rh = 5, PhMe,CO/H2 (20 bar), 80°\frac{I-Bu}{V} + \int_{V} \frac{Bu \cdot t}{V} + \int_{U-V} \frac{Bu \cdot t}{V} \frac{Isomer Time (h) Conv. (%)}{19.5 98}$	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-t         72         71:16:13         810	660 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $\frac{t \cdot Bu}{P(OR)_2} = \frac{t \cdot Bu}{\int_{t-Bu} O^{-P} O \int_{t-Bu-t} Bu \cdot t}$ Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°, 2 h Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80° $\frac{V - P}{V - V} = \frac{V - V}{V - V}$ Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80° $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V - V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V - V - V}{V - V} = \frac{V - V}{V - V}$ Bu - t $\frac{V - V - V - V - V}{V - V}$ Bu - t $\frac{V - V - V - V - V}{V - V}$ Bu - t $\frac{V - V - V - V - V - V}{V - V}$ Bu - t $\frac{V - V - V - V - V - V - V}{V - V}$ Bu - t V - V - V - V - V - V - V - V - V - V -	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         61.5:38.5:0         11100           3         2.5         27         55:25:20         1550           R         Conv. (%)         I:II:internal alkenes         TOF           H         49         68:31:1         650           Bu-t         72         71:16:13         810	660 662
Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ PO(CH ₂ ) _n OP(OR) ₂ $\frac{t \cdot Bu}{\mu + \mu +$	n       L/Rh       Conv. (%)       I:II:internal alkenes       TOF         2       20       21       61.5:38.5:0       11100         3       2.5       27       55:25:20       1550         R       Conv. (%)       I:II:internal alkenes       TOF         H       49       68:31:1       650         Bu-t       72       71:16:13       810         I:II:internal octenes       TOF         68:13:19       110         82:9:9       950         L+H () VIII = 2.4	660

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	PhN(CH2PPh2)2Rh(COD)BF4, H2/CO	<b>I + II</b> (), <b>I</b> : <b>II</b> = 62:38	692
	n-PrN(CH2PPh2)2Rh(COD)BF4, H2/CO	<b>I</b> + <b>II</b> (), <b>I</b> : <b>II</b> = 61:39	692
	Rh(acac)(CO) ₂ , ligand, L/Rh = 5, PhMe, CO/H ₂ (20 bar), 80°, 3.5 h	<b>I</b> + <b>II</b> (—), <b>I</b> : <b>II</b> :internal octenes = 91:4:5	662
	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $		
	Rh(acac)(CO) ₂ , ligand, CO/H ₂ (20 bar), PhMe, 80°		662
	$R \xrightarrow{P'O} R$		
	<i>i</i> -Pr ⁻ <i>i</i> [*] Pr- <i>i</i> <u>R L/Rh Time (h) Conv. (%)</u> <u>H 50 3.5 93</u> <u>B 50 100 102 200</u>	I:II:internal octenes         TOF           59:30:11         1200           49:10:22         1110	
	Bu-t 100 0.3 22 Rh(acac)(CO) ₂ , ligand, PhMe, H ₂ (CO (20 bar)	48:19:35 1110	662
	$ \begin{array}{c}                                     $		
	R ¹ R ² L/Rh         Temp.         Time (h)         Co           Bu-t         MeO         100         80°         3.2         98           Bu-t         MeO         250         40°         21.8         24           Bu-t         MeO         1000         80°         42.6         77           H         H         100         80°         2.1         93	nv. (%) <u>I:II:internal octenes</u> TOF 54:34:12 730 56:37:7 50 61:27:12 80 65:31:4 2160	
	Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 20 bar), PhMe, 80° (RO) ₂ P $\xrightarrow{O_{+}}$ (Q) ₂ P(OR) ₂	n         L/Rh         Conv. (%)         I:II:internal alkenes         TOF           2         20         21         62:38:0         11100           3         2.5         27         55:25:20         1550	660
	$P(OR)_2 = \underbrace{\begin{array}{c} t - Bu \\ t - Bu \end{array}}_{t - Bu} \underbrace{\begin{array}{c} P \\ O \\ P \\ O \\ Bu - t \end{array}}_{Bu - t}$		
	Rh(acac)(CO) ₂ , ligand, CO/H ₂ (1/1, 10 bar), toluene. 16 h		694
	$\begin{array}{c} R \\ \downarrow \\ PPh_{n} \end{array} \begin{array}{c} X \\ PPh_{n} \end{array} \begin{array}{c} R \\ PPh_{n} \end{array}$		
	Ligand R X Temp.	I/II I isomerization(%)	
	Sixantphos H Si(Me ₂ $40^{\circ}$	35 (96) <1	
	Thixanphos Me S 40°	47.6 (97) 1	
	Xantphos H C(Me) ₂ 40°	57.1 (98) 0	
	BISBI 40°	58.2 (96) 2.9 24 (94) 2	
	Sixantphos H Si(Me ₂ 80° Thixanphos Me S 80°	54 (54) 5 41 (93) 4.7	
	Xantphos H C(Me) 80°	53.5 (98) 0.5	
	BICBI	80.5 (90) 9.3	

ABLE I. HYDROFORMYL	ATION OF ALKYL	-SUBSTITUTED MONOC	DLEFINS (Continued)

i i i i i i i i i i i i i i i i i i i			
$\sim$	Rh(acac)(CO) ₂ , L (Rh : L = 1 : 2.04), H ₂ /CO (20 kg/cm ² ), heptane, 100°, 2 h,	OHC I (53) +	695
	t-Bu	CHO CHO	
	0-P-0-	П (27) П (11)	
	P-O	(HO)	
	Rh(acac)(CO) ₂ , Ph ₃ PO, 100°, 3 h,	I + II + III + IV (59),	696
	t-Bu Bu-t	1.11.111.11V = 54:26:10:6	
	$\int_{-0}^{0} R = $		
	r-Bu Bu-r		
	$Rh(acac)(CO)_2$ , $P/Rh = 9$ , $C_6H_{12}$ , $H_2O$ ,	R CHO I + R CHO II	601
	<i>n</i> -C ₆ H ₁₃ P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₂ on glass, CO/H ₂ (1/1, 54 atm), 75°, 5 h		
	$\frac{\mathbf{R}}{\mathbf{I} \cdot \mathbf{I}} = \frac{\mathbf{I} \cdot \mathbf{I}}{\mathbf{I} \cdot \mathbf{I}} + \frac{\mathbf{I} \cdot \mathbf{I}}{\mathbf{I} \cdot \mathbf{I}} / \frac{\mathbf{I} \cdot \mathbf{I}}{\mathbf{I} \cdot \mathbf{I}}$		
	$C_6H_{13}$ 2.3 10/1 () $C_8H_{17}$ 2.2 10/1 ()		
	$C_{10}H_{21}$ 2.3 10/1 ()		
	Rh-PEVV, CO/H ₂ (1/1, 41.4 atm), H ₂ O		242
	$\frac{\text{R}}{\text{C}_{6}\text{H}_{13}} = \frac{\text{Temp. Time (h) Conv. (\%)}}{22}$	$\frac{\mathbf{I} + \mathbf{II}}{(57)} = \frac{2.45}{2.45} = (22)$	
	$C_{10}H_{21}$ 60° 4 70	(49) 1.95 (21)	
	<i>n</i> -BuO 100° 5 5	(5) 0.35 (0)	
-C ₅ H ₁₁	RuO ₂ , Bu ₄ PBr, CO/H ₂ (1/2, 83 bar), 180°, 4 h	I(2) + II(3) + HO III (32) +	676
		IV (34), I:II=89:11	
	Ru ₃ (CO) ₁₂ , 1,10-phananthroline, L/Rh=4,	I + II (20) + internal octenes (62) + octane (tr) I:II=89:11	469
$\frown$	DMF, CO/H ₂ (1/1, 100 atm), 120°, 20 h	СНО	
	Rh ₂ (CO) ₂ [P(Bu-t) ₃ ] ₂ (µ-C1)[µ-S(CH ₂ ) ₀ SiO ₃ - silica gel], CO/H ₂ (1/1, 80 atm), 120°, 15 h	<b>i</b> 2 (80) 3 (100)	618
	RhH ₂ (O ₂ COH)[P(Pr- <i>i</i> ) ₃ ] ₂ , (CH ₂ O) _n , THF, 120°, 20 h	I (59) + ОН II (12) +	593
		CO ₂ Me III (11) + IV (5)	
	K[Ru(saloph)Cl ₂ ], EtOH, 130°, CO/H ₂ (1/1, 21 atm)	Ш (—)	553
	Ru ₃ (CO) ₁₂ , P(C ₆ H ₁₁ ) ₃ , HCO ₂ Me, H ₂ O, 180°, 10 h	II (15) + IV (77)	493
	Rh(acac)[P(OPh) ₃ ] ₂ , P(OPh) ₃ , 80°, CO/H ₂ (10 atm), 3 h	I (20)	697
	RhH ₂ (O ₂ COH)[P(Pr- <i>i</i> ) ₃ ] ₂ , CO (15 atm), H ₂ O, THF, 115°, 20 h	I (54)	577

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs
	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 200 psi), CHCl ₃ , 60°, 22 h	OHC. () + starting material (31)	251
XX	Poly(N-vinyl-2-pyrrolidone)- Co ₂ Rh ₂ (CO) ₁₁ , CO/H ₂ (1/1.2, 55 kg/cm ² ), C ₆ H ₆ , 80°, 8 h	онс (—)	566
$\bigcirc \frown$	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, per(β-cyclodextrinMe ₂ -o-2,6), P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 2 h	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	610
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 2 h	I + II (34), I:II=9	610
	Rh(acac)(CO) ₂ , P(OC ₆ H ₃ Me-4-Bu- <i>i</i> -2) ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), PhH, 70°	I (78) + alkenes (16)	468
	[Rh(OAc) ₂ ] ₂ , PPh ₃ /Rh = 2, CO/H ₂ (1/1, 400 psi), 60°, 20 h	I + I = 73	313
	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 200 psi), CHCl ₃ , 60°, 22 h	I + II (), I:II = 44:56	251
	cis-PtCl ₂ (PPh ₃ ) ₂ /SnCl ₂ ·2H ₂ O (1:5), CO/H ₂ (1/1, 100 bar), CHCl ₃ , 4 h	I(70) + II(16) + (1) + (1) + (6)	492
	5% Rh/C, DPPP, HCO ₂ H, CO (8.5 atm), DME, 100-105°, 18-24 h	$I + II (45), I \cdot II = 44.56$	368
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, per(β-cyclodextrinMe ₂ -o-2,6), P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 2 h	<b>I</b> + Π (99), <b>I</b> :Π=1.9	610
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 2 h	<b>I</b> + <b>II</b> (48), <b>I</b> : <b>II</b> =2.8	610
	Rh(COD)BPh4, CO/H2 (1/2, 200 psi), CHCl3, 47°, 22 h	СНО І () + СНО ІІ ()	251
	CO/H ₂ (1/1, 100 atm), THF, 70°, 16 h i-PrO ₂ C O-P-O ( $\langle \rangle_3$ Rh ⁺ (COD) BF ₄ ⁻ O-P-O i-CO ₂ Pr- <i>i</i> i-PrO ₂ C	I:П = 95:5 I + П (↔-), I:П = 97:3	248
	Rh(CO)[P(C ₆ H ₁₁ ) ₃ ] ₂ Cl, 120°, 10 h, CO/H ₂ (1/1, 300 atm)	CHO I + I + I (93), I:II = 77:23	698, 699
$\bigcirc$	"	I + СНО II I+II(—) I:II = 94:6	248
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, pcr(β-cyclodextrinMc ₂ - $o$ -2,6), P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 6 h	<b>I</b> + <b>Π</b> (10), <b>I</b> : <b>Π</b> = 14	610
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 6 h	<b>Ι + Π</b> (2), <b>Ι:Β=</b> 11	610

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	$\begin{array}{c} \text{CO/H}_2 (1/1, 100 \text{ atm}), \text{THF}, 70^\circ, 16 \text{ h} \\ i\text{-PrO}_2\text{C} \\ q \\ -\text{CO}_2\text{Pr-}i \\ 0 \\ (\sqrt{)_3} \text{ Rh}^*(\text{COD}) \text{ BF}_4^- \\ 0 \\ -\text{P-}0 \\ 0 \\ -\text{CO}_2\text{Pr-}i \\ i\text{-PrO}_2\text{C} \end{array}$	I + II (—), 1:II = 93:7	248
$\bigcirc$		CHO I () + II () I:II > 99:1	248
	[Rh(COD)Cl] ₂ , Ph ₂ P(CH ₂ ) ₂ C ₅ H ₄ N-2, CO/H ₂ (1/1, 600 psi), CHCl ₃ , 80°, 19 h	I + II (15), I:II > 99:1	643
	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 200 psi), CHCl ₃ , 60°, 43 h	I () + starting material (25)	251
	RhH ₂ (O ₂ COH)[P(Pr- <i>i</i> ) ₃ ] ₂ , (CH ₂ O) _n , THF, 120°, 20 h	$\mathbf{I} + \mathbf{II} + \mathbf{Ph} + \mathbf{OH} + \mathbf{Ph} + \mathbf{Ph} + \mathbf{IV} + \mathbf{IV}$	593
		$\begin{array}{c} & \mathbf{V} + \mathbf{VII} (\mathbf{CO}_2 M \mathbf{e} \ \mathbf{VI} + \mathbf{ph} \mathbf{VII} (\mathbf{VI} + \mathbf{Ph} \mathbf{VII} (\mathbf{VI} + \mathbf{VI} + \mathbf{VII} (\mathbf{VI} + \mathbf{VI} + \mathbf{VI} + \mathbf{VII} (\mathbf{VI} + \mathbf{VI} + \mathbf{VI} + \mathbf{VII} (\mathbf{VI} + \mathbf{VI} + \mathbf{VI} + \mathbf{VI} + \mathbf{VII} (\mathbf{VI} + \mathbf{VI} + \mathbf{VI} + \mathbf{VI} + \mathbf{VI} + \mathbf{VI} + \mathbf{VII} (\mathbf{VI} + \mathbf{VI} + \mathbf{V} + \mathbf{VI} + \mathbf{V} + V$	5)
	PtCl ₂ (Ph ₂ P(CH ₂ );PPh ₂ ], SnCl ₂ , PhMe, CO/H ₂ (1/1, 80 bar), 4 h	I (51) + (13) + starting material (36)	131
	$\label{eq:constraint} \begin{split} &[(\eta^5-C_5H_5)Rh_2(\mu\text{-CO})(\mu\text{-}Ph_2PPy)(CO)Cl],\\ &CO/H_2~(1/1,~80~atm),~C_6H_6,~80^\circ,~4~h \end{split}$	<b>I</b> + <b>II</b> (−−), <b>I</b> : <b>II</b> = 25:1	616
	RhH ₂ (O ₂ COH)[P(Pr- <i>i</i> ) ₃ ] ₂ , CO (15 atm), H ₂ O, THF, 115°, 20 h	I (80) + II (5)	577
~ ~	Rh/C (5%), DPPB, HCO ₂ H, CO (8.5 atm), DME, 110-120°, 24 h	I + II (40), I:II = 100:0	368
	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 200 psi), CHCl ₃ , 47°, 22 h	CHO I + CHO II $I + II (-1)$ I:II = 98:	) 251 2
	CO/H ₂ (1/1, 110 atm), THF, 70°, 16 h $i \cdot PrO_2C$ O - P - O ( $\langle \rangle_3$ Rh ⁺ (COD) BF ₄ ⁻ O - P - O ( $i \cdot PrO_2C$ $i \cdot PrO_2C$	<b>I</b> + II (100), I:II = 96:4	248
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na-m) ₃ , H ₂ O, P/Rh=5, CO/H ₂ (1/1, 50 atm), 80°, 1.5 h	I + II (48), I:II = 6.7	610
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na-m) ₃ , H ₂ O, per(β-cyclodextrinMe ₂ -o-2,6), P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 1.5 h	I + II (100), I:II=10	610

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

Reactant Conditions Product(s) and Yield(s) (%) Refs. Rh(SOX)(COD), PhMe, 60°, 511  $CO/H_2 (1/1, 0.1 \text{ MPa})$ Yield Phosphine or Phosphite I:II P/Rh Turnover^a P(OPh)₃ 2 28 37.5 : 62.5 (—) P(OPh)3 5 0 _ (—) PPh₃ 2 10 74.7 : 25.3 (-)PPh₃ 5 43 87.5 : 12.5 (---) 2 95.7 : 4.3 DPPE 10 (----) DPPE 5 48 97.5 : 2.5 (---) DPPP 2 19 95.6 : 4.4 (—) DPPP 96.0 : 4.0 5 76 (-)Rh(acac)(CO)2, P(OC6H3Me-4-Bu-t-2)3, CHO (66) + alkenes (17) 468 L/Rh = 10, CO/H₂ (1/1, 20 atm), PhH, 70°  $C_{10}$ .СНО CO/H₂ (1/1, 100 atm), THF, 70°, 16 h П I + II (---) 248 I:II = 97:3 i-PrO₂C  $\begin{array}{c} \downarrow & \searrow^{-CO_2Pr-i} \\ O - P - O \\ (\langle \rangle_3 & Rh^+(COD) BF_4^- \\ O - P - O \\ O \\ \downarrow \end{array}$ i-PrO2Ć 248  $HO \xrightarrow{CHO} I + \xrightarrow{CHO} II + HO \xrightarrow{OH} IV$  $Ru_3(CO)_{12}$ -2,2'-bipyridine on silica f22, онс 510 CO/H₂ (1/1, 50 bar), 150°, 17 h, PhMe  $\mathbf{I} + \mathbf{H}(5)$ III (36) IV IV (51) RhH(CO)(PPh3)3, CO/H2 (1/1, 27.2 atm), 50° 700 Solvent Yield I/II  $\overline{C_6H_6}$ (--) 1.56 PhMe 1.22 (---) EtOH (—) 1.13 n-BuOH 2.92 (-)n-C7H15OH (—) 4.54  $\label{eq:rescaled} Rh(acac)(CO)_2, P(C_6H_4SO_3Na_m)_3,$ 701 P/Rh = 5, cyclodextrin, H₂/CO (1/1, 50 atm), H₂O, 80° **∕_(**0R)₃ <u>{</u> (он)_в Cyclodextrin R Cyclodextrin/Decene а b Time (h) Conv. (%) I + II I:II α 0.014 18 0 10 3.2 _ 8 (9) γ _ 0.014 0 24 8 9 (6) 2.5 β _ 0.014 0 21 8 19 (15) 2.1 β Me 0.014 12.6 8.4 8 76 (69) 1.8 β Me 0.028 12.6 8.4 6 100 (95) 1.9 β Me 0.014 21 0 (17) 8 30 2.5 COMe β 0.014 21 0 8 6 (4) 2.6 β COMe 0.014 14 7 8 46 (26) 2.6 β CH₂CH(OH)Me 0.014 14.7 8 32 (27) 2 6.3 β  $SO_3Na$ 0.014 12 9 8 7 (5) 2.8

TABLE I HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOL FEINS (	Continued
THEELS IN THE MOTOR OF THE STEPSTICE DOUGLOUDED IN ON	communea)

Conditions	Product(s) and Yield(s) (%)	Refs.
[Rh(COD)Cl] ₂ , Ph ₂ P(CH ₂ ) ₂ C ₅ H ₄ N-2, CO/H ₂ (1/1, 600 psi), CHCl ₃ , 80°, 2 h	I + II (100), I:II = 41:59	248
Rh ₂ (CO) ₂ [P(Bu-r) ₃ ] ₂ (µ-Cl)[µ-S(CH ₂ ) ₃ SiO ₃ - silica gel], CO/H ₂ (1/1, 80 atm), 120°, 15 h	I (46) + II (46)	618
Rh(acac)(CO) ₂ , P( <i>m</i> -C ₆ H ₄ SO ₃ Na) ₃ , H ₂ O, per(β-cyclodextrinMe ₂ - <i>o</i> -2,6), P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 6 h	<b>I + II</b> (95), <b>I</b> :II=1.9	610
$Rh(acac)(CO)_2, P(C_6H_4SO_3Na-m)_3, H_2O,$ P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 6 h	I + Π (6), I:Π=2.7	610
Rh/C (5%), DPPB, HCO ₂ H, CO (8.5 atm), DME, 110-120°, 24 h	I + II (41), I:II = 41:59	368
Rh(acac)(CO) ₂ , P[(CH ₂ ) ₂ (C ₆ F ₁₃ -n)] ₃ , CO/H ₂ (1/1, 150 psi), c-C ₆ F ₁₁ CF ₃ , PhMe, 100°, 11 h	<b>I</b> + <b>II</b> (80), <b>I</b> : <b>II</b> = 2.9	31
Rh ₂ (CO) ₂ [P(Bu-t) ₃ ] ₂ (µ-Cl)[µ-S(CH ₂ ) ₂ SiO ₃ - silica gel], CO/H ₂ (1/1, 80 atm), 120°, 15 h	I (46) + II (45)	618
Rh ₆ (CO) ₁₆ , PhMe, 130°, 48 h, CO/H ₂ (1/1, 600 psi)	$H \xrightarrow{\text{CHO}}_{\text{H}} I(12) + \prod_{\text{H}} \Pi(23) + H \xrightarrow{\text{CHO}}_{\text{H}} H \xrightarrow{\text{CHO}}_{\text{H}} H$	7) 702
	+ CH ₂ OH (23) + (3) + (2) + (2) +	(20)
	Н СНО	
Rb ₂ (µ-SBu-r) ₂ (CO) ₂ (P(OPh) ₃ ) ₂ , 85°, 4 d, CO/H ₂ (1/1, 1.25 MPa), ClCH ₂ CH ₂ Cl	I(-) +  III (-) $I:III = 40:60$	703
Rh catalyst, CO/H ₂ (1/1, 650 bar), 70°	I + II + III (), I:(II + III) = 8:1	699, 704
Co ₂ (CO) ₈ , CO/H ₂ (1/1, 200-300 bar), 110-120°		704
Rh ₆ (CO) ₁₆ , CH ₂ Cl ₂ , 60°, 17 h, CO/H ₂ (1/1, 600 psi)	$H \xrightarrow{CHO}_{H} (tr) + H \xrightarrow{CHO}_{(15) +} H \xrightarrow{CHO}_{(4) +} (4) +$	702
	(26) + Starting material (55)	
PtCl(CO)(PR ₃ ) ₂ ]ClO ₄ /SnCl ₂ ·H ₂ O, 100°,	сно і	705

+ branched aldehydes II + decane III

(5)

(5)

(2)

(10)

(8)

(3)

сно

Bu I (2)

П

(28)

(31)

(20)

(51)

(37)

(26)

ш

(1)

(2)

(tr)

(12)

(7)

(8)

Conv. (%) I

36.3

37.6

22.9

72.5

50.8

36.2

Bu⁄

I (2)

CH₂Cl₂, CO/H₂ (1/1, 2000 psi), 3 h

PR₃  $P(Bu-n)_3$ PPh₃ P(PhCl)₃ P(OPh)₃ P(OPhCl)₃  $AsPh_3$ 

Rh(acac)(CO)₂, P(m-C₆H₄SO₃Na)₃, H₂O, per( $\beta$ -cyclodextrinMe₂-o-2,6), P/Rh = 5, CO/H₂ (1/1, 50 atm), 80°, 6 h

 $Rh(acac)(CO)_2$ ,  $P(C_6H_4SO_3Na-m)_3$ ,  $H_2O$ , P/Rh = 5, CO/H₂ (1/1, 50 atm), 80°, 6 h

610

610

/

Reactant



Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₁	[RhCl(CO) ₂ ] ₂ /PPh ₃ (1/4), $C_6H_6$ , 90°, CO/H ₂ (120 atm) 4 b	Ph CHO (67) + Ph CHO (33)	708
		diastereomers ratio 1:1	
Ph	HMn(CO) ₅ , C ₆ D ₆ , 50°, 1 h	O = Ph (37) + Ph (5)	) 122
V		+ OHC Ph (26) + HO Ph	(28) 1
	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 400 psi), CHCl ₃ , 80°, 23 h	CHO () + starting material (29)	251
	Rh(SOX)(COD), PhMe, 75°, 10 h, CO/H ₂ (1/1, 0.1 MPa)	СНО I (—)	511
~ ~	Rh(COD)BPh4, CO/H2, CHCl3	U (98)	251
	[RhCl(CO) ₂ ] ₂ , PPh ₃ , C ₆ H ₆ ,100°, 1 h, CO/H ₂ (1/1, 100 atm)	I (79)	709
	[Rh(COD)Cl] ₂ , CO/H ₂ (1/1, 700 atm), 100°, C ₆ H ₆	I (54)	710, 699
<i>n</i> -C ₁₀ H ₂₁	Rh ₂ O ₃ ·5H ₂ O, Ligand, L/Rh = 330, 90°, CO/H ₂ (1/1, 100 psi), 135 min	<i>n</i> -C ₁₀ H ₂₁ CHO I + <i>n</i> -C ₁₀ H ₂₁ CHO II	711
	Ligand	Conv. (%) <b>I/II</b>	
	NPh ₃	5.8 1.8	
	PPh ₃	86.9 8.7	
	AsPh ₃	85.8 3.5	
	SDP'A3 BiPha	8.5 9.1 0.0	
	RhH(CO)(PPh ₃ ) ₃ , PPh ₃ , Ph ₂ POH, <i>n</i> -C ₁₂ H ₂₅ C ₆ H ₅ , CO/H ₂ (1/1, 1 atm), 85°, 30 min	I(75) + II(7) + 2-dodecene (16) + dodecane (2)	712
	Rh(acac)(CO) ₂ , P(OC ₆ H ₃ Me-4-Bu-t-2) ₃ , L/Rh = 10, CO/H ₂ (1/1, 20 atm), C ₆ H ₆ , 70°	I (63) + alkenes (19)	468
	RhCl ₃ , phosphine, P/Rh = 13, 100°, 7 h, PhMe/H ₂ O (2/3), pH = 6, CO/H ₂ (1/1, 5 MPa)	n Conv. (%) I + II 16 95.5 (88) 25 96.5 (85)	243
	Рћ2Р		
	Rh(OAc) ₃ , H ₂ O, CO/H ₂ (50 bar), 125 [°] , 90 mn,	I + II (93.4), I:II = 72/28	713
	$r_{2}$ Rh (acac)(CO) ₂ , xantham, L/Rh = 10,	I + II + 2-undecene + 3-undecene +4-undecene	225

PhMe, CO/H₂ (1/1, 20 atm), 80°, 24 h I + II (96), I:II = 51

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	Rh(acac)(CO) ₂ , ligand, L/Rh = 10, PhMe, CO/H ₂ (1/1, 20 atm), 80°, 20 h	I(90) + II(2) + internal isomers (8), I:H = 54	224
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, per(β-cyclodextrinMe ₂ - <i>o</i> -2,6), P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 6 h	I + II (55), I:II=1.9	610
	$Rh(acac)(CO)_2, P(C_6H_4SO_3Na-m)_3, H_2O,$ P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 6 h	I + II (4), I:II=2.5	610
		CHO I	
	CO/H ₂ (1/1, 100 atm), THF, 70°, 16 h i-PrO ₂ Ç		248
	O ^{CO2PT-i}	I:II = 98:2	
	$O - \dot{P} - \dot{O}$		
	0-P-O		
	CO ₂ Pr- <i>i</i>		
	i-PrO ₂ C Ph/COD)RE, ligand 60° PhMe 18 h		689
	L/Rh = 1.2, CO/H ₂ (1/1, 100 atm)		
	Ligand	1:11	
	PhN(CH ₂ PPh ₂ ) ₂	91:9	
	p-CF ₃ C ₆ H ₄ N(CH ₂ PPh ₂ ) ₂	93:7	
	$p-Me_2NC_6H_4N(CH_2PPh_2)_2$	95:5	
	Drrr	23.1	
	Rh(COD)BPh4, CO/H2 (1/2, 200 psi), CHCl3, 47°, 22 h	<b>I</b> + <b>II</b> (), <b>I</b> : <b>II</b> = 96.5:3.5	251
	Rh/C (5%), DPPP, HCO ₂ H, CO (8.5 atm), DME, 100-105°, 18-24 h	<b>I</b> + <b>II</b> (56), <b>I</b> : <b>II</b> = 82:18	368
	Rh/C (5%), DPPP, HCO ₂ H, CO (8.5 atm), DME, 110-120°, 24 h	I + II (67), I:II = 54.5:45.5	368
		CHO	
i-Bu	Rh(COD)BPh4, CO/H ₂ (1/2, 200 psi), CHCl ₃ , 47°, 23 h	<i>i</i> -Bu <i>i</i>	) 251
	(Ph/MPD)/2.5 his/diphanulahasphing)	1 + 11 () 1-11 - 02-9	247
	methyl)bicyclo[2.2.1]heptane)ClO ₄ , CO/H ₂ (1/1, 40 atm), C ₆ H ₆ , 50°, 13 h	1 + 11 (), s.11 - 22.0	247
	$[RhCl(CO)_2]_2$ , L/Rh = 5, Et ₃ N/Rh = 10,		641
	CO/H ₂ (1/1, 20 bar), PhMe, 25°, 6 h		
	Ligand	$\frac{\text{Conv. (\%)} \mathbf{I} + \mathbf{II}  \mathbf{I} : \mathbf{II}}{79}$	
	PPh ₃	29 (100) 94:6	
	PPPN	58 (100) 90:10	
- (yz	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 200 psi), CHCl ₃ , 47°, 22 h	OHC (-)	251
C ₁₄			
rn	$Rh(acac)(CO)_2$ , L/Rh = 2.5, $C_6H_6$ ,	$\bigvee^{\text{Ph}}$ <b>I</b> + $\bigvee^{\text{Ph}}$ <b>I</b>	714
Ph	CO/H ₂ (1/1, 80 atm), 80°, 18 h	Ph Ph Cno	
		I + II (21), I:II = 1:99	
	$L = \sqrt{\frac{N}{N}}$		
	Or PPh2		

TABLE I. HYDROFORMYLATION OF ALKYL-SUBSTITUTED MONOOLEFINS (Continued)

Reactant		Condition	s			F	roduct(s	and Yield(s) (%)	Refs.
	Catalyst, H ₂ /CO (100 a	atm), PhH	, 80°		I + II + PhCH	[Me ( <b>III</b> )			715
	Catalyst	H ₂ /CO	Temp.	Time (h)	Conv. (%)	I + II	I:II	Ш	
	HRh(CO)(PPh ₃ ) ₃	1/1	80°	48	81.7	(81)	96:4	(<1)	
	HRh(CO)(PPh3)3	1/1	120°	48	>99	(51)	>99	(49)	
	HRh(PPh ₃ ) ₄	1/1	80°	48	57.4	(53)	99	(4)	
	HRh(PPh3)4	1/1	90°	114	>99	(81)	98:2	(20)	
	[Rh(CO) ₂ Cl] ₂	1/1	80°	48	75.2	(75)	>99	(>1)	
	[Rh(CO) ₂ Cl] ₂	1/3	80°	48	61.2	(57)	>99	(4)	
	Rh(acac)(CO) ₂	1/1	80°	24	46.4	(43)	99	(3)	
	Rh(acac)(CO) ₂ , L/Rh CO/H ₂ (1/1, 80 atm),	= 2.5, C ₆ I 80°, 18 h	H ₀ ,		<b>I + II</b> (61), <b>I</b> :I	<b>I</b> = 1:99			714
	$L = \bigvee_{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	<b>7</b> h ₂							
						_сно	_		
n-C ₁₂ H ₂₅	$Rh(acac)(CO)_2$ , $P(C_6H)$	4SO3Na-n	n)3, H2O,		n-C ₁₂ H ₂₅	$\sim$	I +	n-C ₁₂ H ₂₅ CHO II	610
	pcr(β-cyclodextrinMe CO/H ₂ (1/1, 50 atm),	≿ ₂ - <i>o</i> -2,6), 80°, 6 h	P/Rh = 5,			I+)	II (39), I:	<b>H=</b> 1.6	
	$Rh(acac)(CO)_2, P(C_6H)$	4SO3Na-n	n) ₃ , H ₂ O,	:	I + II (4), I:II	=2.5			610
	$P/Rn = 5, CO/H_2 (1/1)$	, 50 atm),	80°, 6 N						
	Rh(acac)(CO) ₂ , P(C ₆ H per( $\beta$ -cyclodextrinMe	4SO3Na-1 22-0-2,6), 1 200 2 h	n) ₃ , H ₂ O, P/Rh = 5,	]	<b>I + Π</b> (100), <b>I</b> ∶	: <b>II</b> =11			610
C ₁₅ Ph	Catalyst, H ₂ /CO (1/1, 1	100 atm),	C ₆ H ₆		Ph		I +	Ph CHO II +	715
						I	II +		
	Catalyst	Temp.	Time (h)	Conv. (	%) I+ <u>П</u>	I:II I	<u>n</u> 1	<u>v</u>	
	HRh(CO)(PPh ₃ ) ₃	90°	48	72.1	(64)	>99 (	8) (	—)	
	HRh(PPh ₃ ) ₄	90°	72	40	(35)	>99 (	5) (	)	
	HRh(PPh ₃ ) ₄	120°	66	>99	(66)	97:3 (	4) (	30)	
	[Rh(CO)2Cl]2	90°	24	95	(88)	>99 (	(7)	—)	
	[Rh(CO) ₂ Cl] ₂	100°	24	>99	(46)	>99 (	53) (	1)	
	Rh(acac)(CO) ₂	90°	24	70	(67)	98:2 (	3) (	—)	
C ₁₇ Ph	HMn(CO)5, CO (1 atm	ı), hexane	, 55°, 5 h			10 Ph (27)	Ph、 ) +	Ph (53)	716
/ \					cis:trans = 87	1:13	cis	etrans = 87:13	

^a Turnover = Mol substrate x conversion / mol catalyst

 b  C₆₀ = fullerene

 $^{\rm c}$  The barrel-like structure is a  $\beta$ -cyclodextrin

 d  scCO₂ = supercritical carbon dioxide.

^e The barrel-like structure is a cyclodextrin.

Reactant	Conditions	$\mathbf{D}_{\mathbf{r}} = d\mathbf{V}_{\mathbf{r}} + d\mathbf{V}$	
	Conditions	$\frac{1}{1000000} \frac{1}{10000000000000000000000000000000000$	Reis
	[Rh(COD)(OAc)] ₂ , DPPE, L/Rh = 4, PhMe, CO/H ₂ (1/2, 12 bar), 120°	Saturated C ₅ aldehydes I ( $-$ ) + unsaturated C ₅ aldehydes II ( $-$ ) I:II > 90:10; n:iso = 99:1	253
	$Rh_2O_3$ , phosphine ligand, $C_6H_6$ , 3 h, $CO/H_2$ (1/1, 200 atm)	CHO I + CHO II +	252
		OHC CHO III + OHC CHO IV +	
		OHC CHO V + OHC CHO VI	
	Phosphine ligand Temp.	$\mathbf{I} + \mathbf{II}  \mathbf{II} = \mathbf{II} \qquad \mathbf{III} + \mathbf{IV} + \mathbf{V} + \mathbf{VI} \qquad \mathbf{III} = \mathbf{IV} : \mathbf{V} : \mathbf{VI}$	
	$PMe_2Pn = 130^{\circ}$ $PMe_2(C, H, Me_2) = 120^{\circ}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$PMe_2(C_6H_4Me_2)$ 150 $PMe_2(C_6H_4Me_3)$ 130°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$PMe_{2}(C_{c}H_{c}Me_{-}4) = 130^{\circ}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$PMe_2(C_6H_4Mc^{-4})$ 130°	(46) 14:86 $(36)$ 1:24:62:13 (46) 10:00 $(28)$ 2:25:60:14	
	PMa.(CU.Ph) 120°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\mathbf{PM}_{2}(\mathbf{C},\mathbf{H},\mathbf{OM}_{2},4) = 120^{\circ}$	(50) 8:92 (14) 0:14:68:8	
	DbB(Et)Mo 120°	$\begin{array}{c} (43) & 6:89 \\ (18) & 2:18:49:31 \\ (22) & 16:82 \\ (10) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (20) & 1.06 \\ (2$	
	DEt Db 1209	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	PEI2PII 130°	(45) 6:94 $(30)$ 2:23:59:16	
	Ei2PPEl2 130°	(54) 8:91 (22) 2:55:46: 2	
	Bu ₂ PPBu ₂ 130 ⁻	(64) 5:93 (14) 2:51:43:5	
		$(44)  18:82  (19) \qquad \qquad 1:63:37: 0$	
	HPBu ₂ 130°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	HPPh ₂ 130*	(17) 23:76 (46) $0:82:17:1$	
	Rh/mesitylene, DPPE, L/Rh = 1, 80°, CO/D ₂ (1/1, 120 atm)	$D \longrightarrow D  (-)$	227
	Rh/mesitylene, DPPE, L/Rh = 1, 80°, CO/H ₂ (1/1, 120 atm), 4 h	$I = \frac{1}{1} \frac{(E/Z = 75/25)}{(E/Z = 75/25)}$	254
		CHO III (tr) $I + II (76), I:II=96:4$	
	Kn(acac)(CO) ₂ , L, <i>L</i> /Kh = 12, CO/H ₂ (1/1, 500 psig), THF, 95° EtMe ₂ C, CMe ₂ Et	$\begin{array}{c} \text{OHC} & \mathbf{II}(3) + \\ \text{OHC} & \mathbf{III}(5) + \\ \text{OHC} & \mathbf{IV}(7) + \end{array}$	717
		OHC CHO V(9) +	
	$EtMe_2C \qquad O \qquad O \qquad CMe_2Et \\ 0 \qquad P \qquad 0 \\ 0 \qquad O \qquad$	branched dialdehyde (1)	
	$Rb_4(CO)_{12}$ , $CO/H_2$ (1/1, 2MPa).	I + II + V	718
	L/Rh = 10, toluene, 100°, 3 h	Ligand I II+V	
	,,,	PPh ₃ 100 —	
		$Ph_2P(CH_2)_2$ 94 6	
		$Ph_2P(CH_2)_3$ 89 11	
		$Ph_2P(CH_2)_4$ 76 24	
		$Ph_2P(CH_2)_5$ 84 16	
		T-BDCP 74 26	
		T-BDCPn 68 32	
		CHDIOP 68 32	
		DIOP 65 35	
		BISBI 87 13	
	Rb(acac)(CO), Et-P		710
	$CO/H_{2}$ (1/1 600 rei) 80°	$\sim OH I(Z,E) + OH I$	/19
	- 3/112 (1/1, 000 pai), 00	Conversion = 90 %, <b>I</b> + <b>II</b> (87)	

TABLE II. HYDROFORMYLATION OF DIENES AND POLYENES

Rca	ctant		Conditions				Product(s) and Yield(s) (%)	Refs
	[Rh(COD)( C ₆ H ₆ , CO	OAc)] ₂ , E /H ₂ (1/1, 1	DPPE, L/Rh = 5, 12 bar), 120°		онс	$\downarrow$	I() + other products $II()I:II = 40:60$	253
	Rh/mesityle CO/H ₂ (1/	ene, DPPI 1, 120 atr	E, L/Rh = 1, 80° n), 8 h	,	OHC	x= 38/62	и н н ссно I н ц (65), I:П = 90:10	254
//m	[Rh(COD)( C ₆ H ₆ , CO/	OAc)] ₂ , E H ₂ (1/2, 1	DPPE, L/Rh = 5, 12 bar), 120°		онс 🦯	$\sim$	I(-)+OHC + OHC + III = 10:60	253
	Rh/mesityle CO/H ₂ (1/	ene, DPPH 1, 120 atr	E, L/Rh = 1, 80° n), 3 h	,	E/Z = 1	) // // / 18/82	I + CHO II + other aidehydes (III) I + II + III (68), I:II:III = 90:6:4	254
	Rh/mesityle CO/D2 (1/	ene, DPPI 1, 120 atr	E, L/Rh = 1, 80° n)	,	D		0 ()	254
	NaY zeolite clusters, C	es entrapp O/H ₂	ed rhodium cart	oonyl	Dialdet	nydes (60)	+ monoaldehydes (40)	585
C ₆					онс	$\sim$	и + <u>Сно</u> и +	697
					онс	~~	CHO CHO V + CHO CHO	VI
	Cataluct	¥./CO	Pressure (atm	Temp	1 + 11	m + r	V V I VI	
	Rh(acac)(P(OPh)_)-/P(OPh)_	1:1	10	30°	(70)	(16)		
	$Rh(acac)(P(OPh)_3)_2/P(OPh)_3$	1:1	10	40°	(38)	(32)	(30)	
	$Rh(acac)(P(OPh)_3)_2/P(OPh)_3$	1:1	10	50°	(3)	(25)	(70)	
	Rh(acac)(P(OPh) ₃ ) ₂ /P(OPh) ₃	1:1	6	50°	(5)	(54)	(41)	
	Rh(acac)(P(OPh)3)2/P(OPh)3	3:7	10	50°	(15)	(0)	(59)	
	Rh(acac)(P(OPh)3)2/P(OPh)3	1:1	10	60°	(0)	(17)	(83)	
	Rh(acac)(P(OPh) ₃ ) ₂ /P(OPh) ₃	1:1	10	80°	(0)	(0)	(100)	
	Rh(acac)(CO)(PPh ₃ )/PPh ₃	1:1	10	50°	(25)	(0)	(75)	
	Rh(acac)(CO)(PPh ₃ )/PPh ₃	1:1	6	50°	(80)	(0)	(20)	
	Rh(acac)(CO)(PPh ₃ )/PPh ₃	1:1	10	60°	(0)	(0)	(100)	
	Rh(acac)(C	O)2, Cp22	Zr(CH ₂ PPh ₂ ) ₂ , F	hMe,				608
	H ₂ /CO (1/	1, 10 atm	), 80°, 2 h					
	Zr/Rh	Time (h)			<u>I + II</u>	<u>I:II</u>		
	1.1	2			(26)	2		
	1.8	5			(30)	1.6		
	3.9	4			(10)	1.5		

#### TABLE II. HYDROFORMYLATION OF DIENES AND POLYENES (Continued)

Rh(acac)(CO)₂, Cp₂ZrH(CH₂PPh₂), PhMe, H₂/CO (1/1, 10 atm), 80°, 6 h

Rh/substrate (270), CO/H₂ (1/1, 70 atm), **I** (---) PhMe, 50°, 48 h

608

260

260

720

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
$\bigcirc$	Rh/substrate (270), CO/H ₂ (1/1, 70 atm), PhMe, 50°, 48 h	СНО I + СНО II I + II (—) I:II = 90:10	720
	Rh(acac)[P(OPh) ₃ ] ₂ , P(OPh) ₃ , 80°, 3 h, CO/H ₂ (10 atm)	СНО I (42) + СНО II (31)	260
7	Rh(acac)(CO)(PPh) ₃ , PPh ₃ , 80°, 3 h, CO/H ₂ (10 atm)	I (30) + Π (43)	260
	Rh ₂ O ₃ , THF, CO/H ₂ (1/1, 210 bar), 190°, 2.5 h	CHO I (71)	721
	Rh ₂ O ₃ /P(Bu- <i>n</i> ) ₃ (1/40), THF, CO/H ₂ (1/1, 210 bar), 130°, 16 h	I (35) + $CHO$ (tr) + $CHO$ (4) + $CHO$ (4) +	721
		CHO (3) + OHC HO ²⁴⁴ (33)	
	Co ₂ (CO) ₈ , THF, CO/H ₂ (1/1, 210 bar), 150°, 7.5 h	I (69)	721
A	CO/H ₂ (1/1, 100 atm), PhMe	Сно + + онс-ско	625
	Catalyst precursor         Temp.         Time (h) $Pt(C_2H_4)(DPPB)/MeSO_3H$ 100°         4 $Pt(C_2H_4)(DPPB)/MeSO_3H$ 100°         19 $Pt(C_2H_4)(DPPB)/MeSO_3H$ 70°         8 $Pt(C_2H_4)(DPPB)/MeSO_3H$ 70°         22 $Pt(dppb)Cl_2/SnCl_2$ 100°         0.5 $HRh(CO)(PPh_3)_3$ 100°         0.5 $HRh(CO)(PPh_3)_3$ 50°         6 $Pt(DPPB)Cl_2/SnCl_2$ 50°         7 $Pt(DPPB)Cl_2/SnCl_2$ 50°         22	I + II $I:II$ $III$ (68) $89:11$ (11)(13) $26:74$ (86)(20) $96:4$ (2)(50) $86:14$ (10)(4) $95:5$ (79)(4) $95:5$ (95)(22) $99:1$ (4)(39) $100:0$ (6)(22) $100:0$ (2)(8) $96:4$ (74)	
	RhCl ₃ ·3H ₂ O, hv, CO/H ₂ (1/1, 80 bar), MeOH, 25°, 18 h	I + II + III (), (I + II):III = 10:90	682
	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , CO/H ₂ (1/2), 12 h, rt	ОНС I + СНО II I + II (47), I:II = 12:1	369
	Co ₂ (CO) ₈ , CO/H ₂ (1/1, 210 bar), THF, 160°, 14 h	CHO I (66) + CHO II (3) +	722
	Rh ₂ O ₃ , CO/H ₂ (1/1, 210 bar), THF, 160°, 4 h	I (59) + II (7) + III (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) +	722
$\bigcirc \frown \frown$	[Pt(C ₂ H ₄ )(DPPB)]/CH ₃ SO ₃ H (1/1), PhMe, CO/H ₂ (1/1, 100 atm), 100°, 22 h	СНО I (—) + I:II = 96.5:3.5	259

Reactant	Conditions		Product(s) and Yield(s) (%)						Refs.
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) per(β-cyclodextrinMe ₂ - <i>o</i> -2,6), P/ CO/H ₂ (1/1, 50 atm), 80°, 1.5 h	) ₃ , H ₂ O, /Rh = 5,	I +	<b>Ц</b> (100), <b>І:П</b>	=3.3				610
	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na- <i>m</i> ) ₃ , H ₂ O, P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 1.5 h			<b>I</b> + <b>Π</b> (40), <b>I</b> : <b>Π</b> =10					610
	Rh-PEVV, CO/H ₂ (1/1, 41.4 atm), 100°, 2 h	, H ₂ O,		$\sum$	CHO I +	$\bigcirc$	сно и	I I+П (24) I:П = 5.65	242
	Rh(acac)[P(OPh) ₃ ] ₂ , P(OPh) ₃ , 40° CO/H ₂ (1 atm), 6 h	,	<b>I</b> (10	)0)	CH	0			260
			оно	- MG	I + /		П +		697
			O		~ ш	(  + /	СНО	✓ <b>Ⅳ</b> +	
			OI	$HC \longrightarrow_{6}$	_сно <b>v</b>	′ + _	(HO CHO )	VI	
	Catalyst	Temn	Pressure (at	m) Time (	Ъ) <b>Г⊥</b> II	HI + P	V V±VI		
	Rh(acac)(P(OPh) ₂ ) ₂ /P(OPh) ₂	50°	6	25	(0)	(37)	(63)		
	Rh(acac)(CO)(PPh ₃ )/PPh ₃	50°	6	2	(28)	(7)	(65)		
	$Rb(acac)(P(OPh)_2)_2/P(OPh)_2$	50°	10	3	(0)	(7)	(73)		
	$R_{h(acac)}(CO)(PPh_{a})/PPh_{a}$	50°	10	3	(0)	(27)	(100)		
	Rh(acac)(P(OPh)))/P(OPh))	60°	6	2	(0)	(48)	(100)		
	Rh(acac)(CO)(PPh_)/PPh_	60°	6	5	(0)	(40)	(94)		
	$P(\alpha c \alpha c)(P(\Omega Ph)) - P(\Omega Ph))$	60°	10	2	(0)	(52)	(47)		
	Rh(acac)(CO)(PPh ₃ )/PPh ₃	60°	10	3	(0)	(0)	(47)		
	Rh(acac)(CO) ₂ , Cp ₂ ZrH(CH ₂ PPh ₂ H ₂ /CO (1/1, 10 atm), 80°, 6 h	), PhMe,	I+]	II (59), I:II =	: 1.3				608
$\downarrow$	Rh(COD)BPh4, CO/H2 (1/2, 300 p CHCl ₃ , 65°, 23 h	osi),	OH	c		сно (	90)		428
	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 70 atm), PhMe, 20°, 48 h			Сно	0 I ()				720
	HRh(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 70 PhMe 20° 48 h	atm),	· I (-	—)					720
	Rh/1,5-COD, CO/H ₂ (1/1, 70 atm) PhMe, 20°, 48 h	),	I (-	—)					720
	CO/H ₂ (10 atm), 80°, 3 h		I +	$\bigcirc$	сно п	[+ (	ш		260
	Catalyst Rh(acac)[P(OPh) ₃ ] ₂ /P(OPh) ₃ Rh(acac)[P(OPh) ₃ ] ₂ /P(OPh) ₃ Rh(acac)(CO)(PPh ₃ )/PPh ₃ Rh(acac)(CO)(PPh ₃ )/PPh ₃	CO/H ₂ 1/1 3/2 1/1 3/2		<u>1</u> () () () ()	II           0)         (67)           25)         (50)           16)         (72)           33)         (63)	III           (33)           (25)           (12)           (1)			
	Rh/COD-1,3, CO/H ₂ (1/1, 70 atm) PhMe, 20°, 48 h	<b>'</b> ,		СНО	) (—)				720
_	Rh(acac)(CO)(PPh ₃ ), PPh ₃ , 80°, 5 CO/H ₂ (1/1, 10 atm)	h,		Сно	) (20) + St	tarting m	aterial (80)		260
c.	[Rh(COD)Cl] ₂ , CO/H ₂ (600 bar), 8	80°	Ļ		сно _(—)				699, 723

C9



Reactant	Conditions	Product(s) and Yield(s) (%)	Re
	Rh ₂ (µ-SBu- <i>t</i> ) ₂ (CO) ₂ (P(OMe) ₁ ) ₂ , 16 h, CICH ₂ CH ₂ Cl, CO/H ₂ (1/1, 0.5 MPa), 85°	I () + II () + III () I:II = 70:30	703
	Rh ₂ (µ-SBu-t) ₂ (CO) ₂ (P(OPh) ₃ ) ₂ , 16 h, ClCH ₂ CH ₂ CI, CO/H ₂ (1/1, 0.5 MPa), 85°	I () + III ()	703
	Rh ₂ (µ-SBu-t) ₂ (CO) ₂ (PPh ₃ ) ₂ , 16 h, ClCH ₂ CH ₂ Cl, CO/H ₂ (1/1, 0.5 MPa), 85°	I ()	703
	Rh ₂ (µ-SPh) ₂ (CO) ₂ (P(OPh) ₃ ) ₂ , 16 h, ClCH ₂ CH ₂ Cl, CO/H ₂ (1/1, 0.5 MPa), 85°	1()	703
	$[Rh(\mu-SBu-r)(CO){P(OPh)_3}_2, P/Rh = 2, CO/H_2 (1/1, 12-13 bar), toluene, 78°, 18 h$	$ \begin{array}{c} R \\ R \\ R \\ R \\ R \\ CHO \end{array} +  \begin{array}{c} R \\ R \\ CHO \end{array} =  \begin{array}{c} R \\ R \\ CHO \end{array} $ $II (11)$	707
	$[Rh(\mu-SBu-t)(CO){P(OPh)_3}]_2$ , P/Rh = 6, CO/H ₂ (1/1, 5 bar), tolucne, 78°, 18 h	() de = 22%	707
	Rh(SOX)(COD), DPPE, L/Rh = 1, PhMe, CO/H ₂ (1/1, 0.1 MPa), 60°	Monoaldehyde (—)	511
	Rh Catalyst, CO/H ₂ (500 psi), 90°	OHC OHC II I I I I () I + II - II I I I - II () I:II = 46:54	265
		OHC () + OHC ()	265
	. <b>"</b>	OHC () + OHC ()	265
	σ	No reaction	265
Ph	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 200 atm), C ₆ H ₆ , 60°, 6 h	Ph $Ph$ $(68)$	381
	[Rh(NBD)Cl] ₂ , PPh ₃ , 100°, 3 h, CO/H ₂ (1/1, 80 bar)	OHC I + I = 75:25, (-) OHC I + II + III	727
	Rh-catalyst, H2/CO (1/1), THF, 40°	CHO CHO CHO	728

Reactant	Conc	Conditions			Product(s) and Yield(s) (%)			
Polymer	Catalyst	H2-CO (psi)	Time (h)	Conv. (%)	Hydroformylation (%)			
Duradene 707	HRh(CO)(PPh ₃ ) ₃	200	19	27	28			
	[Rh(COD)Cl]2	200	19	6	5			
	[Rh(COD)2]BF4	200	22	16	15			
	[Rh(COD)dppb]BF4	200	19	6	6			
	[Rh(COD)]BPh ₄	200	18	3	3			
Duradene 709	HRh(CO)(PPh ₃ ) ₃	800	72	80	81			
	[Rh(COD)Cl] ₂	800	44	100	87			
	[Rh(COD)2]BF4	800	44	100	98			
	[Rh(COD)dppb]BF4	800	46	36	38			

TABLE II. HYDROFORMYLATION OF DIENES AND POLYENES (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
С3	RhH(CO)(PPh ₃ ) ₃ , (Ph ₂ PC ₅ H ₄ ) ₂ Fe, P/Rh = 20, C ₆ H ₆ , CO/H ₂ (1/1, 800 psi), $60^{\circ}$ , 22 h	OHC OH I + CHO II + <i>n</i> -PrOH III I + II + III (), I:II:III = $87.4:11.1:1.5$	729
	RhH(CO)(PPh ₃ ) ₃ , PPh ₃ , P/Rh = 20, $C_6H_6$ , CO/H ₂ (1/1, 100 psi), 60°, 5.7 h	I + II (), I:II = 67.1:32.9	729
	[Rh(PPh ₃ ) ₃ ] ⁺ /montmorillonite, EtOH, 70°, CO/H ₂ (1/1, 60 atm)	I (96) + II (4)	730
	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , PhCOMe, CO/H ₂ (1/1, 55 bar), 60°	$\int_{O}$ OH I (96) + $\int_{CHO}$ II (4)	731
	Rh(acac)(CO) ₂ , reDPMNr, L/Rh = 4, toluene, CO/H ₂ (1/1, 9 atm), 55°, 6 h	I (89) + $II$ (11) + $CHO$ $III$ (tr)	732
	Co ₂ (CO) ₈ , TMEDA, PhCH ₂ CN, 84°, CO/H ₂ (1/2, 69 bar), 18 h	(90) + 11 (5) + 111 (5)	731
	K[Ru(EDTA-H)Cl]·2H ₂ O, H ₂ O, 90-130°, CO/H ₂ (1/1, 50 atm)	OHC OH (35) + (25) + (25) + HO OH (1)	733, 734
	Rh(acac)(CO) ₂ , P(OC ₆ H ₃ [Bu-t] ₂ -2,4) ₃ , BDPB, CO/H ₂ (100 atm), 110°, 4 h	$\begin{array}{c} \text{CHO} \\ \text{OH} \end{array} \mathbf{I} + \begin{array}{c} \text{II} \\ \text{OH} \end{array} \mathbf{I} + \mathbf{II} (91) \\ \text{III} = 43:57 \end{array}$	735
R OH	RhCl(CO)(PPh ₃ ) ₂ , C ₆ H ₆ , Et ₃ N, 80°, CO/H ₂ (1/1, 80 atm)	$\begin{array}{c} R \\ OHC \\ OHC \\ OH \end{array} (80-90)  R = Me; t-Bu; s-Bu \\ \end{array}$	736

### TABLE III. HYDROFORMYLATION OF UNSATURATED ALCOHOLS

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
ОН	Rh(acac)(CO) ₂ , P[OC ₆ H ₃ (Bu- <i>t</i> ) ₂ -2,4] ₃ , 90°, N(CH ₂ CH ₂ OH) ₃ , H ₂ /CO (3/1, 90 kg/cm ² ), 2.5 h	U (78)	737
	Rh(acac)(CO) ₂ , P[OC ₆ H ₃ (Bu- <i>t</i> ) ₂ -2,4] ₃ , H ₂ /CO (90 atm), tolucne, N(CH ₂ CH ₂ OH) ₃ 90°, 2 h	I (65)	738
OH	Rh(acac)(CO) ₂ , ligand, L/Rh = 3, PhMe, CO/H ₂ (1/1, 10 atm)	Ho $40^{-1}$ I $(-)$ + $4^{-1}$ II $(-)$ II $(-)$	739
	Ligand         Temp.           DPPB         60°           P(C ₆ H ₄ OMc- <i>p</i> ) ₃ 60°	100:0	
	PPh ₃ 60° P(C ₆ H ₄ Me ₇ p) ₃ 60° DDDE 90°	100:0 100:0 87.12	
	$P(C_6H_4Me-m)_3$ 60° $P(OC_6H_3Me_2-m,m)_3$ 60°	87:15 37:63 54:46	
C.	$P(OC_{6}H_{4}Me-\sigma)_{3} \qquad 60^{\circ}$ $P(OPh)_{3} \qquad 60^{\circ}$	100:0 100:0	
он	Rh(acac)(CO) ₂ , ligand, L/Rh = 3, CO/H ₂ (1/1, 10 atm), PhMe, 60° <u>Ligand</u> DPPB $P(OC_6H_4Mc-m)_3$	OHC. OH + OHC OH $I(-)$ OH + OHC OH $I(-)$ OH I(-) OH $I(-)$ OH I(-)	739
C ₈ OH	Rh(acac)(CO) ₂ , ligand, L/Rh=3, PhMe, CO/H ₂ (1/1, 10 atm), 60 °	HO $C_5H_{11}$ I () + $C_5H_{11}$ II	739
	$\frac{\text{Ligand}}{\text{DPPB}}$ P(C ₆ H ₄ OMe-4) ₃ PPh ₃ P(OC ₆ H ₄ OMe-3) ₃ P(OC ₆ H ₄ OMe-3) ₃ P(OC ₆ H ₃ Me ₂ -3,5) ₃ P(OPh) ₃	<u>I:II</u> 100:0 100:0 100:0 100:0 100:0 81:19	
C ₉ R ² OH R ¹	[Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 60°, 20 h	$R^{2} \xrightarrow{O} r^{OH} = I = \frac{R^{1}}{H} = \frac{R^{2}}{H} = \frac{I}{H} = \frac{I}{(70)}$ $R^{1} = I = H = Me = (95)$ $S-OMe = H = (91)$ $S-Me = Me = (80)$ $4-OMe = Me = (80)$ $H = Ph = (83)$ $4-OMe = Ph = (100)$	313
OH	[Rh(COD)Cl] ₂ , CO/H ₂ (1/1, 600 bar), 100°, C ₆ H ₆ , 5 h	OHC OH (90)	<b>699</b> , 740
C ₁₀ CH ₂ OH	1. CoCO ₃ , CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 170°, 24 h 2. H ₂ (100 atm), 150°, 3 h 3. HCl	(23) + (46) + (11) OCH ₃ OH OCH ₃ OH	741

TABLE III. HYDROFORMYLATION OF UNSATURATED ALCOHOLS (Continued)

0.0			101
OR	Rh(acac)(CO) ₂ , CO/H ₂ (1/1, 80 atm). PhMe, 80°, 48 h		742
~		R         I + II         I : II           H         (96)         52:48           Ac         (84)         78:22           Piv         (89)         82:18	
	1. [Rh(OAc) ₂ ] ₂ , PPh ₃ , EtOAc, 100°, 6 h, CO/H ₂ (1/1, 350 psi) 2 PCC CH ₂ CL 3 b	TBDMS (91) 75:25 TBDPS (96) 69:31 (81)	314
$\square$	21,00,01,20,201	$\downarrow$	
ОН	(CH ₂ Cl) ₂ , CO/H ₂ (1/1, 0.5 MPa), 85°, 16 h	ОН	703
	$\label{eq:catalyst} $$ \frac{Catalyst}{Rh_2(\mu-SBu-t)_2(CO)_2(P(OMe)_3)_2}$$ Rh_2(\mu-SBu-t)_2(CO)_2(P(OPh)_3)_2$$ Rh_2(\mu-SBu-t)_2(CO)_2(PPh_3)_2$$ Rh_2(\mu-SPh)_2(CO)_2(P(OPh)_3)_2$$ }$	Conv. (%)         Yield           48.5         ()           67.5         ()           28         ()           9         ()	
Ph Ph	Rh(acac)(CO) ₂ , phosphine ligand, PhMe, CO/H ₂ (1/1, 20 bar), 90°, 6-24 h	ОН ОН I + 0 (83-95)	743
СН•ОН	Phosphine ligand PPh ₃ P(OPh) ₃ P( <i>N</i> -pyrrolyl) ₃	1:11 50:50 45:50 33:66	
	$[Rh(\mu-SBu-t)(CO){P(OPh)_3}]_2, P/Rh = 2,$ CO/H ₂ (1/1, 12-13 bar), toluene, 78°,18 h	(100)	707
R S OH	$[Rh(\mu-SBu-r)(CO){P(OPh)_3}]_2$ , P/Rh = 2, CO/H ₂ (1/1, 13 bar), tolucne, 78°, 16 h	de 60%	707
CH ₂ OH	$[Rh(\mu-SBu-t)(CO) \{P(OPh)_3\}]_2$ , P/Rh = 2, CO/H ₂ (1/1, 100 bar), toluene, 85°, 16 h	H $OH$ (82) + myrtanal (9)	707
HO HIS	Rh(CO) ₂ (acac), <b>BIPHEPHOS</b> , <b>THF</b> , CO/H ₂ (1/1, 70 psi), 60°	HO. $CHO$ n:iso > 40:1, (53)	135
ОН	$[Rh(OAc)_2]_2$ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 60°, 20 h	I + I + II (85) $I = 4:6$	313
r-Bu OR	Rh(acac)(CO) ₂ , CO/H ₂ (1/1, 80 atm), PhMe, 40°, 45 h	$\frac{R}{H} = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{II}} = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{II}} = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{II}} = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{II}} = \frac{\mathbf{II} + \mathbf{II}}{\mathbf{II}} = \frac{\mathbf{II}}{\mathbf{II}} = $	742

TABLE III. HYDROFORMYLATION OF UNSATURATED ALCOHOLS (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
t-Bu OR	Rh(acac)(CO) ₂ , CO/H ₂ (1/1, 80 atm), PhMe, 40°, 45 h	$\frac{R}{H} \xrightarrow{I + II} (84) = 36:64$	742
ОН	{Rh(COD)Cl] ₂ or Rh(acac)(CO) ₂ , CO/H ₂ (30/20 bar), dioxane, 110°	$ \begin{array}{c} HV & (59) \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 1 \\ 0 \\ \hline \\ 1 \\ HO \\ 0 \\ \hline \\ 0 \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	744
C ₁₅	Rh(acac)(CO) ₂ , CO/H ₂ (1/1, 60 atm), PhMe, 80°, 48 h	$\begin{array}{c} OR \\ C_{8}H_{17} \\ \hline \\ \hline \\ R \\ H \\ \hline \\ H \\ \hline \\ H \\ \hline \\ (99) \\ (99) \\ 53:47 \\ \hline \\ PhCO \\ (99) \\ 54:46 \\ \hline \\ Piv \\ (90) \\ 61:39 \\ \hline \\ TBDPS \\ (99) \\ 61:39 \end{array}$	742
R	Rh(acac)(CO) ₂ , CO/H ₂ (1/1), toluene	$R + (+)_{11} + I_{CHO}$ $\frac{R}{OTs} = \frac{P (atm)}{80} - \frac{Temp.}{40^{\circ}} \frac{I}{(84)}$ $OH = 80 - 60^{\circ} - (92)$ $OTBS = 80 - 60^{\circ} - (90)$	745
Ph OH	[Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 4, CO/H ₂ $60^{\circ}$ , 29 h	Ph Ph O O H (84)	313
BnO	<ol> <li>[Rh(OAc)₂]₂, PPh₃, EtOAc, 100°, 6 h, CO/H₂ (1/1, 350 psi)</li> <li>PCC, CH₂Cl₂, 3 h</li> </ol>	BnO (85)	314
BnO OH	<ol> <li>[Rh(OAc)₂]₂, PPh₃, EtOAc, 100°, 6 h, CO/H₂ (1/1, 350 psi)</li> <li>PCC, CH₂Cl₂, 3 h</li> </ol>	$BnO \xrightarrow{H} (86) \xrightarrow{O} O$	314
C16 TBDMSO	1. [Rh(OAc) ₂ ] ₂ , PPh ₃ , EtOAc, 100°, 6 h, CO/H ₂ (1/1, 350 psi) 2. PCC, CH ₂ Cl ₂ , 3 h	TBDMSO (80)	314
C ₁₇ BnO	<ol> <li>[Rh(OAc)₂]₂, PPh₃, EtOAc, 100°, 6 h, CO/H₂ (1/1, 350 psi)</li> <li>PCC, CH₂Cl₂, 3 h</li> </ol>		314
ю п-С ₈ H ₁₇ (СН ₂ )8OH	HRh(CO)[P(PhSO ₃ Na- <i>m</i> ) ₃ ] ₃ on CPG-240, CO/H ₂ (1/1, 5.1 MPa), cyclohexane, 75°, 5.5 h	$(-) \qquad \qquad$	746. 747

#### TABLE III. HYDROFORMYLATION OF UNSATURATED ALCOHOLS (Continued)

### TABLE III. HYDROFORMYLATION OF UNSATURATED ALCOHOLS (Continued)





#### TABLE IV. HYDROFORMYLATION OF UNSATURATED ALDEHYDES AND KETONES

C₆

 $C_7$ 

 $C_8$ 

C9

	A. Esters of Unsatu	ated Alconois	
Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
C4 OAc	CO/H ₂ (1/1, 100 atm), THF, 70°, 16 h i-PrO ₂ C $O^{-P-O}$ ( $\langle \rangle_3$ Rh ⁺ (COD) BF ₄ ⁻ $O^{-P-O}$ $O^{-P-O}$ $O^{-P-O}$ $O^{-P-O}$ $O^{-P-O}$ $O^{-P-O}$	$\begin{array}{c} CHO  I(-) + OHC \\ OAc \end{array}  II(-)  I:II > 99:1 \\ OAc \end{array}$	248
	Rh(COD)BPh4, CO/H2 (1/2, 300 psi), CHCl ₃ , 55°, 22 h	<b>I</b> + <b>Π</b> (), <b>I</b> : <b>Π</b> = 94.5:5.5	251
	Rh(acac)[P(OPh)_3]_2, P(OPh)_3, L/Rh = 2.6, CO/H ₂ (1/1, 1atm), 40°, 6 h	I (63) + II ()	751
	RhH[P(OPh) ₃ ] ₄ , CO/H ₂ (1/1, 1atm), 40°, 4.5 h	I (67) + II ()	751
	Rh(acac)(CO) ₂ , P(OPh) ₃ , L/Rh = 2.6, CO/H ₂ (1/1, 1atm), 40°, 3.5 h	I (81) + II (—)	751
	Rh(anthranilate)(CO) ₂ , P(OPh) ₃ , P/Rh = $4.1$ , CO/H ₂ (1/1, 1 atm), PhMe, $40^{\circ}$	I (38)	570
	[Rh(COD)(OAc)] ₂ , CO/H ₂	<b>I</b> + <b>II</b> (57-80), <b>I</b> : <b>II</b> > 99:1	316
	5% Rh/C, DPPP, CO (8.5 atm), HCO ₂ H, DME, 100-105°, 18-24 h	<b>I</b> + <b>II</b> (30), <b>I</b> : <b>II</b> = 82:18	368
	(CO) ₄ W(µ-PPh ₂ ) ₂ RhH(CO)(PPh ₃ ), C ₆ H ₆ , CO/H ₂ (1/1, 380 psi), 50°, 22 h	I + II (72), I:II = 75:25	372

# TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS

OAc

rt

216 0

	CO/H ₂ (40 atn	n), CH ₂ Cl ₂ , 8	30°, 12 h	онс	~_OAc	I + _		267
	Catalyst		Phosphine	Catalyst:Phosphin	c I + II	I:П		
	Rh(COD)(1	⁶ -PhBPh ₃ )	_		(71)	36:64		
	Rh(COD)(ŋ	⁶ -PhBPh3)	DPPB	1:1	(76)	40:60		
	Rh(COD)(n	⁶ -PhBPh3)	DPPB	1:2	(56)	95:5		
•	Rh(COD)(η	⁶ -PhBPh ₃ )	DPPB	1:4	(53)	91:9		
	(Rh(COD)(F	Ph ₃ ) ₂ ]BPh ₄		_	(68)	20:80		
	[Rh(COD)(F	Ph ₃ ) ₂ ]BPh ₄	DPPB	1:2	(55)	94:6		
	Rh(COD)(η	⁶ -PhBPh ₃ )	PPh ₃	1:1	(67)	56:44		
	Rh(COD)(1)	⁶ -PhBPh ₃ )	PPh ₃	1:4	(74)	42:58		
	Rh(COD)(η ⁶	⁶ -PhBPh3)	P(C ₆ H ₄ NMe ₂ -4)	3 1:4	(63)	37:63		
	CO/H ₂ (1/1, 55	5 bar), 90°						731
	Catalyst-Pro	moter		I + II	I:II			
	Co2(CO)8-PI	h3GeH		()	48:36			
	Co ₂ (CO)8-Pl	h ₂ S		()	57:11			
	Co2(CO)8-2,	2'-dipyridyl		(—)	66:14			
	Co ₂ (CO) ₈ -su	ecinonitrile		(—)	61:19			
	Co ₂ (CO) ₈ , CO/	/H ₂ (200 bar)	), 125°	I (64) + I	l(—) + /		<b>III</b> () <b>I</b> : <b>II</b> : <b>III</b> = 70:15:15	731
	(CO) ₄ W(µ-PPt	12)2RhH(CO)	)(PPh3), C6H6,	<b>I + II</b> (70),	I:II = 89:11			372
	CO/H ₂ (1/1, 3	80 psi), 50°,	22 h					
	[Rh(COD)Cl] ₂	in mormorile	onite, CH ₂ Cl ₂ ,					752
	H ₂ /CO (1/1, 6	00 psi)						
	Temp. Tim	ne, (h) Co	nv. (%)	I + II	[: <b>11</b>			
	145° 36	100	)	(56)	100:0			
	130° 36	100	)	(82)	86:14			
	100° 48	100	)	(92)	\$7:53			
	65° 60	100	)	(92)	30:70			
	rt 216	0		(—) -	_			

(—) —
### TABLE V, HYDROFORMYLATION OF UNSATURATED ESTERS (Continued)

A. Esters of Unsaturated Alcohols (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	[Rh(COD)Cl] ₂ /DPPB in mormorilonite,		752
	$CH_2Cl_2, H_2/CO$		
	H ₂ /CO (psi) Temp. Time (h) Conv. (%)	I + II I:II	
	1000/100 100° 36 100	(90) 35:65	
	750/250 100° 45 100	(91) 38:62	
	250/750 100° 30 100	(90) 38:62	
	100/1000 130° 24 85	(81) 77:23	
	1000/100 55° 48 100	(93) 25:75	
6 1			
OAc	Rh(COD)( $\eta^6$ -PhBPh ₃ ), DPPB, CH ₂ Cl ₂ ,	(0)	267
	CO/H ₂ (40 atm), 80°, 12 h	0110	
	IRb(COD)Cll ₂ in mormorilonite, 150°.	(97)	752
	H ₂ /CO, CH ₂ Cl ₂ , 20 h	OAc	
		сно	
	Rh(COD)(n ⁶ -PhBPh ₃ ), DPPB, CH ₂ Cl ₂ ,	$OHC \longrightarrow O \longrightarrow Et$ I + $\int O Ft$ II	267
	$CO/H_2$ (40 atm), 80°, 12 h		
-		$\mathbf{U} = \mathbf{U} (67) \mathbf{U} = 01 \cdot 0$	
		(U)	
OAc			
<i>≢</i> ↓	Rh(COD)( $\eta^{\circ}$ -PhBPh ₃ ), DPPB, CH ₂ Cl ₂ ,	$\bigcirc$ $\mathbf{I} + \bigcirc \mathbf{OAc}  \mathbf{II}  \mathbf{I} + \mathbf{II}  (69)$	267
1	CO/H ₂ (40 atm), 80°, 12 h	<b>I:II</b> = 97:3	
		CHO	
	$Rh(COD)(\eta^{6}-PhBPh_{3}), DPPB, CH_{2}Cl_{2},$	OHC $I + I$ $I + II (87)$	267
y OAC	CO/H ₂ (40 atm), 80°, 12 h	OAc I:H = 70:30	
			262
	$[Rh(COD)CI]_2$ in mormorilonite, $CH_2Cl_2$ ,	1 + 11 (66), 1:11 = 39:61	752
	CO/H ₂ , 50°, 30 h		
	Rh(COD)(n ⁶ -PhBPh ₃ ), DPPB, CH ₂ Cl ₂ ,	Aldehydes (0)	267
< OAt	CO/H ₂ (40 atm), 80°, 12 h		
	[Rh(COD)Cl] ₂ in mormorilonite, CH ₂ Cl ₂ ,	<b>I</b> + <b>II</b> (66), <b>I</b> : <b>II</b> = 39:61	752
	CO/H ₂ , 50°, 30 h		
	· · · · · · · · · · · · · · · · · · ·	OAc CHO	
M OAc	$[Rh(COD)Cl]_2$ in mormorilonite, 50°,	I + I + I = OAc	752
	$H_2/CO$ , $CH_2Cl_2$ , 96 h	CHO	
	Rh catalyst, CO/H2 (600 bar), 80°		699
OAc			
		CHO ()	
O I		0 	
	[Rh(COD)Cl] ₂ in mormorilonite, CH ₂ Cl ₂ ,		752
0	60°, H ₂ /CO (1/1, 600 psi), 20 h		
		CHO OHC	
✓ UAC	Rh catalyst, CO/H ₂ (600 bar), 80°	OAc I(-) + $OAc$ II(-)	699, 753
UAC		l OAc	
		I:II = 80:20	
o o		сно о	240
	Rh/C (5%), DPPP, CO (8.5 atm), $HCO_2H$ ,	(83)	368
₩ O Ph	DME, 100-105°, 18-24 h	✓ `O` `Ph	
OAC	[Rh(COD)Cl] ₂ in mormorilonite, CH ₂ Cl ₂ ,	(43)	752
$\sim$	CO/H ₂ , 130°, 120 h	СНО	
) 🔨 .OPh		0 0	
//···	[Rh(COD)Cl]2 in mormorilonite, CH2Cl2,		752
ö	CO/H ₂ , rt, 264 h	Ph O CHO Ph O CHO	
		I + II (61), I:II = 18:82	
$\land$	Rh(acac)(CO) ₂ , P(C ₆ H ₄ SO ₃ Na-m) ₃ , H ₂ O.		
	per( $\beta$ -cyclodextrinMe ₂ -o-2,6), P/Rh = 5,		610
Aco	CO/H ₂ (1/1, 50 atm), 80°, 0.75 h		
		ACO 1+II (100), I:II=11	

Deserted	Contribution (		D.C
Keactant	Conditions	Product(s) and Field(s) (%)	Reis
	$Rh(acac)(CO)_2$ , $P(C_6H_4SO_3Na-m)_3$ , $H_2O$ ,	I + II (70), I:II=8.3	610
11 /	P/Rh = 5, CO/H ₂ (1/1, 50 atm), 80°, 0.75 h	,	
OAc	Rh catalyst, CO/H ₂ (600 bar), 80°	$\begin{array}{c} \text{CHO} & \text{O} \\ & & \text{O} \\ & & \text{OAc} \end{array} $ ()	699, 754
Ph	[Rh(COD)Cl] ₂ in mormorilonite, CH ₂ Cl ₂ , CO/H ₂ , 110°, 20 h	$\begin{array}{c} \text{CHO} \\ \text{Ph} \end{array} \begin{array}{c} \text{OAc} \\ \text{OAc} \end{array} \begin{array}{c} \text{I} + \\ \text{Ph} \end{array} \begin{array}{c} \text{OAc} \\ \text{CHO} \\ \text{CHO} \end{array} \begin{array}{c} \text{I} + \\ \text{II} + \\ \text{II} (89) \\ \text{III} = 64:36 \end{array}$	752
12 1	[Rh(COD)Cl] ₂ in mormorilonite, CH ₂ Cl ₂ , CO/H ₂ , rt, 216 h	$I + II (58), I \cdot II = 17:83$	752
OAc	(CH ₂ Cl) ₂ , CO/H ₂ (1/1, 0.5 MPa), 85°, 16 h	ОАс	703
	Catalyst	Conv. (%) Yield	
	$Rh_2(\mu-SBu-t)_2(CO)_2(P(OMe)_3)_2$	35.5 ()	
	$Rh_2(\mu$ -SBu-t) ₂ (CO) ₂ (P(OPh) ₃ ) ₂	84.5 ()	
	$Rh_2(\mu-SBu-t)_2(CO)_2(PPh_3)_2$	11 ()	
	$Rh_2(\mu$ -SPh) ₂ (CO) ₂ (P(OPh) ₃ ) ₂	15.5 (—)	
, AcO	Rh(COD)( $\eta^6$ -PhBPh ₃ ), DPPB, CH ₂ Cl ₂ . CO/H ₂ (40 atm), 80°, 12 h	OHC (29)	267

## TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued)

## TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) B. Esters of Unsaturated Acids

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
C4 CO2Me	CO/H ₂ (1/1, 100 atm), THF, 70°, 16 h i-PrO ₂ C $O^{-P-O}$ ( $\langle \rangle_3$ Rh ⁺ (COD) BF ₄ ⁻ $O^{-P-O}$ $O^{-P-O}$ $O^{-P-O}$ $O^{-P-O}$	$\begin{array}{c} CHO \\ CO_2Me \end{array} I (-) + OHC \\ CO_2Me \\ I:II > 99:1 \end{array} I (-)$	248
	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 300 psi), CHCl ₃ , 60°, 22 h	<b>I + II</b> (), <b>I</b> : <b>II</b> = 30:70	251
	[Rh(NBD)(2,5-bis(diphenylphosphino- methyl)bicyclo[2.2.1]heptane)ClO ₄ , CO/H ₂ (1/1, 40 atm), C ₆ H ₆ , 40°, 38 h	<b>I</b> + <b>II</b> (—), <b>I</b> : <b>II</b> = 41:59	247
	Rh(anthranilate)(CO) ₂ , P(OPh) ₃ , P/Rh = 7.4, CO/H ₂ (1/1, 1 atm), PhMe, 40°	II (23) + $CO_2Me$ III (15)	570
	Co ₂ (CO) ₈ , PhMe, CO/H ₂ (1/1, 50 kg/cm ² ), 120°, 132 min	<b>I</b> + <b>II</b> (77), <b>I</b> : <b>II</b> = 1:19.4	755
	Co ₂ (CO) ₈ , Ph ₂ P(CH ₂ ) ₂ PPh ₂ , PhMe, CO/H ₂ (1/1, 50 kg/cm ² ), 120°, 35 min	<b>I</b> + Π (84), <b>I</b> : <b>Π</b> = 1:18.3	755

Reactant			Cond	itions		i neids (ei			Produ	ict(s) an	d Yield(s) (9	%)	Refs.
	CO/H ₂ (1/1	, 600 p	si)), CH ₂ (	Cl ₂ , 80°, 11	3 h								756
	Catalyst			Ligand	L/Rh	Conv. (9	6) Y	(ield (%) [	GC (Is	olated)]	I:H		
	Rh(COD	)(η ⁶ -Ph	BPh ₃ )		0	71	5	1 (35)			76:24		
	Rh(COD	)(η ⁶ -Ph	BPh3)	DPPB	2	100	9	3 (68)			97: 3		
	Rh(COD	)(η ⁶ -Ph	BPh3)	P(OPh) ₃	4	96	9	0 (57)			98: 2		
	[Rh(COL	)(DPPI	3)]BF4		0	34	2	5 (18)			79:21		
	[Rh(COL	) (DPPI	B)]BF₄	DPPB	2	100	8	9 (63)			99: 1		
	IRb(COE	DCIL		_	0	16		5 ()			75:25		
	Rh(COF	D)Cll ₂		DPPR	1	33	2	5 (16)			91: 9		
	[Rh(COF	DClb		TIPPR	2	100	9	4 (71)			98: 2		
	[Rh(COF			DPPR	3	100	Q.	4 (70)			99-1		
	Rh(acac)(C	O)2, lig	and, H ₂ /(	CO (1/1, 50	) bar),			,					757
	PhMe/H ₂ ( Ligand	) L/Rh	PhMe/	H ₂ O Terr	np. Ti	ime (h) Co	onv. (%	6) <b>I + II</b>	I:H	ш			
	PNS	2	4	2 80°	4	10	0	(73)	1.8	(27)			
	PNS	2	2	80°	6	10	0	(77)	2.7	(23)			
	PNS	2	2	50°	21	81		(58)	14	(23)			
	TDDMS	4	2	500	8	10	0	(83)	63	(17)			
	PNS	4	2	50°	21	10	° N	(60)	22	(40)			
	PC	4	2	500	21	10	n	(76)	22	(24)			
	ic i	-	2	50	21		0	(70)	24	(24)			
	Rh(acac)(C PhMe/H ₂ C	O) ₂ , TP ) = 2, C	PMS, P/I O/H ₂ (1/	Rh = 4, 50° 1, 50 atm),	, 8 h	I + I	I (83) ·	+ Ш (17),	I:II = 6	3			757
	Rh(acac)(C CO/H ₂ (1/	0) ₂ , PP 1, 50 at	h3, <b>P/Rh</b> m), 50°, 1	= 10, PhM 140 min	е,	I + I	[ (95),	I:II >200					471
	Rh(acac)(C 120 min, F CO/H ₂ (1/	O) ₂ , TP PhMe/H 1, 50 at	PTS, P/R ₂ O = 4/3, m), 50°	Rh = 10,		I + I	[ (97),	I:II = 128					471
	Rh(acac)(C P/Rh = 10 CO/H ₂ (1/	O) ₂ /TPl , PhMe, 1, 50 at	PTS on 6 24% wt m), 60 m	0Å silica g H ₂ O, 50°, in	el,	I+I Ç	I (97), HO	I:II = 177					471
	Rh(COD)B CO/H ₂ (1/	Ph ₄ , DH 1, 600 I	PB, L/R si), 80°,	h = 2, CH ₂ 12 h	Cl ₂ ,		`CO₂I	I+ Et	онс.	$\sim_{\rm c}$	O ₂ Et	I + II (79) I:Ш = 98:2	325
	CO/H ₂ (1/1	), C ₆ H ₆	"17 h		_	I	+ ]	а +	$\sim$	CO ₂ Et	m		758
	Catalyst				Temp.	Pressur	e (atm	<u>) I</u>	<u>n</u>	<u> </u>			
	Rh(acac)	(CO) ₂ /I	'Me ₃		40°	1		(0)	(0)	(7)			
	Rh(acac)	(CO) ₂ /I	'(OPh) ₃		40°	1		(21)	(58)	(20)			
	Rh(acac)	(CO) ₂ /I	(OPh) ₃		60°	1		(1)	(52)	(47)			
	Rh(acac)	(CO) ₂ /I	P(OPh) ₃		80°	1		(0)	(28)	(38)			
	Rh(acac)	(CO) ₂ /I	P(OPh)3		40°	10		(82)	(7)	(3)			
	Rh(acac)	(CO) ₂ /I	P(OPh)3		40°	30		(96)	(1)	(1)			
	Rh(acac)	(CO) ₂ /I	P(OC ₆ H₄	Me-4)3	40°	1		(27)	(46)	(23)			
	Rh(acac)	(CO) ₂ /I	COC ₆ H ₄	Cl-4)3	40°	1		(17)	(37)	(10)			
	Rh(acac)	(CO) ₂ /I	COC ₆ H ₄	Me-2)3	40°	1		(4)	(2)	(4)			
	Rh(acac)	(CO) ₂ /I	P(OPr-i)3		40°	1		(8)	(tr)	(88)			
	Rh(acac)	(CO) ₂ /I	P(OMe) ₃		40°	1		(16)	(tr)	(11)			
	Rh(acac)	(P(OPh	)3)2/P(OF	Ph)3	40°	1		(14)	(75)	(11)			
	Rh(acac)(C	0) ₂ , PP	h3, P/Rh	= 10, PhM	e,	I + I	<b>I</b> (94),	<b>I:П =</b> 137	,				471
		1, 50 at	u), 50 , .										471
	Rh(acac)(C PhMe/H ₂ C	O) ₂ , TP ) = 4/3,	CO/H ₂ (	th = 10, 1/1, 50 atm	ı),	1+1	l (97),	<b>I:H</b> = 121					471
	30 min, 50	F											
	[Rh(CO) ₂ Cl CO/H ₂ (1/1	]₂, 10 L I, 20 ba	igand, El r), 25°, 1	t ₃ N, PhMe, 2 h		_							514, 319
	Ligand					I	I:I	<u>I</u>					
	DPPB					(56)	10	0:0					
	o-TDPP					(57)	10	0:0					
	PPPN					(71)	10	0:0					
	DMTPPN					(70)	10	0:0					

## TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) B. Esters of Unsaturated Acids (Continued)



Reactant	Conditions	Product(s) and Yield(s) (%)	Refs
	Rh(acac)(CO) ₂ /TPPTS on 60Å silica gel,	I + II (97), I:II = 115	471
	P/Rh = 10, PhMe, 37% wt H ₂ O, 50°,		
	CO/H ₂ (1/1, 50 atm), 25 min		
	[RhCl(CO) ₂ ] ₂ , P/Rh = 4, PhEt, 150°,		759
	$CO/H_2$ (1/1, 100 atm)		
	Prince (min)	$\frac{6}{6}$ 286.667.48	
	PPh ₂ 180	27 715:270:15	
	$Ph_{2}P(CH_{2})$ Ph_ 42	$100 \qquad 64.2:2.6:32.0$	
	$Ph_{2}P(CH_{2})_{2}PPh_{2} \qquad 22$	100 72.3 : 2.9 : 24.8	
	$Ph_2P(CH_2)_4PPh_2$ 5	100 85.4 : 2.3 : 12.3	
	$Ph_2P(CH_2)_5PPh_2$ 550	100 49.9 : 17.0 : 33.1	
	$Cy_2P(CH_2)_2PCy_2$ 7	100 79.9 : 3.8 : 16.3	
	$Cy_2P(CH_2)_4PCy_2$ 12	100 67.2 : 1.1 : 31.7	
	DBP-(CH ₂ ) ₂ -DBP 76	100 32.1 : 17.3 : 50.5	
		\ CHO	
	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 300 psi),	I + OHC $I + II (-)$	251
;	CHCl ₃ , 60°, 22 h	$\sim CO_2 Me$ $\sim CO_2 Me$ I:II = 45:55	
	$Rh(COD)BPh_4$ , DPPB, L/Rh = 2, $CH_2Cl_2$ ,	1 + II (75), I:II = 96:4	325
	CO/H ₂ (1/1, 600 psi), 130°, 24 h		
		T. T. ( ) T.T. 00-7	760
	$[Rn(NBD)Cl]_2/PPn_3/Et_3N(1/2/15), C_6H_6,$	I + II (), I:II = 93:7	/00
	$CO/H_2$ (1/1, 80 bar), 100 ⁻ , 3 h		
	[Rh(NBD)Cl] ₂ /PBu ₃ (1/2), C ₆ H ₆ ,	I + II (), I:II = 18:82	760
	CO/H ₂ (1/1, 15 bar), 100°, 3 h		
	Styrene-divinylbenzene (1%) resin-	I + II (65), I:II = 95:5	761
	$(C_6H_4PPh_2)_3RhH(CO), P/Rh = 20, 80^\circ,$		
	CO/H ₂ (1/1, 400 psi), C ₆ H ₆ , 21-24 h		
	CO/H ₂ (1/1, 600 psi)), CH ₂ Cl ₂ , 100°, 18 h		756
	Catalyst Ligand L/Rh	Conv. (%) Yield (%) [GC (Isolated)] I:II	
	$Rh(COD)(\eta^{o}-PhBPh_{3}) \longrightarrow 0$	98 96 (78) 20:80	
	Rh(COD)( $\eta^{\circ}$ -PhBPh ₃ ) DPPB 2	72 72 (54) 91:9	
	$[Rh(COD)(DPPB)]BF_4 = 0$	29 24 (22) 16:84	
	[Rn(COD)(DPPB)]BF ₄ DPPB 2	no reaction $0(0)$ —	
	$[Rn(COD)Cl]_2 = 0$	100 53 (47) 16:84	
	[Rh(COD)CI] ₂ DPPB 2	no reaction $0(0)$ —	
	$Rh(COD)(\eta^6-PhBPh_3), CO/H_2(1/1), CH_2Cl_2$		756
	Pressure (psi) Temp. Time (h)	Conv. (%) Yield (%) [GC (Isolated)] I:II	
	600 50° 66	83 76 (67) 70:30	
	600 60° 64	86 84 (71) 53:47	
	600 84° 18	93 90 (73) 25:75	
	600 100° 18	98 96 (78) 20:80	
	600 130° 18	100 94 (77) 6:90	
	200 130° 18	39         36 (18)         3:97	
		T ( II )	
	$[KRCI(CU)_{2}]_2$ , r/KR = 4, C ₆ H ₆ , 130°,	$1 + 11 + CO_2 Me$ III	759
	Phosphine Time (min)		
	nonc 16	100 7.2 : 73.4 : 19.6	
	PPh ₃ 200	100 38.5 • 56.1 • 5.4	
	$Ph_{2}P(CH_{2})_{2}PPh_{2}$ 105	100 79.5 : 17.6 : 2.9	
	$Ph_{2}P(CH_{2})_{3}PPh_{2}$ 250	51 45.9 : 17.5 : 36.6	
	$Ph_{2}P(CH_{2})_{a}PPh_{2} = 360$	92 75.5 • 19.2 • 5.3	
	$Ph_{2}P(CH_{2})$ , $PPh_{2}$ 420	98 14.7 : 74.3 : 11.0	
	$C_{y_2}P(CH_2)_2PC_{y_2}$ 450	98 50.2 : 44.7 : 5 1	
	$Cy_2P(CH_2)_4PCy_2$ 280	98 54.9 : 40.5 : 4.7	
	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 110 atm), PhMe, 120°, 78 h	<b>I</b> (97) + <b>II</b> (tr) + <b>III</b> (3)	762

#### TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) B. Esters of Unsaturated Acids (Continued)

CO₂Me

	1	S. Esters of Unsatur	rated Acids (Con	innuea)			
Reactant		Conditions			Product(s) and	Yield(s) (%)	Refs.
	RhH(CO)(PPha)2. PPl	13, CO/H ₂ (1/1), C ₄ H	6				761
	D/Dh Dracours (ma	) Temp Time (b		(%) <b>1·11</b>			
	3 50	80° 22	2 <u>COIN.</u> 63	25-75			
	3 200	80° 18	82	57:43			
	3 800	80° 8	100	94.6			
	3 800	30° 91	86	99:1			
	3 800	150° 6	69	16:84			
	3 100	80° 5	57	31:69			
	6 100	80° 24	90	46:54			
	20 100	80° 23	87	70:30			
	40 100	80° 22	64	66:34			
	20 200	150° 18	56	2:98			
			<u>^</u>	CO-Me	CHO		
CO ₂ Me	$[RhCl(CO)_2]_2$ , P/Rh =	4, C ₆ H ₆ , 150°,				II + Ю-Ма	759
,	CO/H ₂ (1/1, 100 atm	)		ĊНО		.ogwie	
			O		,CO ₂ Me Ⅲ +	CO ₂ Me IV	
	Dhoonhino	Time (min)	Con	v (0%)	т. <b>п</b> . <b>п</b> . <b>к</b>	v	
	raospinate	160		v. ( <i>n</i> )	$\frac{1}{0.0}$ : 51 7 · 30 0 ·	18.0	
	PPha	210	100		17.2 : 52.6 - 12.6 -	17.6	
	PhoP(CHob)PPho	150	100		22.9 : 2.0 : 0.0 :	75.1	
	Ph ₂ P(CH ₂ ) ₂ Ph ₂	210	93		8.8 : 4.6 : 0.0 :	86.6	
	PhoP(CHo)aPPho	240	92		80.1:5.2:0.0:	14.7	
	Ph ₂ P(CH ₂ ), PPh ₂	360	94		3.6 : 40.6 : 27.9 :	28.0	
	Cy2P(CH2)2PCy2	360	71		43.5:2.6:0.1:	53.8	
	Cy ₂ P(CH ₂ ) ₄ PCy ₂	210	40		41.4:28.2:4.7 :	25.7	
	THF, 120°, 20 h		/	СО ₂ Ме СО ₂ Ме I + II (19)	CH ₂ OH $Ae$ VII + $CO_2N$ , I:II = 48:52; IV (4)	$\frac{\text{Me}}{\text{CO}_2\text{Me}} \text{VIII}$ $\frac{1}{3}$ $\frac$	
				VII + VI	II (17), VII:VIII =	43:57	
	Rh(acac)(CO) ₂ , PPh ₃ , CO/H ₂ (1/1, 50 atm)	P/Rh = 10, PhMe, , 50°, 360 min	I + 11	(44), <b>I</b> : <b>Π</b> = 77			471
	Rh(acac)(CO) ₂ , TPPT 720 min, PhMe/H ₂ O CO/H ₂ (1/1, 50 atm)	S, P/Rh = 10, = 4/3, , 50*	I + II	(81), <b>I:II &gt;2</b> 0	0		471
	Rh(acac)(CO) ₂ /TPPT: P/Rh = 10, PhMe, 24 CO/H ₂ (1/1, 50 atm)	S on 60Å silica gel, % wt H ₂ O, 50°, , 60 min	I + II	(96), <b>1:11</b> >204	D		471
$\int_{0}^{1}$	CO/H ₂ (1/1, 600 psi),	CH ₂ Cl ₂	$\langle \cdot \rangle$	CHO I +		m of o	756
	Catalyst	1	Temp. Time (h)	Conv. (%)	1:U:Ш	<u> </u>	
	Rh(COD)(n ⁶ -PhBF	'h3) 6	60° 24	100	0:94:6	(0)	
	Rh(COD)(n ⁶ -PhBF	$(h_3) + DPPB(2) = 6$	60° 24	90	92:5:3	()	
	Rh(COD)(η ⁶ -PhBF	th 3) 1	.00° 18	100	0:89:11	(0)	
	Rh(COD)(η ⁶ -PhBP	th ₃ ) + DPPB (2) 1	.00° 18	100	82:11:7	(69)	
	Rh(COD)(η ⁶ -PhBF	$(h_3) + DPPB (4) = 1$	00° 18	100	80:10:10	(—)	
	Rh(COD)(η ⁶ -PhBF	^r h ₃ ) 1	.30° 24	100	0:61:39	(0)	
	Rh(COD)(η ⁶ -PhBF	$(h_3) + DPPB (4) = 1$	.30° 24	100	67 : 9 : 24	(49)	
	[Rh(COD)(DPPB)]	BF ₄ 1	00° 18	100	0:86:14	(0)	
	[Rh(COD)(DPPB)]	$\mathbf{BF}_4 + \mathbf{DPPB} (2)  1$	.00° 18	100	81:13:6	(70)	
	[Rh(COD)Cl] ₂	1	.00° 18	100	0:96:4	(0)	
	[Rh(COD)Ci]2 + D	PPB (2) 1	.00° 18	100	81:14:5	(67)	

## TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) B. Esters of Unsaturated Acids (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	Rh(COD)BPh ₄ , DPPB, L/Rh = 2, CH ₂ Cl ₂ , CO/H ₂ (1/1, 600 psi), 130°, 24 h	I (56)	325
CO ₂ Et	Rh(COD)BPh ₄ , DPPB, L/Rh = 2, CH ₂ Cl ₂ , CO/H ₂ (1/1, 600 psi), 130°, 12 h	$\begin{array}{ccc} CHO & \mathbf{I} + & \\ \hline CO_2 Et & CHO & \mathbf{I} + \mathbf{I} & (60) \\ \hline CO_2 Et & CHO & \mathbf{I} \cdot \mathbf{I} = 99:1 \end{array}$	325
CO ₂ Et	Rh(COD)BPh ₄ , DPPB, L/Rh = 2, CH ₂ Cl ₂ , CO/H ₂ (1/1, 600 psi), 130°, 12 h	<b>I + II</b> (68), <b>I</b> : <b>II</b> = 98:2	325
CO ₂ Et	PtCl ₂ (PPh ₃ ) ₂ /SnCl ₂ (1/5), MEK, 70°, 4 h, CO/H ₂ (1/1, 10 MPa)	OHC $CO_2Et$ I + $CO_2Et$ II + $II (96)$ I:II = 80:20	763 )
CO ₂ Me	[RhCl(CO) ₂ ] ₂ , Ph ₂ P(CH ₂ ) ₂ PPh ₂ , P/Rh = 4, CO/H ₂ (1/1, 100 atm), 150°, 24 h	$CO_2Me$ major + $CO_2Me$ (-) + $CO_2Me$ (-) +	759
		$OHC \underbrace{CO_2Me}_{(-)} + \underbrace{CO_2Me}_{CHO} (19)$	
M _n CO ₂ Me	Rh ₄ (CO) ₁₂ , TPPTSNa, P/Rh = 60, H ₂ /CO (1/1, 100 bar), 120°, pH = 7	$OHC \longrightarrow O_{n} CO_{2}Me \qquad I + \qquad CHO \qquad II \\ (H_{n} CO_{2}Me ) OHC \longrightarrow O_{2}Me $	764
	n Time (h) Conv. (%)	I II I:II Internal alkenes	
	1 27 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	6 13 92	(85) (7) 93:7 ( $-$ )	
	7 3 86	(71) (12) 86:14 (2)	
	10 4 82	(58) (13) 82:18 (10)	
Jun CO2Me	Rh(CO) ₂ ( <i>t</i> -BuCOCH=CHCOBu- <i>t</i> ), L, L/Rh = 5, PhMe, CO/H ₂ , 100°, 2 h	OHC CO ₂ Me I ()	765
	$L = \begin{array}{c} R^{1} & R^{1} = CO_{2}Me \\ OR^{2} & HP \\ OR^{2} \\ R^{1} & CF_{3} \end{array}$	I : (I + other aldehydes) = 0.97 I : (all products) = 0.64 F ₃	
	$PtCl_2(sixantphos), SnCl_2, Sn:Pt = 1, CO/H_2 (1:1), CH_2Cl_2$	$\mathbf{I}$ + $\mathbf{I}$ + $\mathbf{CO_2Mc}$ $\mathbf{II}$ +	766
		$\begin{array}{c} \text{CHO} \\ \swarrow \\ \text{CO}_2\text{Me} \end{array} \textbf{III} + \begin{array}{c} \text{CHO} \\ \leftarrow \\ \text{CO}_2\text{Me} \end{array} \textbf{IV}$	
	P/Pt P (bar) temp I: (II+III+IV)	Hydrogenation (%) Byproducts (%)	
	1 50 100° 2.7	1 (4)	
	1 10 100° 10.5	10 (1)	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 (tr) 23 (1)	
	8 10 80° 18.0	2 (1)	
CO ₂ Bu-n	Rh(acac)(CO) ₂ , PPh ₃ , P/Rh = 10, PhMc, CO/H ₂ (1/1, 50 atm), 50°, 150 min	$\begin{array}{c} \text{CHO} \\ \downarrow \\ \text{CO}_2\text{Bu-}n \end{array} \mathbf{I} + \text{OHC} \\ \hline \text{CO}_2\text{Bu-}n \end{array} \mathbf{II}  \mathbf{I} + \mathbf{II} (96) \\ \mathbf{I} \cdot \mathbf{II} = 140 \end{array}$	471
	Rh(acac)(CO) ₂ , TPPTS, P/Rh = 10, 90 min, PhMe/H ₂ O = 4/3, CO/II ₂ (1/1, 50 atm), 50°	I + II (98), I:II = 123	471
	Rh(acac)(CO) ₂ /TPPTS on 60Å silica gel, P/Rh = 10, PhMe, 37% wt H ₂ O, 50°, CO/H ₂ (1/1, 50 atnı), 120 min	I + II (98), I:II = 121	471
			471
O UEt	$CO/H_2$ (1/1, 50 atm), 50°, 240 min		4/1

## TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued)

Rh(acac)(CO)₂, PPh₃, P/Rh = 10, PhMe, CO/H₂ (1/1, 50 atm), 50°, 240 min

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	Rh(acac)(CO) ₂ , TPPTS, P/Rh = 10, 40 min, PhMe/H ₂ O = 4/3, CO/H ₂ (1/1, 50 atm), 50°	<b>I</b> + <b>II</b> (94), <b>I</b> : <b>II</b> = 72	471
	Rh(acac)(CO) ₂ /TPPTS on 60Å silica gel, P/Rh = 10, PhMe, 37% wt H ₂ O, 50°, CO/H ₂ (1/1, 50 atm), 40 min	<b>I</b> + <b>II</b> (97), <b>I</b> : <b>II</b> = 103	471
CO ₂ Me	RhH(CO)(PPh ₃ ) ₃ , PhMe, 100°, 8 h, CO/H ₂ (1/1, 80 bar)	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	767
	Rh₄(CO) ₁₂ , PhMe, 100°, 17 h,	$LO_2Me$ MeO ₂ C I (8) + II (34) + III (58)	767
	Rh ₄ (CO) ₁₂ , PPh ₃ , L/Rh = 4, PhMe, 100°, 7 h, CO/H ₂ (1/1, 80 bar)	I(42) + II(9) + III(45) + IV(4)	767
CO ₂ Me	Rh-PEVV, CO/H ₂ (1/1, 41.4 atm), H ₂ O, 100°, 2 h	OHC CO ₂ Me (21)	242
CO ₂ Me	Rh(aca)(CO) ₂ , PhMe, H ₂ /CO (100 atm), 8 h, tris(2,4-di- <i>tert</i> -butylphenyl) phosphite	$CO_2Me \qquad I (74)$ $CO_2Me \qquad CO_2Me$ $+ OHC \qquad CO_2Me \qquad II (26)$	768
₩ CO2Mc	Rh ₄ (CO) ₁₂ , TPPTSNa, P/Rh = 60, H ₂ O C ₇ H ₁₅ SO ₃ Na, H ₂ /CO (1/1, 100 bar), 120°, pH = 7, 10 h	OHC CHO H (80) + CHO H (6) I:II = 93:7 + internal alkenes (7) + C ₁₀ H ₂₁ CO ₂ Me (2)	764
CO ₂ Et CO ₂ Et	1. RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , rt, 10 h, CO/H ₂ (1/2, 1 atm) 2. Silica	$\begin{array}{c} \text{CHO}  \text{CO}_2\text{Et} \\ \hline \\ \text{CO}_2\text{Et} \end{array} \stackrel{\text{OH}}{t} + \begin{array}{c} \text{OH} \\ \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \end{array} \stackrel{\text{I}}{t} + \text{II} (87) \\ \hline \\ \text{I:II} = 28:66 \end{array}$	369
Ph CO ₂ Me	$CO/H_2$ (1/1, 100 atm), $C_6H_6$	$Ph$ $CO_2Me$ $I + Ph$ $CO_2Me$ $II + CO_2Me$ $II + CHO$ $CHO$ $C$	769
	$\begin{array}{c c} Catalyst & Temp. & Time (h) \\ \hline Rh_2O_3 & 120^\circ & 7 \\ RhH(CO)(PPh_3)_3 & 80^\circ & 7 \\ [Rh(COD)Cl]_2 & 80^\circ & 7 \\ Rh(COD)(BPh_4) & 80^\circ & 22 \\ [Rh(CO)_2Cl]_2 & 80^\circ & 16 \\ RhH(PPh_3)_4 & 80^\circ & 7 \\ RhCl(CO)(PPh_3)_2 & 100^\circ & 7 \\ \end{array}$	H $I + H$ $H$ 100:0         (69)         (31)           72:28         (58)         (12)           100:0         (40)         (20)           94:6         (79)         (16)           95:5         (52)         (18)           91:9         (57)         (11)           62:38         (32)         (14)	
CO ₂ Ei	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , CO/H ₂ (1/2, 1 atm), π, 4 d	$CHO CO_2Et (-) (-)$	369
Et Bu-n	Rh(acac)(CO) ₂ , PPh ₃ , P/Rh = 10, PhMe, CO/H ₂ (1/1, 50 atm), 50°, 150 min	CHO Et Et Et $O$ Bu- $\pi$ + OHC $O$ Bu- $\pi$ Bu- $\pi$ O I $I$ H (93), I:II = 63	471

#### TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) B. Esters of Unsaturated Acids (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	Rh(acac)(CO) ₂ , TPPTS, P/Rh = 10, 20 h, PhMe/H ₂ O = 4/3, CO/H ₂ (1/1, 50 atm), 50°	<b>I</b> + <b>II</b> (97), <b>I</b> : <b>II</b> = 59	471
c	Rh(acac)(CO) ₂ /TPPTS on 60Å silica gcl, P/Rh = 10, PhMe, 37% wt H ₂ O, 50°, CO/H ₂ (1/1, 50 atm), 20 h	I + II (93), I:II = 79	471
MeO ₂ C	Rh(CO) ₂ (acac), BIPHEPHOS, THF, CO/H ₂ (1/1, 70 psi), 60°	$MeO_2C _{8} CHO  (91)  n: iso > 40:1$	135
EIO2C	$\label{eq:response} \begin{split} Rh_2H_2(CO)_2[Ph_2P(O(CH_2)_2)_{400}OPPh_2]_3-\\ poly(2-hydroxyethylmethacrylate)\\ network coating on porous silica, c-C_0H_{12},\\ CO/H_2~(1/1, 800~psi), 85^\circ, 4~h \end{split}$	EtO ₂ C $(+)_8$ CHO I + EtO ₂ C $(+)_8$ CHO II I + II (42), I:II = 2:1	770
Gr. CO.M.	RhCl(CO)(DPM) ₂ -poly(vinylbenzyltriethyl- ammonium chloride) on silica, $c$ -C ₆ H ₁₂ , H ₂ O, EtOH, 85°, CO/H ₂ (1/1, 750 psi), 15 h	I + Π (42), I:Π = 8:1	655
Ph Ph	HCo(CO) ₄ , CO (1 atm), hexane, rt, 1.5 h	(18-22) CO ₂ Me (18-22)	771, 772
$n-C_8H_{17}$ $()$ $7^{CO_2Me}$	Co ₂ (CO) ₈ , CO/H ₂ (3500-4500 psi), 100-150°	$n - C_8 H_{17} + CO_2 Me \mathbf{I} + CO_2 Me \mathbf{I} + \mathbf{I} + \mathbf{I} (50-90)$ $CHO \mathbf{I} + \mathbf{II} (50-90)$ $n - C_8 H_{17} + CO_2 Me \mathbf{II} + OHC + CO_2 Me (4-16)$ $T_7 + CO_2 Me \mathbf{II} + OHC + CO_2 Me (4-16)$	773-775
	Rh/C, PPh ₃ , PhMe, 100-110°, 4-6 h, CO/H ₂ (1/1, 1000-2000 psi)	I + II (90-99)	775, 773

## TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) B. Esters of Unsaturated Acids (Continued)

Reactant	Conditions		Product(s) and Yield(s) (%)	Refs
C ₃ RO	Rh ₄ (CO) ₁₂ , C ₆ H ₆ , CO/H ₂ (1/1, 100 atm), 100°		I () + RO CHO II ()	332
		<u>R</u>	<u>I:II</u>	
		Mc	78:22	
		Et	76:24	
		n-Bu	76:24	
		<i>i</i> -Pr	72:28	
		<i>t</i> -Bu	63:37	
		PhCH ₂	76:24	
		Ph	95:5	
	[Rh(CO) ₂ Cl] ₂ /PPh ₃ (1/6), C ₆ H ₆ , 100°,	I (—) + II (	()	332
	CO/H ₂ (1/1, 100 atm)	R	I:II	
		Me	54:46	
		Et	54:46	
		n-Bu	53:47	
		i-Pr	52:48	
		t-Bu	53:47	
		PhCH ₂	67:33	
		Ph	95:5	
EtO	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 100 atm)	СНО	I + Eto CHO II	332
	Temp Time (b)		ĿП	
	100° 0.5	(97)	76:24	
	80° 0.8	(96)	77:23	
	50° 4.0	(90)	78:22	
	20° 15.0	(50)	27-12	

TABLE VI. HYDROFORMYLATION OF UNSATURATED ETHERS AND ACETALS

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
		сно	
$\langle \rangle$	Rh ₂ ( $\mu$ -S(CH ₂ ) ₃ NMe ₂ ) ₂ (COD) ₂ , CH ₂ Cl ₂ , P(OC ₆ H ₄ Bu- <i>t</i> -2) ₃ , L/Rh = 20, 80°, CO/H ₂ (1/1, 5 bar), 20 h	$ \begin{array}{c} & & \mathbf{I} + \mathbf{I} \\ & & \mathbf{I} + \mathbf{I} \\ & & \mathbf{I} = 77:23 \end{array} $	333
	Rh ₂ (μ-S(CH ₂ ) ₃ NMe ₂ ) ₂ (COD) ₂ , CH ₂ Cl ₂ , P(OPh) ₃ , L/Rh = 2, CO/H ₂ (1/1, 5 bar), 80°, 20 h	<b>I</b> + <b>II</b> (99), <b>I</b> : <b>II</b> = 49:51	333
$\langle \mathbf{a} \rangle$	Rh ₂ (μ-S(CH ₂ ) ₃ NMe ₂ ) ₂ (COD) ₂ , CH ₂ Cl ₂ , P(OC ₆ H ₄ Bu- <i>t</i> -2) ₃ , L/Rh = 2, 80°, CO/H ₂ (1/1, 5 bar), 20 h	<b>I</b> + <b>II</b> (98), <b>I</b> : <b>II</b> = 69:31	333
	Rh ₂ ( $\mu$ -S(CH ₂ ) ₃ NMe ₂ ) ₂ (COD) ₂ (1 mol%), PPh ₃ , L/Rh = 10, CO/H ₂ (1/1, 30 bar), (CH ₂ Cl) ₂ , 80°, 8 h	I + II (99), I:II = 1:99 СН(ОЕ))а	333, 334
	Rh ₂ (µ·OMe) ₂ (COD) ₂ , 10 PPh ₃ , CO/H ₂ (1/1, 50 bar), HC(OEt) ₃ , 60°, 48 h	$\mathbf{II} (96) + \bigcup_{O} \mathbf{III} (4)$	663
	Rh ₂ (μ-OMe) ₂ (COD) ₂ , 10 PPh ₃ , 60°, CO/H ₂ (1/1, 50 bar), (MeO) ₂ CMe ₂ , 48 h	Π (100)	663
	Rh ₂ (μ-OMe) ₂ (COD) ₂ , 10 PPh ₃ , HC(OEt) ₃ , PPTS, CO/H ₂ (1/1, 50 bar), 60°, 4 h	П (8) + ПІ (92) СН(ОМе)ь	663
	Rh ₂ (µ-OMe) ₂ (COD) ₂ , 10 PPh ₃ , PPTS, 60°, CO/H ₂ (1/1, 50 bar), (MeO) ₂ CMe ₂ , 24 h	$\Pi (18) + \bigvee_{O} (82)$	663
	$Rh_2(\mu$ -S(CH ₂ ) ₃ NMe ₂ ) ₂ (COD) ₂ , 120°, P(OC ₆ H ₄ Bu- <i>t</i> -2) ₃ , L/Rh = 10, 8 h, CO/H ₂ (1/1, 75 bar)	$ \begin{array}{c}     I + & & \\     O & CHO & I \\     O & I \\     I = 67:33 \end{array} $	333
$\bigcirc$	$Rh_2(\mu-S(CH_2)_3NMe_2)_2(COD)_2, 120^\circ,$ $P(OC_6H_4Bu-t-2)_3, L/Rh = 10, 8 h,$ $CO/H_2$ (1/2, 75 bar)	<b>I</b> + <b>II</b> (81), <b>I</b> : <b>II</b> = 68:32	333
	RhH(CO)(PPh ₃ ) ₃ , P(OPh) ₃ , L/Rh = 50, CO/H ₂ (1/1, 3 bar), 100°	$\begin{pmatrix} 0 \\ 0 \\ CHO \end{pmatrix} + \begin{pmatrix} -0 \\ 0 \\ CHO \end{pmatrix} (10) + \begin{pmatrix} 0 \\ 0 \\ Et \end{pmatrix} (5)$	776
	[Rh(COD)(OAc)] ₂ , CO/H ₂	I + II (57-80), I:II = 81:19	316
	Rh ₂ (µ-SBu-r) ₂ (CO) ₂ (PPh ₃ ) ₂ , PPh ₃ , L/Rh = 10, PhMc, CO/H ₂ (5 bar), 80°	I + I + I (99) CHO I + O I I I = 14:86	647
	$Rh_2(\mu$ -SBu-t) ₂ (CO) ₂ [P(OMe) ₃ ] ₂ , CICH ₂ CH ₂ CI, CO/H ₂ (5 bar), 80°	CHO I + II (59), I:II = 52:48	647
	RhH(CO)(PPh ₃ ) ₃ , PPh ₃ , L/Rh = 5, PhMe, CO/H ₂ (5 bar), 80°, 2 h	<b>I</b> + <b>II</b> (99), <b>I</b> : <b>II</b> = 26:74	647
	{Rh(COD)(TPPTS) ₂ ]ClO ₄ , H ₂ O, 80°, CO/H ₂ (1/1, 5 bar), 18 h	I + II (99), I:II = 36:64	647
	Rh ₂ (µ-SBu- <i>t</i> ) ₂ (CO) ₂ (TPPTS) ₂ , H ₂ O, 80°, CO (5 har), 18 h	<b>I</b> + <b>II</b> (62), <b>I</b> : <b>II</b> = 56:44	647
	$Rh_6(CO)_{16}$ , P(OMe) ₃ , 110°, CO/H ₂ (1/1, 6.5 atm)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	373, 777
	RhH(CO)(PPh ₃ ) ₃ , P(OPh) ₃ , L/Rh = 50, CO/H ₂ (1/1, 3 bar), 100°	I(85) + II(9) +  (6)	776
_		(-0) CHO $(-0)$ $(-0)$ $(-0)$	272

Reactant	Conditions	Product(s) and Yield(s) (%) Re
	RhH(CO)(PPh ₃ ) ₃ , P(OPh) ₃ , L/Rh = 50, CO/H ₂ (1/1, 3 bar), 100°	(85) + (10) + 776
n-BuO	[Rh(COD)(OAc)] ₂ , CO/H ₂	$\begin{array}{ccc} CHO & \mathbf{I} + & \\ & & & \\ n-BuO & & & \\ \hline & & & \\ n-BuO & & & \\ \mathbf{I} \cdot \mathbf{I} = 72:28 \end{array}$
OEt EtO	Rh(CO) ₂ (acac), BIPHEPHOS, THF, CO/H ₂ (1/1, 70 psi), 60°	$\begin{array}{c} \text{OEt} \\ \text{EtO} \\ \text{EtO} \\ \text{CHO} \\ \end{array} \begin{array}{c} \text{II} \\ \text{EtO} \\ \text{IIII} \\ \text{IIIII} \\ \text{IIIII} \\ \text{IIIIII} \\ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$
	Rh ₂ O ₃ , C ₆ H ₆ , CO/H ₂ (1/1, 200 atm), 110°. 30 min	<b>I + II</b> (63), <b>I</b> : <b>II</b> = 1:1.82 373, 7
	RhCl(CO)(PPh ₃ ) ₂ , Et ₃ N, C ₆ H ₆ , 80°, CO/H ₂ (1/1, 100 atm), 1.5 h	I + II (98), I:II = 58:42 373, 77
	RhH(CO)(PPh ₃ ) ₃ , P(OPh) ₃ , L/Rh = 50, CO/H ₂ (1/1, 3 bar), 100°	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	Rh ₆ (CO) ₁₆ , P(OMe) ₃ , 110°, CO/H ₂ (1/1, 7.1 atm)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ CH0 \\ CH0 \\ CH0 \\ CH0 \\ CH0 \\ CH0 \\ \end{array} \qquad \begin{array}{c} \Pi \\ I + \Pi (92) \\ I \Pi = 87:13 \\ 781 \\ 781 \\ \end{array}$
	Rh(acac)(CO) ₂ , ligand, CO/H ₂	I (99) 782
	PPh ₂ PPh ₂	
	Rh ₆ (CO) ₁₆ , P(OPh) ₃ , 90°, CO/H ₂ (1/1, 2.7 atm)	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
	RhH(CO)(PPh ₃ ) ₃ , P(OPh) ₃ , L/Rh = 50, CO/H ₂ (1/1, 3 bar), 100°	I(82) + II(12) +  (6) 776
	Rh(acac)(CO) ₂ , PR ₃ , P/Rh = 50, 100°, CO/H ₂ (1/1, 1 MPa), 4 h	784
	<u>R</u>	Conv. (%) I:II
	3,5-F ₂ C ₆ H ₃	32.6 85:15
	3,5-Cl ₂ C ₆ H ₃	31.8 83:17
	4-CF ₃ C ₆ H ₄	25.6 81:19
	$3-CF_3C_6H_4$	29.4 80:20
	3-ClC ₆ H ₄	33.7 80:20
	$2-MeC_6H_4$	3.3 78:22
	3-FC ₆ H ₄	73.0 77:23
	4-ClC ₆ H ₄	81.9 74:26
	3,4-F ₂ C ₆ H ₃	23.0 73:27
	2-Me-4-ClC ₆ H ₃	3.6 71:29
	2-ClC ₆ H ₄	12.1 65:35
	C ₆ H ₅	23.7 62:38
	4-FC ₆ H ₄	35.4 62:38
	3-MeC ₆ H ₄	34.5 57:43



TABLE VI HYDROFORMYL	TION OF LINSATURATED	ETHERS AND	ACETALS	Continued)
	TION OF UNDATORATED		TODITED V	commute,



TABLE VI HYDDOGODMVI ATION OF UNSATURATED ETHERS AND ACETAL	S (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Rcfs.
	Rh ₂ (µ-SBu- <i>i</i> ) ₂ (CO) ₂ [P(OPh) ₃ ] ₂ , DMF, CO/H ₂ (1/1, 5 bar), 80°, 90 min	I () + II (88)	788
Aco	[Rh], CO/H (1/1, 5 atm), THF, 60°	$AcO \xrightarrow{B} I + CHO \xrightarrow{B} I + CHO$	789
в	(Bb)		
uracil	RhCl(PPh ₃ ) ₃	(<5) — (10)	
uracil	Rh ₂ O ₃	(12) 1:1 ()	
uracil	Rh(acac)(CO) ₂ /4PPh ₃	(27) 3:1 ()	
cytocine	$Rh(acac)(CO)_2/4PPh_3$ $Ph(acac)(CO)_2/4PPh_3$	(32) 3:1 () (32) 3:1 ()	
/w -acetyicytosine	$Kn(acac)(CO)_2/4PPn_3$	(32) 3:1 ()	
$\langle \rangle_{0}^{\circ}$	RhH(CO)(TPP) ₃ , CO/H ₂ (130 har), 100°, 4 h	(93)	790
	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 300 psi), CHCl ₃ , 60°, 21 h	$\mathbf{I} (-) + \mathbf{I} (-)$ $\mathbf{I} (-) + \mathbf{I} (-)$ $\mathbf{I} (-)$ $\mathbf{I} (-)$ $\mathbf{I} (-)$	251
EtO OEt	RhCl(CO)(PPh ₃ ) ₂ , Et ₃ N, C ₆ H ₆ , 105°, CO/H ₂ (1/1, 100 atm), 5.5 h	$EtO \xrightarrow{Pr-i} CHO I + EtO \xrightarrow{i-Pr} CHO I + II (75)$ $OEt OEt II = 98:2$	373, 779
	Rh/C (5%), P(OPh) ₃ , Et ₃ N, C ₆ H ₆ , 110°, CO/H ₂ (1/1, 20 atm), 73 h	I + II (60), I:II = 98:2	373, 779
HO	Rh ₂ (µ-SBu-1) ₂ (CO) ₂ [P(OMe) ₃ ] ₂ , 80°, CO/H ₂ (1/1, 5 bar), ClCH ₂ CH ₂ Cl, 90 min	$\begin{array}{c} \text{MeO} \\ \text{HO} \\ \text{HO} \end{array} \begin{array}{c} \text{HO} \\ \text{HO} \end{array} \begin{array}{c} \text{HO} \\ \text{HO} \\ \text{HO} \end{array} \begin{array}{c} \text{HO} \\ \text{HO} \\ \text{HO} \\ \text{HO} \end{array} \begin{array}{c} \text{HO} \\ $	6) 788
	[RhCl(COD)] ₂ , CO/H ₂ (1/1, 600 bar)	$\mathbf{I} + \mathbf{II} + \mathbf{MeO}$ III HO	6 <b>9</b> 9, 791
	Temp.	I: II: III	
	70° 80°	48:52:0 45:52:3	
	100°	37:52:11	
	130°	24:35:41	
MeO	[RhCl(COD)] ₂ , CO/H ₂ (1/1, 600 bar)	I + II + III	699, 791
но	Temp.	I : II : III	
	70°	5: 0:95	
	80°	10: 0:90	
	100°	45: 5:50 50:10:40	
	150	50.10.40	
Ph	[RhCl(CO) ₂ ] ₂ /PPh ₃ (1/4), C ₆ H ₆ , 90°, CO/H ₂ (120 atm), 4 h	Ph $CHO$ $(43) + Ph$ $O$ $CHO$ $(46) + O$	780
C ₁₁		Ph + O + CHO (11) McO + O + O + CHO + O + O + O + O + O + O + O + O + O +	
MeO MeO	Rh ₂ ( $\mu$ -SBu- <i>t</i> ) ₂ (CO) ₂ (TPPTS) ₂ , TPPTS, L/Rh = 4, CO/H ₂ (1/1, 5 bar), H ₂ O,	Meo CHO I + II Meo CHO	23
	δυ", 18 n	I + II (26), I:II = 3:97	

]	Reactant	Condit	ions			Product	s) and Y	ield(s) (%	b)		Refs.
		Rh ₂ (µ-SBu-t) ₂ (CO) ₂ [P(OPh) CO/H ₂ (1/1, 5 bar), ClCH ₂ C	3 ¹ 2, 80°, CH ₂ Cl, 90 min	I (-	—) <b>+ II</b> (86)						788
EtO OEt		RhCl(CO)(PPh ₃ ) ₂ , Et ₃ N, C ₆ F CO/H ₂ (1/1, 100 atm), 5 h	1 ₆ , 95°,	EtC	Bu-s O OEt	СНО І + 1			I + II ( I:II = 9	85) 98:2	373, 779
		RhCl(CO)(PPh ₃ ) ₂ , Et ₃ N, C ₆ F CO/H ₂ (1/1, 100 atm), 5.5 h	I ₆ , 90°,	ζ	-O CHO	^D I + $\int_0^{}$		CHO II Ph	I + II ( I:II = 9	80) 98:2	373, 779
EtO OEt Pr-	; i	RhCl(CO)(PPh ₃ ) ₂ , Et ₃ N, C ₆ H CO/H ₂ (1/1, 100 atm), 36 h	I ₆ , 80°-100°,	EtC	OEt Pr-i	СНО (70)	I				347
r-Bu	_0_//	Rh(COD)BPh ₄ , CO/H ₂ (1/2, CHCl ₃ , 55°, 22 h	300 psi),	t-B	u		—) +				374
					r-Bu		∕сно	II ()	I:II = 9	0.2:9.8	
EtO OEt Bu-	-5	RhCl(CO)(PPh ₃ ) ₂ , Et ₃ N, C ₆ H CO/H ₂ (1/1, 100 atm), 36 h	I ₆ , 80-100°,	EtO	OEt Bu-	СНО (70 s	)				373, 374, 792
Ph C		[Rh(OAc) ₂ ] ₂ , 2 PPh ₃ , EtOAc, CO/H ₂ (500 psi), 22 h	, 100°,	Ph.	сно о	I + Ph			Ш I+I I:П	II (97) = 85:15	367
				Act			-0 • > 1	AcO-	ОНС	ы	335
AcO				Ac	СН	AcO AcO	сно	AcÓ			
	Catalyst	······	CO/H ₂ (1/1) Pressure (10 ⁵ Pa)	Temp.	Solvent	Conv. (%)	I	п	ш		
	RhH(CO)(PPh ₃ ) ₃		9	90°	(CH ₂ Cl) ₂	6	(4)	()	(—)		
	RhH(CO)(PPh ₃ ) ₃	[a_]((COD)_/PPh.	115	100°	(CH ₂ Cl) ₂	10	(/) ()	(—) (—)	() ()		
	Rho[µ-S(CH ₂ )3NM	$le_2 (COD)_2 / P(OC_4 H_4 Bu - t - 2)_3$	35	120°	(CH ₂ Cl) ₂ (CH ₂ Cl) ₂	36	(7)	(8)	(11)		
	Rh ₂ [µ-S(CH ₂ ) ₃ NM	$le_2](COD)_2/P(OC_6H_4Bu-t-2)_3$	75	120°	(CH ₂ Cl) ₂	82	(26)	(14)	(30)		
	Rh ₂ [µ-S(CH ₂ ) ₃ NM	$le_2](COD)_2/P(OC_6H_4Bu-t-2)_3$	75	120°	PhMe	71	(32)	(6)	(16)		
					AcO-						
				I+	- II + III + AcC	OAC IV					793
	Catalyst		CO/H ₂ (P, bar)	Temp.	Solvent	Conv. (%)	1	П	ш	IV	
	Rh2[µ-S(CH2)3NM	e2](COD)2/P(OC6H4Bu-t-2)3	3/2 (75)	120°	(CH ₂ Cl) ₂	84	(34)	(6)	(27)	(15)	
	Rh ₂ [µ-S(CH ₂ ) ₃ NM	$e_2](COD)_2/P(OC_6H_4Bu-t-2)_3$	3/2 (60)	130°	(CH ₂ Cl) ₂	94	(34)	(8)	(31)	(12)	
	Rh ₂ [µ-S(CH ₂ ) ₃ NM	e ₂ ](COD) ₂ /P(OC ₆ H ₄ Bu-t-2) ₃	3/2 (60)	120°	PhMe	80	(40)	(3)	(tr)	(10)	
	Rh ₂ (µ-OCH ₃ )(COL	$D_{2}/P(OC_{6}H_{4}Bu-t-2)_{3}$	1/1 (55)	100°	$(CH_2CI)_2$	90	(22)	(54)	()	(8)	
	Rh ₂ (µ-OCH ₃ )(COE	$D_2/P(OC_6H_4Bu-t-2)_3$	1/1 (55)	100°	PhMe	94	(37)	(5)	(tr)	(37)	
	0 4				<u> </u>	0 /					
		Rh(COD)BPh ₄ , CO/H ₂ (1/2, CHCl ₃ , 55°, 22 h	300 psi),	Ĺ		СНО	() +				251
							<b>`</b> СНО	П (—)	I:II = 9	6:4	
	OEt OEt	RhH(PPha), CO/Ha (1/1-10	N0 atm).	ſ	СНО	I + 1	$\sim$	сно	[] <b>I</b> +1	EL (100)	769
		$C_6H_6$ , 80°, 3 h		Ę	EtO	OEt	EtO	OEt	1:11	= 97:3	

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs
	RhH(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 80°, 1.5 h	I + II (95), I:II = 98.4:1.6	769
	RhCl(CO)(PPh ₃ ) ₂ , Et ₃ N, C ₆ H ₆ , 80°, CO/H ₂ (1/1, 100 atm)	I + II (75), I:II = 90:10	373, 794
MeO	[Rh(NBD)(2,5-bis(diphenylphosphino- methyl)bicyclo[2.2.1]heptane)ClO ₄ , CO/H ₂ (1/1, 40 atm), C ₆ H ₆ , 50°, 13 h	СНО I (—) + MeO МеО МеО I (—) I (—) I:Ш = 95:5	247
Ph o o o	Rh(acac)(CO) ₂ , 4 P(OPh) ₃ , CO/H ₂ (1/1, 20 bar), toluene, 70°, 48 h	$\begin{array}{c} Ph \\ O \\ CHO \end{array} + \begin{array}{c} Ph \\ O \\ $	795
	Rh(acac)(CO) ₂ , 4 P(OPh) ₃ , CO/H ₂ (1/1, 20 bar), toluene, 70°, 48 h	Ph $R$	795
PhO PhO	$[RhCl(CO)_2]_2, L/Rh = 5, Et_3N/Rh = 10, CO/H_2 (1/1, 20 bar), PhMe, 25°, 6 h LigandTPP$	PhO (%) I + PhO (%) I:II I + II (75) 91:9 (100)	641
Ph Ph	PPPN PPh ₃ [Rh(OAc) ₂ ] ₂ , PPh ₃ , EtOAc, 100°, CO/H ₂ (500 psi), 22 h	$\begin{array}{c} 64 \\ 93:7 \\ 9 \\ 9:7 \\ 100 \\ 9 \\ 9:7 \\ 100 \\ 9 \\ 9:7 \\ 100 \\ 9 \\ 9:7 \\ 100 \\ Ph \\ H \\ 1 + \mu \\ 1 $	367

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs
² F	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 68 atm), 80°, PhMe, 18 h	F 1 (81)	357, 796
	RhH(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 68 atm), 80°, PhMe, 18 h	I (52)	357
	Ru ₃ (CO) ₁₂ , CO/H ₂ (1/1, 68 atm), 80°, PhMe, 18 h	I (46)	357
	Co ₂ (CO) ₈ , CO/H ₂ (1/1, 110 atm), 100°, PhMe, 18 h	I (30)	357
³ CF ₃	Co ₂ (CO) ₈ , CO/H ₂ (1/1, 130 atm), PhMe, 100°, 20 h	CF ₃ CHO I + $CF_3$ CHO I + $CF_3$ II = 93:7	796, 354 357
	Rh ₆ (CO) ₁₆ , CO/H ₂ (1/1, 110 atm), PhMe, 80°, 5 h	$I + II + F_3C$ III (2) $I + II (98)$ I:II = 4:96	357, 354
	Rh-C/P(OPh) ₃ , CO/H ₂ (1/1, 110 atm), PhMe, 80°, 5 h	I + II + III (2) I + II (98) I:Π = 4:96	357, 354
	HRh(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 110 atm), PhMe, 80°, 5 h	I + Π + ΠI (5) I + Π (95) I:Π ≈ 5:95	357, 354
	PtCl ₂ (DIOP)/SnCl ₂ , CO/H ₂ (1/1, 130 atm), PhMe, 100°, 4 h	I + II + III (25) I + II (75) I:II = 71:29	357, 354
C ₂ F ₅	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 110 atm), 60°, PhMe, 6 h	CHO $I(-) + C_2F_5$ CHO $II(-) - I:II = 95:5$	357, 796
x~~//	Rh(CO) ₂ (acac), BIPHEPHOS, THF, CO/H ₂ (1/1, 70 psi), 60°	$\begin{array}{ccc} X & 0.180 \\ \hline X & 0.180 \\ \hline Br &> 40.1 \\ I &> 40.1 \end{array} (64) \end{array}$	135
C ₃ F ₇	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 110 atm), 60°, PhMe, 6 h	CHO II () I:II = 91:9 C ₃ F ₇ CHO II () I:II = 91:9 CHO	357, 796
⁸ x	Rh(COD)BPh ₄ , CO/H ₂ (1/2, 200 psi), CHCl ₃ , 47°, 22 h	$X \qquad I (-) + X \qquad CHO \qquad II (-)$ $\frac{X \qquad I \cdot II}{F \qquad 98:2}$ $Cl \qquad 98.6:1.4$ $Br \qquad 98:2$	251
	Rh/C (5%), DPPP, CO (8.5 atm), HCO ₂ H, DME, 100-105°, 18-24 h Rh/C (5%), DPPB, CO (8.5 atm), HCO ₂ H, DME, 110-120°, 24 h	X         I + II         I:II           Cl         (60)         93:7           Br         (76)         92:8           Cl         (67)         74:26           Br         (73)         48:52	368 368
	Rh/C (5%), DPPP, CO (8.5 atm), HCO ₂ H, DME, 100-105°, 18-24 h	$\begin{array}{c} CHO \\ \hline \\ CI \end{array} \qquad I + \begin{array}{c} CHO \\ \hline \\ CI \end{array} \qquad I + II (20) \\ I III = 85:15 \end{array}$	368
	Rh ₆ (CO) ₁₆ , dioxane, CO/H ₂ (1/1, 1200 psi), 90°, 3 h	F + F + F + F + F + F + F + F + F + F +	359, 796
	Co ₂ (CO) ₈ , dioxane, CO/H ₂ (1/1, 800 psi), 125°, 15 h	$I + II + C_6 F_5 Et (22)$ $I + II (60), I:II = 15:85$	359
	Rh ₆ (CO) ₁₆ , C ₆ H ₆ , CO/H ₂ (1/1, 80 atm),	<b>I</b> + Π (100), <b>I</b> :Π = 97:3	354, 357

### TABLE VII. HYDROFORMYLATION OF UNSATURATED HALOGEN COMPOUNDS

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	RhCl(PPh ₃ ) ₃ , C ₆ H ₆ , CO/H ₂ (1/1, 90 atm), 90°, 20 h	<b>I + II</b> (100), <b>I</b> : <b>II</b> = 97:3	354, 357
C9	HRh(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 90°, 8 h, CO/H ₂ (1/1, 80 atm)	<b>I</b> + <b>II</b> (100), <b>I</b> : <b>II</b> = 98:2	354, 357
C ₆ F ₅	Co ₂ (CO) ₈ , CO/H ₂ (1/1, 80 atm), 100°, C ₆ H ₆ , 16 h	$C_{6}F_{5}$ CHO I + $C_{6}F_{5}$ II + CHO II + $C_{6}F_{5}$ IV $C_{6}F_{5}$ IV	357, 796
	Rh ₆ (CO) ₁₆ , CO/H ₂ (1/1, 80 atm), 95°, C ₆ H ₆ , 13 h	I + Π + ΙΠ + ΙV (79), I:Π:Π:IV = 53:41:2:4 I + Π (100), I:Π = 41:59	357
	RhH(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 80 atm), C ₆ H ₆ , 95°, 3 h	<b>I</b> + <b>II</b> (94), <b>I</b> : <b>II</b> = 39:61	357
Cl CO ₂ Me	CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 80°	$CHO = CO_2Me = CO_2Me$ $I + CHO = CHO = II + CHO = II$	769
		CI CO ₂ Me III	
	Catalyst Time (h) Rh(COD)(RPb.) 22		
	$Rh_{2}O_{2}/5 PPh_{2} \qquad 22$	100 (2) (96)	
	$RhH(CO)(PPh_2)_2$ 7	100 (1) (95)	
	Rb(COD)Clip 7	(1) (93)	
	$RhH(PPh_3)_4 \qquad 6$	95:5 (45) (29)	
C ₈ F ₁₇	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 110 atm), 60°, PhMe, 6 h	CHO $C_8F_{17}$ $I(-) + C_8F_{17}$ CHO II () I:II = 92:8	796, 359
Cl OEt OEt	RhH(PPh ₃ ) ₄ , CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 80°, 3 h	CHO OEt OEt I + OEt I + II (98) I:II = 97:3 CHO II	769
	RhH(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 80°, 1.5 h	<b>I</b> + <b>II</b> (61), <b>I</b> : <b>II</b> = 98:2	769

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs
C ₃ NH ₂	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , 75-80°, dimethyl phthalate, CO/H ₂ (1/1, 55 bar)	(92) N I (92)	731
	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , PhMe, CO/H ₂ (1/1, 55 bar), 75-80°	$I(-) + \langle N \rangle_{O}$ $II(-)$ $I:II = 1:1$ H	731
-CN	Co ₂ (CO) ₈ , CO/H ₂ (1/1, 250 kg/cm ² ), MeOH, 130°	OHC CN I (10) + $MeOCN$ II (71) + $MeOCN$ II (71) + $MeOCN$ IV (tr)	797
	[Pt(C ₂ H ₄ )(DPPB)]/CH ₃ SO ₃ H (1/1), CO/H ₂ (1/1, 100 atm), PhMe, 100°, 22 h	I + III + CN (5) $I + III (69), I:III = 83:17$	259
C.	Co ₂ (CO) ₈ , CH(OCH ₃ ) ₃ , MeOH, CO/H ₂ (1/1, 720 psi), 90°, 7h	H ^{MeO} OMe H ⁽⁸²⁾	798
O NH2	RhCl(PPh ₃ ) ₃ , 10 P(OPh) ₃ , THF, 80°, CO/H ₂ (3/1, 1200 psi), 40 h	$ \begin{array}{c} & & \\ & & \\ & & \\ H \end{array} \begin{array}{c} & & \\ & H \end{array} \begin{array}{c} & & \\ & & \\ H \end{array} \begin{array}{c} & & \\ & & \\ H \end{array} \begin{array}{c} & & \\ & & \\ & & \\ H \end{array} \begin{array}{c} & & \\ & & \\ & & \\ H \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ H \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	799, 800
	RhCl(CO)(PPh ₃ ) ₂ , THF, 100°, CO/H ₂ (1/1, 1200 psi), 5 h	<b>I</b> + <b>II</b> (87), <b>I</b> : <b>II</b> = 53:47	799
	HRh(CO)(PPh ₃ ) ₃ , 2 DPPB, THF, 80°, CO/H ₂ (3/1, 1200 psi), 40 h	I + II (88), I:II = 98:2	799
N H	RhH(CO)(PPh ₃ ) ₃ , 40-45°, 40 h, CO/H ₂ (500 psi)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{CHO O} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	801
		1	
$= \langle CONH_2 \rangle$	[Rh(CO) ₂ Cl] ₂ , PPh ₃ , Et ₃ N, PhMe, CO/H ₂ (1/1, 50 atm), 120°, 17 h	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	762
N N N N N N N N N N N N N N N N N N N	HRh(CO)(PPh ₃ ) ₃ , THF, 80°, 18 h, CO/H ₂ (1/1, 1200 psi)	$ \begin{array}{c}                                     $	363, 802
		$ \begin{array}{c} \swarrow \\ N \\ \downarrow \\ COMe \end{array} + \begin{array}{c} \swarrow \\ N \\ \downarrow \\ COMe \end{array} + \begin{array}{c} \swarrow \\ CHO \\ I:II:III:IV = 63:11:13: \\ I:III:III:IV = 63:11:13: \\ I:III:III:IV = 63:11:13: \\ I:III:III:IV = 63:11:13: \\ I:II:III:IV = 63:11:13: \\ I:III:III:IV = 63:11:13: \\ I:IIIII:IV = 63:11:13: \\ I:IIIII:IV = 63:11:13: \\ I:III:III:IV = 63:11:13: \\ I:IIIII:IV = 63:11:13: \\ I:III:III:IV = 63:11:13: \\ I:IIIII:IV = 63:11:13: \\ I:III:III:IV = 63:11:13: \\ I:III:IV = 63:11:13: \\ I:IIII:IV = 63:11:13: \\ I:III:IV = 63:11:13: \\ I:IIIIIII:IV = 63:11:13: \\ I:IIIIIII:IV = 63:11:13: \\ I:IIIIIII:IV = 63:11:13: \\ I:IIIIIII:III:IV = 63:11:13: \\ I:III:III:III:IV = 63:11:13: \\ I:III:III:IIII:III:IIII:III:III:III:$	13
	[Rh(DPPB)(NBD)][ClO ₄ ], THF, 80°, 18 h, CO/H ₂ (1/1, 1200 psi)	I + III + IV (78), I:III:IV = 71:5:24	363, 802
	RhCl(PPh ₃ ) ₃ , THF, CO/H ₂ (1/1, 1200 psi), 80°, 18 h	<b>I</b> + <b>III</b> + <b>IV</b> (80), <b>I</b> : <b>III</b> : <b>IV</b> = 65:7:28	363
	Rh ₄ (CO) ₁₂ , THF, CO/H ₂ (1/1, 1200 psi), 80°, 18 h	I + II + III + IV (78), I:II:III:IV = 79:6:6:9	363
	Co ₂ Rh ₂ (CO) ₁₂ , CO/H ₂ (1/1, 1200 psi), THF, 60°, 18 h	<b>I + III</b> (80), <b>I</b> : <b>III</b> = 82:18	363
	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 40°, 30 h, CO/H ₂ (1/1, 500 psi)	$I(-) + \bigvee_{\substack{N \\ COMe}}^{N} V(-) I:V = 54:46$	801
CONMe ₂	CO/H ₂ (1/1, 109 atm), THF, 70°, 16 h <i>i</i> -PrO ₂ C	$\underbrace{I(-)}_{\text{CONMe}_2} \mathbf{I}(-) + OHC \underbrace{I(-)}_{\text{CONMe}_2} \mathbf{I}(-) +$	248
	$\begin{array}{c} 0 \\ 0 \\ -P \\ 0 \\ 0 \\ -P \\ 0 \\ -P \\ 0 \\ 0 \\ -P \\ -Q \\ -P \\ -P$	<b>CONMe</b> ₂ <b>III</b> (—) <b>I</b> : <b>II</b> : <b>III</b> = 49.5:0.5:50	
	· → · CO₂Pr-i i-PrO2C		

	Conditions	Product(s) and field(s) (%)	Refs.
NH ₂	CO/H ₂ (1/1, 1200 psi), THF, 100°, 18 h <u>Catalyst</u> RhCl(PPh ₃ ) ₃ RhCl(CO)(PPh ₃ ) ₂ HRh(CO)(PPh ₃ ) ₃ Rh ₄ (CO) ₁₂	N H (91) (89) (88) (92)	799, 800
/	RhH(CO)(PPh ₃ ) ₃ , 50-60°, 72 h, CO/H ₂ (500 psi)	$\begin{array}{c} \text{CHO} \\ \swarrow \\ \text{NHAc} \end{array} \mathbf{I} (-) + \begin{array}{c} \text{NHAc} \\ \text{CHO} \end{array} \mathbf{I} (-) \mathbf{I} \cdot \mathbf{I} = 1:1 \end{array}$	801
⁶ R ¹ NH R ²	<ul> <li>(A) HRh(CO)(PPh₃)₃, CO (34.5 atm), NaBH₄,</li> <li><i>i</i>-PrOH, CH₂Cl₂, 100°, 24 h</li> <li>(B) Rh(COD)BPh₄-[Ru(CO)₃Cl₂]₂, CH₂Cl₂, CO/H₂ (1/1, 48 atm), 100°, 24 h</li> </ul>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	360
	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 60°, 3 d, CO/H ₂ (500 psi)	N CHO ()	801
	Rh ₄ (CO) ₁₂ , PhMe, CO/H ₂ (1/1, 300 bar), 130°, 26 h	$\int_{CONEt_2}^{(24)} + \underbrace{Et_2N}_{CONEt_2}^{(29)} + \underbrace{CONEt_2}_{(24)}^{(29)}$	803
N R R	Rh4(CO) ₁₂ , CO/H ₂ (1/1, 120 atm), C ₆ H ₆ , 40°, 24 h	CHO I () + $R$ $R$ $I () + $ $R$ $R$ $R$ $I () + $ $R$ $R$ $R$ $R$ $I () + $ $R$ $R$ $R$ $R$ $R$ $I () + $ $R$	804, 805
R R	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 120 atm), C ₆ H ₆ , 40°, 44 h	$ \begin{array}{c} & \\ N \\ R \\ R \\ \end{array} \\ \begin{array}{c} \\ R \\ \\ R \\ \end{array} \\ \begin{array}{c} \\ R \\ \\ R \\ \\ R \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	804, 805
	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 120 atm), C ₆ H ₆ , 40°, 36 h	$ \begin{array}{c c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $	804
	PtCl(SnCl ₃ )(DIOP), CO/H ₂ (1/1, 80 bar), PhMe, 100°, 10 h	$ \underbrace{ \begin{pmatrix} 0 & 0 & 0 \\ N & N & N \end{pmatrix} }_{N & N & N & N & N & N \\ (3) & - & - & - & - & - \\ \end{array} $	806
	[Rh(NBD)Cl] ₂ , PPh ₃ , PhMe, 100°, CO/H ₂ (1/1, 80 bar), 5 h	$\mathbf{I}(\mathbf{i}) + \underbrace{\bigvee_{\mathbf{N}}}_{\mathbf{CHO}} 0 (60) + \underbrace{\bigvee_{\mathbf{N}}}_{\mathbf{CHO}} 0 (29)$	806
NC	Rh(CO) ₂ (acac), BIPHEPHOS, THF,	NC CHO (84) n:iso > 40:1	135

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
$\bigcap$	COM (1/1 80 hav) 1008 C H ( h		007
N N	CO/H ₂ (1/I, 80 bar), 100°, C ₆ H ₆ , 6 h		807
Me' ~		Me CHO Me Me	
	Catalyst	$Conv. (\%) \qquad I:II:III$	
	$HRh(CO)(PPh_3)_3$	64 39:59:2	
	[Rh(NBD)Cl] ₂	64 0:0:100	
	$[Rh(NBD)Cl]_2 + PPh_3$	60 41:56:3	
	$[Rh(NBD)Cl]_2 + PBu_3$	50 20:72:8	
	$ Rh(NBD)Cl _2 + PBu_3 + Et_3N$	59 38:58:4	
	$[Rh(NBD)Cl]_2 + P(C_6H_{11})_3$	8 17:42:41	
	$[Rh(NBD)Cl]_2 + P(neomenthyl)Ph_2$	60 11:18:71	
	$[Rh(NBD)CI]_2 + P(C_6H_4Me-2)_3$	59 1:2:97	
	RhH(CO)(PPh ₃ ) ₃ , $C_6H_6$ , 75-125°, 48 h,	II (42) + III (29) + $Me^{-N}$ CH ₂ OH (1)	808
	$CO(n_2(1/1, 200 \text{ ps}))$		
	[Rh (OAc) ₂ ] ₂ , Ligand, CO/H ₂	N I + $N$ NH ₂ II	809, 810
$// \circ \circ \circ \circ$			
	Ligand CO/H ₂		
	PPh, 1:1	40:60 (	
	PPba 9:1	95:5 ()	
	BIPHEPHOS 1:1	100:0 ()	
	PPh ₂ 1.9	10:90 ()	
	$\mathbf{P}(to -a)_2$ 1:1	15:85 ()	
	$\mathbf{P}(\mathbf{tol}, \boldsymbol{a})_{3} = 1.9$	15:85 ()	
	$P(OPh)_{a} = 1.1$	50:50 (	
	P(OC.H.Me.o). 1.1	25:75 ()	
		20:70 (—) 80:70 (—)	
	$P(OCy)_3$ 1.1 $P(P_{11}, r_{12})_{1 \leq 1 \leq 1}$	95:5 ()	
	$r(Du-n)_3$ 1.1 $P(C_{12})_2$ 1.1	95:15 () 85:15 ()	
	Rh (CO) ₂ (acac), BIPHEPHOS, THF, CO/H ₂ (1/1, 70 psi), 60°	n:iso = 18:1, (95)	135
H N NH ₂	[Rh(OAc) ₂ ] ₂ , CO/H ₂ (400 psi), C ₆ H ₆	$ \begin{array}{c}                                     $	810
		$\prod_{n=1}^{N} \sum_{i=1}^{N+1} \prod_{i=1}^{N+1} \prod_$	
	Ligand H ₂ /CO	(I+II):(III+IV) I:II III/IV	
	BIPHEPHOS 9:1	100:0 >95:<5	
	BIPHEPHOS 1:1	100:0	
	P(OPh) ₃ 1:1	75:25 85:15 25:75	
	PPh ₃ 9:1	>95:<5 70:30 —	
	PPha 1:1	60:40 85:15 25/75	
	$P(C_6H_4Mc-\sigma)_3$ 1:1	5:95 95:5 30:70	
	$P(Bu-n)_3$ 1:1	>95:<5 75:25 —	
	P(Cy) ₃ 1:1	>95:<5 65:35	
	(Ph(OAc)-]. Ligand CO/H.		800
	Ligand H ₂ /CO	(I+II);(III+IV) I:II III/IV	307
	PPh ₂ 1.1	60:40 85:15 25:75	
	PPha 0.1	\$95:25 70:30 <u>-</u>	
	$P(R_{1,n})_{n} = 1.1$	>05:<5 75:25	
	$\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)_{1}$	~73.~3 IJ.43 — \05.25 45.35	
		100.0 100.0 20.80	
	ETH3 1:9	20:00 >95:<3 33:43	
	$r(C_6 n_4 me-o)_3$ 1:1	50170 Solid	

5:95

95:5 30:70

P(C₆H₄Me-o)₃ 1:9

Reactant	Conditions	Product(s) and Yield(s) (%)	Ref
NEt ₂	Rh complex, CO/H ₂	OHC $NEt_2$ (-) + $Et_2N$ $NEt_2$ (-)	811
	$[Rh(CO)_2Cl]_2$ , PPhMe ₂ , P/Rh = 2, C ₆ H ₆ , CO/H ₂ (1/1, 120 atm), 60°, 7 h	I + I = 99:t	640
	[Rh(CO) ₂ CI] ₂ , PPhMe ₂ , C ₆ H ₆ , CO/H ₂ , 60°	$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	640
Me	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 125°, 24 h, CO/H ₂ (1/1, 200 psi)	$Me_N$ $Me_N$ $Me_N$ $Me_N$ $Me_N$	808
		CHO IV +	
		$\overset{\text{Me}-N}{\longrightarrow} \overset{\text{CH}_2\text{OH}}{\longrightarrow} \mathbf{V}(6) + \overset{\text{Me}-N}{\longrightarrow} \mathbf{VI}(6)$	
		<b>I</b> + <b>II</b> + <b>III</b> + <b>IV</b> (86), <b>I</b> : <b>II</b> : <b>III</b> : <b>IV</b> = 2:2:9:87	
NH O	RhCl(PPh ₃ ) ₃ , DPPB, L/Rh = 5, THF, 100°, 18 h, CO/H ₂ (1/1, 1800 psi)	$\begin{array}{c} \overbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	363
	HRh(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 100 atm), C ₆ H ₆	$(\mathbf{A}, \mathbf{A}, A$	812
R Me Bu- <i>t</i> 2-pyridyl	Temp.         Time (h)         Conv.           80°         48         81           120°         140            80°         48         20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
N CO2Et	RhH(CO)(PPh ₃ ) ₃ , PPh ₃ , L/Rh = 3, C ₆ H ₆ , CO/H ₂ (1/1, 200 psi), 100°, 24 h	$\begin{array}{c} CHO \\ & \\ N \\ & \\ I \\ CO_2Et \\ I \\ I \\ I \\ I \\ CO_2Et \\ I \\ $	808
NH ₂	CO/H ₂ (1/1, 100 atm), THF, 70°, 16 h i-PrO ₂ C $O^{-P-O}$ $(\langle \rangle_3$ Rh ⁺ (COD) BF ₄ ⁻	(100) H (100)	248
O N H	$O - P' - O - O - CO_2 Pr - i$ <i>i</i> -PrO ₂ C HRh(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 1200 psi), THF, 100°, 18 h	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	799

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
,	RhCl(CO)(PPh ₃ ) ₂ , CO/H ₂ (1/1, 1200 psi), THF, 100°, 18 h	I + II + III (78), I:II:III = 47:13:40	799
V NH	Co ₂ Rh ₂ (CO) ₁₂ , CO/H ₂ (1/2, 1800 psi), THF, 125°	(78) O	363
N.R.	$[Rh(NBD)Cl]_2$ , L/Rh = 3, C ₆ H ₆ , 100°, CO/H ₂ (1/1, 80 bar), 6 h	$ \begin{array}{c}                                     $	807
	Ligand PPh ₃ PBu ₃ PPh ₃ PBu ₃ PPh ₃ PBu ₃	R         Conv. (%)         I:II:III           Me         94         87:11:1           Me         93         92:5:2 <i>i</i> -Pr         86         92:4:2 <i>i</i> -Pr         80         93:5:1           CH ₂ Ph         88         95:1:3           CH ₂ Ph         79         90:1:8	
NO ₂	Rh/C, C ₆ H ₆ , 80°, 1-2 h, CO/H ₂ (1/1, 160 atm)	(60) + (5) + (5) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7) + (7)	813
CO ₂ Me	HCo(CO) ₄ , CO/H ₂ (1/1, 1 atm), hexane, rt, overnight	$\bigvee_{\substack{N\\ CO_2Me}}^{O} f^{f} $ (45)	814
	Co ₂ (CO) ₈ , CO/H ₂ (1/1, 1300-1400 psi), C ₆ H ₆ , 120°	CO ₂ Me I (28)	814
	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , CO/H ₂	$\mathbf{I} + \underbrace{\mathbf{MeO_2C}}_{OHC} \underbrace{\mathbf{CHO}}_{N} \underbrace{\mathbf{II}}_{I + \mathbf{II}} \underbrace{\mathbf{II}}_{I + \mathbf{II}} (97)$	814
Ts ^{NH}	Rh(acac)(CO) ₂ , BIPHEPHOS, CO/H ₂ (1/1, 4 atm), THF, 40°, 16 h	CHO (>98)	815
	Rh(acac)(CO) ₂ , BIPHEPHOS, CO/H ₂ (1/1, 4 atm), THF, 40°, 16 h	OHC Ts NH CHO (>95)	815
C ₉ PhNH	(DPPB)Rh(COD)BF ₄ , CO/H ₂ (1/1, 48 atm), CH ₂ Cl ₂ , 80°, 12 h	$\bigvee_{\substack{N \\ Ph}} I (75)$	360
	[Rh(COD)Cl] ₂ , CO/H ₂ (1/1, 48 atm), DPPB, CH ₂ Cl ₂ , 80°, 12 h	I (69)	360
NH ₂	$[Rh(OAc)_2]_2$ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ , 60°, 20 h	I () + I () I:II = 60:40	313
Et ₂ N	Rh (CO) ₂ (acac), BIPHEPHOS, THF, CO/H ₂ (1/1, 70 psi), 60°	$Et_2N$ (93) n:iso > 40:1 (93)	135

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
R ² OH		$R^2_{L}$ $\frac{OH}{R^2}$ $R^2_{L}$	
R ¹ NH ₂	$[Rh(OAc)_2]_2$ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 60°, 20 h	$I + R^1$ II	313, 361
		$\mathbf{R}^1  \mathbf{R}^2 \qquad \mathbf{I}:\mathbf{II}  \mathbf{I}  \mathbf{II}$	
		H H 75:25 (69) (13)	
		H Me 88:12 (85) (12)	
		H Ph 91:9 (79) (9)	
		4-Mc Ph    87:13  (70)  (11)	
		H $C_6H_4Me-4$ 83:17 (80) (15)	
		R	
	Ph(COD)PDh CO (24.5 stm) NoDU		360
R	i-PrOH, CH ₂ Cl ₂ , 100°, 30 h		300
		l Ar	
Ar R		<u>R 1</u>	
2-C5H4N Me		Me (26)	
Ph Me		Me (84)	
$4-MeOC_6H_4$ Me		Me (49)	
2-MeC ₆ H ₄ Me		Mc $(45) + i$ -BuNHC ₆ H ₄ Me (30)	
4-ClC ₆ H ₄ Me		Me (37)	
I-C ₁₀ H ₇ Me Ph P-C-H.		Me (57) R=CrH (83)	
Ph $CH_2SO_2Ph$		Me = (87)	
NH O NH NH	Co ₂ Rh ₂ (CO) ₁₂ , CO/H ₂ (1/2, 1800 psi), 125°, THF	(77)	363
NH ₂	$[Rh(OAc)_2]_2$ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 70°, 20 h		364
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} H \\ N \\ R^{1} \end{array} $	[Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 70-100°, 20 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	816
		$\frac{R^{1} - R^{2}}{R^{1}} \qquad $	
		$C_{11}  M_{12} = 0 \cdot (0 \cdot 0 \cdot 0 \cdot 55 - (12))$	

TABLE VIII. HYDROFORMYLATION OF UNSATURATED NITROGEN COMPOUNDS (Continued)

ArNH	Rh(COD)BPh ₄ , CO (34.5 atm), NaBH ₄ , <i>i</i> -PrOH, CH ₂ Cl ₂ , 100°, 30 h	$ \begin{array}{c} & \\ N \\ H \\ H$
		ArIIIIIIPh $(31)$ $(33)$ $(10)$ 4-MeOC ₆ H ₄ $(30)$ $(30)$ $(0)$ 1-C ₁₀ H ₇ $(27)$ $(0)$ $(14)$ 2-MeOC ₆ H ₄ $(0)$ $(0)$ $(82)$ 2-MeC ₆ H ₄ $(0)$ $(0)$ $(72)$
MeO ₂ C	Rh(COD)BPh ₄ , CO/H ₂ (1/1, 48 atm), DPPB, CH ₂ Cl ₂ , 80°, 12 h	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
I-Bu	CO/H2 (1/1, 80 bar), PhMe	$\mathbf{I} + \mathbf{I} + $
	Catalyst         Temp.         Time (h)           [Rh(NBD)Cl] ₂ /2.2 PPh ₃ 100°         12           [Rh(NBD)Cl] ₂ /DPPB         100°         20           [Rh(NBD)Cl] ₂ /DPPP         100°         20           [Rh(NBD)Cl] ₂ /DPPP         100°         20           [Rh(NBD)Cl] ₂ /DPPE         100°         20           PrCl ₂ ((2 <i>S</i> ,4 <i>S</i> )-BDPP)/2 SnCl ₂ 100°         6           PrCl ₂ (DPPB)/2 SnCl ₂ 100°         15           PrCl ₂ (DPPB)/2 SnCl ₂ 50°         75	I + II $III$ $III + IV$ $III:IV$ $V$ (48)         97:3         (31)         96:4         (<1)           (28)         98:2         (54)         99:1         (<1)           (20)         99:1         (71)         99:1         (<1)           (22)         98:2         (43)         98:2         (<1)           (<1)          (36)         97:3         (15)           (<1)          (30)         97:3         (22)           (<1)          (76)         98:2         (3)
$R^1$ $R^2$ $R^3$ $NH_2$	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , PhMe, CO/H ₂ (1/1, 20 atm), 70°, 70 h	$R^{1} \xrightarrow{N} H$ $R^{2} \xrightarrow{R^{3}} X \xrightarrow{I}$ $H \xrightarrow{H} H$ $R^{2} \xrightarrow{R^{3}} X \xrightarrow{I}$ $H \xrightarrow{H} H$ $H$ $H \xrightarrow{H} H$ $H$ $H \xrightarrow{H} H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$
EtO ₂ C	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 75°, 24 h, CO/H ₂ (1/1, 200 psi)	$F H F N(Boc)_{2} (62)$ $H H H OH (73)$ $EtO_{2}C N H F EtO_{2}C N F CHO II + 808$ $EtO_{2}C N F CH_{2}OH III (tr) + EtO_{2}C N F V (1)$

TABLE VIII. HYDROFORMYLATION OF UNSATURATED NITROGEN COMPOUNDS (Continued)



Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
H N NH ₂	[Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 80°, 20 h	(75) NH (75)	822
ŭ	[Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 80°, 20 h	NH (65)	822
H N N NH ₂	[Rh(OAc) ₂ ] ₂ , PPh ₃ , P/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), $80^{\circ}$ , 20 h	$R = \frac{R}{5 - Me} = \frac{100:0}{40060}$	823
	Rh(CO)H(PPh ₃ ) ₃ or [Rh(OAc) ₂ ] ₂ /PPh ₃ , CO/H ₂ (1200 psi), C ₆ H ₆ , 40°, 65 h	$\frac{r}{R} = \frac{\mathbf{I} + \mathbf{I}}{1} + \frac{\mathbf{I} + \mathbf{I}}$	824
NH2 H N	Rh ₂ (OAc) ₄ , PPh ₃ , P/Rh=2, AcOEt, CO/H ₂ (1/1, 27 atm), 80°, 20 h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	819
	Rh ₄ (CO) ₁₂ , PhMe, 120°, 72 h, CO/H ₂ (1/1, 80 atm)	OHC (-) + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + (-) + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + $(-)$ + (	762
Ph N H	[Rh(DPPB)(NBD)][ClO ₄ ], THF, 100°, 71 h, CO/H ₂ (34/3, 1850 psi)	COPh (87)	363, 802
	Co ₂ Rh ₂ (CO) ₁₂ , THF, 100°, 18 h, CO/H ₂ (1/3, 1200 psi)	(85) COPh	363, 802
	Rh ₄ (CO) ₁₂ , THF, CO/H ₂ (2/1, 800 psi), 100°, 18 h	$\bigvee_{\substack{N \\ COPh}} OH (76) + Ph H H CHO (11)$	363, 802
	RhCl(CO)(PPh ₃ ) ₂ /PPh ₃ (1/50), C ₆ H ₆ , CO/H ₂ (1/1, 100 atm), 70°, 15-20 h	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ I + II (98), I:II = 0.7 \end{array} $	825

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	Co ₂ (CO) ₈ , C ₆ H ₆ , CO/H ₂ (1/1, 100 atm), 120°, 43 h	<b>I</b> + <b>II</b> (45), <b>I</b> : <b>II</b> = 4	825
Y	PtCl ₂ (PPh ₃ ) ₂ /SnCl ₂ (1/5), MEK, 70°, 15-20 h, CO/H ₂ (1/1, 100 atm)	<b>I</b> + <b>Π</b> (79), <b>I</b> : <b>Π</b> = 1.5	825
X NMe ₂	CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 24 h	$X \qquad I + $ $CHO \qquad I + $ $CHO \qquad II + $ $CHO \qquad II + $	826
		X III	
	Catalyst         Temp.           HRh(CO)(PPh_3)_3         80°           Rh ₂ O ₃ 120°           (COD)Rh*BPh ₄ 120°           HRh(CO)(PPh_3)_3         80°           Rh ₂ O ₃ 120°           (COD)Rh*BPh ₄ 120°           HRh(CO)(PPh_3)_3         80°           Rh ₂ O ₃ 120°           HRh(CO)(PPh_3)_3         80°           Rh ₂ O ₃ 120°           (COD)Rh*BPh ₄ 120°           (COD)Rh*BPh ₄ 120°	XI:III + IIIIIH>99:1 $(91)$ $(8)$ H>99:1 $(14)$ $(81)$ H>99:1 $(15)$ $(81)$ Cl99:1 $(91)$ $(9)$ Cl>99:1 $(6)$ $(92)$ Cl>99:1 $(7)$ $(90)$ Br>99:1 $(4)$ $(92)$ Br>99:1 $(8)$	
Ph N N H	HRh(CO)(PPh ₃ ) ₃ , CO (34.5 atm), NaBH ₄ , <i>i</i> -PrOH, CH ₂ Cl ₂ , 100°, 24 h	(40) Ph	360
PhNH	Rh(COD)BPh ₄ , CO (34.5 atm), NaBH ₄ , <i>i</i> -PrOH, CH ₂ Cl ₂ , 100°, 30 h	PhNH (48)	360
N Ph	RhCl(PPh ₃ ) ₃ , THF, 100°, CO/H ₂ (1/1, 1200 psi), 18 h	$ \begin{array}{c} \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $	7 <del>9</del> 9
		IV I + II + III + IV (88) $I:II:III:III:IV = 28:53:16:3$ Ph	
	RhCl(CO)(PPh ₃ ) ₂ , THF, 100°, CO/H ₂ (1/1, 1200 psi), 18 h	I + II + III + IV (92), I:II:III:IV = 35:49:14:2	799
	RhCl(CO)(PPh ₃ ) ₂ , 20 PPh ₃ , THF, 100°, CO/H ₂ (1/1, 1200 psi), 40 h	I + II (98), I:II = 91:9 کم	799, 800
H NH ₂	$[Rh(OAc)_2]_2$ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 90°, 20 h	(57) ratio 2:1 + starting material (25) $_{3}^{5}$	822
	[Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 80°, 20 h	(60) ratio 3:1 + starting material (25) NH	822
H N NH ₂	$[Rh(OAc)_2]_2$ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 80°, 20 h	N I + II (67) I, ratio 9:1 NH I:II = 70:30	822



Refs.

Reactant	Conditions Product(s) and Yield(s) (%)	Refs.
	$Co_2(CO)_8$ , CO/H ₂ (1/1, 1300-1400 psi), I (35) + II (37) $C_6H_6$ , 90°, 4-5 h	814
	[RhCl(CO) ₂ ] ₂ , PPh ₃ , PhMe, 120-130°, CO/H ₂ (1/1, 2000 psi) $Ph_{N-1} (62)$ O N CHO	828
R	[Rh], CO/H ₂ (1/1, 100 atm), C ₆ H ₆ $R$ $CHO$ II + $CHO$ II +	812
	$\mathbf{P} \qquad \qquad \mathbf{ID}\mathbf{h} \qquad \qquad \mathbf{Trans} \qquad \mathbf{Trans}  \mathbf{h} \qquad \mathbf{Conv}  (\mathbf{G})  \mathbf{I} + \mathbf{\Pi}  \mathbf{H} \qquad \mathbf{H}$	
	$\frac{R}{2-nvridvl} + \frac{R}{2} + \frac{R}{2$	
	$\frac{2}{2} - \text{pyridyl}  \text{Rh}(\text{acac})(\text{CO})_{2} \qquad 80^{\circ} \qquad 144 \qquad 92 \qquad (38) \qquad 25:75  (51)$	
	3-pyridyl HRh(CO)(PPh ₃ ) ₃ 100° 48 100 (20) 0:100 (80)	
	3-pyridy] $[Rh(CO)_2Cl]_2$ 100° 90 62 — (62)	
	3-pyridyl [Rh(CO) ₂ Cl] ₂ /4PPhMe ₂ 100° 90 95 (15) 0:100 (80)	
C14		
R	RhH(CO)(PPh ₃ ) ₂ /10PPh ₃ , PhMe, 70°, CO/H ₂ (1/1, 20 atm), 70 h Ts	829
<u>R</u>	<u>I</u>	
3-furyl	(70)	
3-pyridyl	(80)	
Ph	(83)	
p-MeOC ₆ H ₄	(60)	
p-CF3C5H4	(74)	
o-NCC6H4	(52)	
3-indanyl	(49)	
C	χ.	
NHCPh3	RhCl(CO)(PPh ₃ ) ₂ , CO/H ₂ (1/1, 1200 psi), $100^{\circ}$ , 18 h I + OHC I + OHC I + NHCPh ₃ II	799
	Solvent I:II Yield	
	THF 47:53 (79)	
	PhMe 17:83 (83)	
	DMF 12:88 (80)	
	dioxane 0:100 (75)	

TABLE VIII. HYDROFORMYLATION OF UNSATURATED NITROGEN COMPOUNDS (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
Me-P Cl	Co ₂ (CO) ₈ , CO/H ₂ (1/1, 100 atm), 120°, C ₆ H ₆ , 2 h	$Me \xrightarrow{P} CHO I + Me \xrightarrow{P} II I + II (42)$	366
	Rh(acac)[P(OPh) ₃ ] ₂ , CO/H ₂ (1/1, 1 atm), 45°, C ₆ H ₆ , 2 h	I + II (53), I:II = 97:3	366
	HRh(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 100 atm), 100°, 5-19 h	I + II (80), I:II = 9:91	366
	Co ₂ (CO) ₈ , CO/H ₂ (1/1, 100 atm), 120°, MeOH, 2 h	$Me \xrightarrow{P} OMe (90) + Me \xrightarrow{P} (4)$	366
C ₈ OP(OEt) ₂	Rh ₄ (CO) ₁₂ , C ₆ H ₆ , CO/H ₂ (1/1, 500 psi), 50°, 22 h		290
	[Rh(OAc) ₂ ] ₂ , C ₆ H ₆ , CO/H ₂ (1/1, 500 psi), 50°, 22 h	I (100)	290, 291
C ₉ R OP(OEt) ₂	[Rh(OAc) ₂ ] ₂ , CO/H ₂ (1/1, 500 psi), C ₆ H ₆ , 50°, 5-22 h	$\begin{array}{c cccc} CHO & R & \hline R & Ratio \\ \hline & & Me & () & 60:40 \\ \hline & & Ph & () & 70:30 \end{array}$	281, 291
OP(OEt) ₂	[Rh(OAc) ₂ ] ₂ , CO/H ₂ (1/1, 500 psi), C ₆ H ₆ , 90°, 22 h	CHO $OP(OEt)_2$ $I + II (), I:II = 87:13$ $II$ $OP(OEt)_2$	290, 291
C11 OP(OEt)2	[Rh(OAc) ₂ ] ₂ , CO/H ₂ (1/1, 500 psi), C ₆ H ₆ , 100°, 44 h	$\bigcup_{OP(OEt)_2}^{CHO} (80)$	290, 291
C ₁₂ OP(OEt) ₂		$CHO \\ OP(OEt)_2 I + OP(OEt)_2 II$	290
$C_{15} \longrightarrow PPh_2$	{Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 2, EtOAc, CO/H ₂ (1/1, 400 psi), 100°, 20 h	$\mathbf{I} + \mathbf{II} (80), \mathbf{I} \cdot \mathbf{II} = 1:4$ CHO $(\mathbf{J}_n^{\text{PPh}_2} \mathbf{I} + \text{OHC} (\mathbf{J}_n^{\text{PPh}_2} - \mathbf{II} + \mathbf{II})$	288, 289
		$(\bigvee_{n}^{\text{PPh}_2} \text{III} + HO (\bigvee_{n}^{\text{PPh}_2} \text{IV} +$	
		$\bigwedge \bigcup_{n}^{PPh_2} V$	
		n         I         II         IV         V         Yield           1         0         0         30         20         50         (68)           2         0         0         100         0         0         (86)           3         21-26         2-9         27-52         0         13-50         (64-95)           4         60         32         0         0         8         (96)	
$()_n^{\text{PPh}_2}$	(CO) ₄ M(µ-PPh ₂ ) ₂ RhH(CO)(PPh ₃ ), CO/H ₂ (1/1, 400 psi), C ₆ H ₆ , 80°	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	830
<u>M a</u> I	II III IV Branched:Linear Yield	Un	
<b>W</b> 1 –	- 36 18 67:33 (54)	/ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$	
Mo 1	- 35 21 62:38 (56)		
W 2 —	- 24 10 (1:29 (34)) $- 100 - 100:0 (77)$		
Mo 2 —	- 100 - 100:0 (98)		
Cr 2 17	- 83 - 100:0 (100)		

Cr W

Mo 3 92 --Cr 3 90 --

83:17

100:0

100:0

(100)

(---) (100)

## TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS

A. Phosphorus Compounds

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
$C_{16}$ $O$ $U$ $PPh_2$	[Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 2, EtOAc, CO/H ₂ (1/1, 400 psi), 100°, 5 h	$OHC \underbrace{O}_{PPh_2} I + \underbrace{CHO}_{PPh_2} I H$	288, 289
PPb ₂	(CO) ₄ W(µ-PPh ₂ ) ₂ RhH(CO)(PPh ₃ ), C ₆ H ₆ , CO/H ₂ (1/1, 380 psi), 80°, 22 h	I + II (55), I:II = 64:36	372
PPh ₂	$[Rh(OAc)_2]_2$ , PPh ₃ , L/Rh = 4, EtOAc, 5 h, CO/H ₂ (1/1, 400 psi), 45°	CHO $PPh_2$ I (90) + OH II () I:II = 93:7 ratio 3:2	365. 289
PPh ₂	[Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 50°, 17 h 365. 289	(95)  syn:anti = 1:1	365. 289
PPh ₂	(CO) ₄ W(μ-PPh ₂ ) ₂ RhH(CO)(PPh ₃ ), C ₆ H ₆ , CO/H ₂ (1/1, 380 psi), 80°, 22 h	$\begin{array}{c} CHO \\ PPh_2 \end{array} \mathbf{I} + \begin{array}{c} OH \\ PPh_2 \end{array} \mathbf{I} + \\ PPh_2 \end{array} \mathbf{I} + \\ PPh_2 \end{array}$	372
		OHC PPh ₂ III $I + II + III (100)$ I:II:III = 77:12:6	
	[Rh(OAc) ₂ ] ₂ , CO/H ₂ (500 psi), C ₆ H ₆ , 100°, 22 h	I + II + III (80), I:II:III = 70:19:11	372
$C_{19}$ $O$ $H$	[Rh(OAc) ₂ ] ₂ , PPh ₃ , L/Rh = 4, EtOAc, CO/H ₂ (1/1, 400 psi)	CHO $\downarrow$ $\downarrow$ $\mu$ $\mu$ $\mu$ $\mu$ $\mu$ $\mu$ $\mu$ $\mu$	365
PPh ₂	[ <b>R</b> h(OAc) ₂ ] ₂ , <b>PP</b> h ₃ , <b>L/Rh</b> = 4, EtOAc, CO/H ₂ (1/1, 400 psi), 22 h	$\bigcup_{n}^{CHO} \mathbf{I} + \bigcup_{n}^{PPh_2} \mathbf{I} +$	289, 365
C	Temp. 55° 90° 90°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
C ₆ H ₄ PPh ₂ - <i>o</i>	Rh(acac)(CO) ₂ , P(OPh) ₃ , P/Rh = 4, CO/H (1/1, 20 atm), PhMe, 70-90°, 24 h	$\begin{array}{c} C_{6}H_{4}PPh_{2}-o \\ O \\ O \\ R \\ \end{array} \begin{array}{c} C_{6}H_{4}PPh_{2}-o \\ O \\ I \\ R \\ \end{array} \begin{array}{c} C_{6}H_{4}PPh_{2}-o \\ O \\ I \\ R \\ \end{array} \begin{array}{c} C_{6}H_{4}PPh_{2}-o \\ O \\ I \\ R \\ \end{array} \begin{array}{c} C_{6}H_{4}PPh_{2}-o \\ O \\ I \\ R \\ \end{array} \begin{array}{c} C_{6}H_{4}PPh_{2}-o \\ O \\ I \\ R \\ \end{array} $	743, 831
R Et <i>i-</i> Pr Cy CO ₂ Me CH ₃ (CH ₂ )C 1-Fury1 Ph Bn		$I:\Pi$ I $73:27$ (83) $96:4$ (97) $95:5$ (81) $90:10$ (80) $96:4$ (36) $93:7$ (63) $92:8$ (99) $80:20$ (75)	

# TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) A. Phosphorus Compounds (Continued)



## TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) A. Phosphorus Compounds (Continued)



## TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) A. Phosphorus Compounds (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
$C_3$ $SO_2R$ $\frac{R}{Me}$ Et Ph $C_{10}H\tau^2$	Rh(COD)BPh ₄ . DPPB, L/Rh = 2, CH ₂ Cl ₂ , CO/H ₂ (1/1, 600 psi), 75°	CHO $SO_2R$ I + $SO_2R$ II I = I = I = I = I = I = I = I = I = I =	371
C ₅ SMe	Rh₄(CO) ₁₂ , C ₆ H ₆ , 60°, 22 h, CO/H ₂ (1/1, 500 psi)	CHO SMe $I + OHC$ SMe $II + II (8)$ I:II = 76	2) 367 5:24
	$[Rh(OAc)_2]_2$ , PPh ₃ , 70°, 5 h,	<b>I</b> + <b>II</b> (51), <b>I</b> : <b>II</b> = 40:60	367
$c_{s}$	HRh(CO)(PPh ₃ ) ₃ , PhMe, 35°, 48 h, CO/H ₂ (1/1, 80 har)	$ \begin{array}{c}             I + \\             S \\             CHO             I + II (100) \\             I:II = 19.5:1             I         $	370
S S	Rh(CO) ₂ (acac), BIPHEPHOS, THF, CO/H ₂ (1/1, 70 psi), 60°	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	135
	Rh ₄ (CO) ₁₂ , CO/H ₂ (500 psi), C ₆ H ₆ ,	<b>I + II</b> (65), <b>I</b> :II = 1:1.8 <b>I + II</b> (100), <b>I</b> :II = 84:16	367
	50°, 22 n [Rh(OAc) ₂ ] ₂ , CO/H ₂ (1000 psi), 100° 22 h	<b>I + II</b> (88), <b>I</b> : <b>II</b> = 75:25	367
	$[Rh(OAc)_2]_2$ , PPh ₃ , 100°, 5 h, (CO/H ₂ (400 psi))	<b>I</b> + <b>II</b> (92), <b>I</b> : <b>II</b> = 46:54	367
	$(CO)_4 W(\mu - PPh_2)_2 RhH(CO)(PPh_3), C_6 H_6,$ $CO/H_2$ (1/1, 380 psi), 50°, 20 h	I + II (76), I:II = 53:47	372
C ₈ SPh	Rh/C (5%), DPPP, CO (8.5 atm), HCO ₂ H, DME, 100-105°, 18-24 h	CHO I + OHC $SPh$ $I = 1 + II (71)I = 97:3$	368
SPh n	HRh(CO)(PPh ₃ ) ₃ , PhMe, 35°, 48 h, CO/H ₂ (1/1, 80 bar)	$\begin{array}{c} CHO \\ & & \\ & \\ & \\ & \\ & \\ \hline \\ & \\ & \\ & \\$	370
Phs A	Rh(COD)BPh ₄ , DPPB, L/Rh = 4, CH ₂ Cl ₂ , CO/H ₂ (1/1, 600 psi), 75°, 2 h	Phs (50)	371
s s	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 500 psi), C ₆ H ₆ , 50°, 22 h	$\begin{array}{c} S \\ S \\ CHO \\ S \\ CHO \\ CHO \\ S \\ CHO \\ II + \\ S \\ S \\ II + \\ II + II + III (96) \\ II + \\ II + II + III (96) \\ II + \\ II + II + III (96) \\ II + \\ II + II + III (96) \\ II + \\ II + II + III (96) \\ II + \\ II + II + III (96) \\ II + \\ II + II + III (96) \\ II + \\ II $	367
C S S	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 800 psi),	$I:\Pi:\Pi = 41:48:11$ I + II + III (30), I:II:III = 2:29:69	367
	CO/H ₂ (1/2, 1 atm), rt, 4 d	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	369
$\frac{x}{so}$	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , CO/H ₂ (1/2, 1 atm), rt, 4-5 d	$\begin{array}{c} & \\ & \\ \hline \\ & \\ \hline \\ & \\ \hline \\ \hline \\ \hline \\ \hline \\$	369
S		() 3:1	

# TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) B. Sulfur Compounds

	B. Sulfur Compoun	ds (Continued)	
Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
$ \begin{array}{c} C_{9} \\                                    $	HRh(CO)(PPh ₃ ) ₃ , PhMe, 35°, 48 h, CO/H ₂ (1/1, 80 bar)	CHO X I + II (100) 19:1 (76) 6:1 (90) 12:1	370
C ₁₀ SPh	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 500 psi), 50°, 22 h	$\begin{array}{c} \text{CHO} \\ \text{CHO} \\ \text{SPh} \\ \text{I + OHC} \\ \text{SPh} \\ \text{SPh} \\ \text{II = 57:43} \\ \text{II = 57:43} \\ \end{array}$	367
	[Rh(OAc) ₂ ] ₂ , CO/H ₂ (1/1, 800 psi), 100°, 22 h	<b>I</b> + <b>II</b> (29), <b>I</b> : <b>II</b> = 50:50	367
Cu	[Rh(OAc) ₂ ] ₂ , PPh ₃ , CO/H ₂ (1/1, 400 psi), EtOAc, 70°, 5 h	<b>I</b> + <b>Π</b> (100), <b>I</b> : <b>Π</b> = 34:66	367
S Bu-s	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 100°, CO/H ₂ (1/1, 100 atm), 30 h	S Bu-s (70) S CHO CHO	373, 834
Ph S S	HRh(CO)(PPh ₃ ) ₃ , 5 PPh ₃ , C ₆ H ₆ , 100°, CO/H ₂ (1/1, 1000 psi), 92 h	$\begin{array}{c c} Ph & & \\ & & \\ \hline \\ CHO & S \end{array} & I + \begin{array}{c} Ph & \\ & \\ S \end{array} & \\ S & \\ S & I \\ I:II = 90:10 \end{array}$	367
	[Rh(OAc) ₂ ] ₂ , 2 PPh ₃ , 100°, 92 h, CO/H ₂ (1/1, 1000 psi)	<b>I</b> + <b>Π</b> (90), <b>I</b> : <b>Π</b> = 90:10	367
S Bu-s	HRh(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 130°, 48 h, CO/H ₂ (1/1, 100 atm)	CHO (65)	374

## TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued)

### TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued)

C. Silicon Compounds

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.						
C5 Me ₃ Si	Rh(COD)BPh ₄ , C ₆ H ₆ , 100°, 1.5 h, CO (65 psi), H ₂ (135 psi)	$Me_3Si \xrightarrow{\text{CHO}} I + \underbrace{H}_{Me_3Si} \stackrel{\text{CHO}}{\longrightarrow} I = 30.7$	118 0						
	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 80°, 3 h, CO/H ₂ (1/1, 80 kg/cm ² )	<b>I</b> + <b>II</b> (98), <b>I</b> : <b>II</b> = 54:46	375						
	RhH(PPh ₃ ) ₄ , C ₆ H ₆ , 80°, 2 h, CO/H ₂ (1/1, 80 kg/cm ² )	<b>I</b> + Π (99), <b>I</b> :Π = 52:48	375						
	Rh ₆ (CO) ₁₆ , C ₆ H ₆ , 100°, 8 h, CO/H ₂ (1/1, 80 kg/cm ² )	I + II (85), I:II = 51:49	375						
	[Rh(CO) ₂ Cl] ₂ , C ₆ H ₆ , 100°, 3 h, CO/H ₂ (1/1, 80 kg/cm ² )	<b>I</b> + <b>II</b> (86), <b>I</b> : <b>II</b> = 50:50	375						
	RhCl(PPh ₃ ) ₃ , C ₆ H ₆ , 100°, 5 h, CO/H ₂ (1/1, 80 kg/cm ² )	I + II (93), I:II = 56:44	375						
	RhH(CO)(PPh ₃ ) ₃ , PPh ₃ , L/Rh = 80, C ₆ H ₆ , 80°, 4 h, CO/H ₂ (1/1, 80 kg/cm ² )	<b>I</b> + <b>II</b> (88), <b>I</b> : <b>II</b> = 95:5	375						
	$Rh_6(CO)_{16}$ , $PPh_3$ , $L/Rh = 50$ , $C_6H_6$ , 80°, 3 h, CO/H ₂ (1/1, 80 kg/cm ² )	<b>I</b> + <b>H</b> (85), <b>I</b> : <b>Π</b> = 100:0	375						
	Co ₂ (CO) ₈ , C ₆ H ₆ , 120°, 8 h, CO/H ₂ (1/1, 120 kg/cm ² )	$I(73) + EtSiMe_3(1)$	375						
	PtCl ₂ (PPh ₃ ) ₂ , C ₆ H ₆ , 100°, 6 h, CO/H ₂ (1/1, 120 kg/cm ² )	$I(73) + EtSiMe_3(2)$	375						
	$Ru_3(CO)_{12}$ , $C_6H_6$ , 110°, 6 h, $CO/H_2$ (1/1, 100 kg/cm ² )	(I + II) (73) + EtSiMe ₃ (4) I:II = 86:14	375						
	Rh/C (5%), DPPP, CO (8.5 atm), HCO ₂ H, DME, 100-105°, 18-24 h	<b>I</b> + <b>II</b> (42), <b>I</b> : <b>II</b> = 100:0	368						
Reactant	Con	ditions			, 	Product(s) and	d Yield(s)	(%)	Refs.
-----------------------	-----------------------------------------------------------------------------------------------------------------------------------	---------------------------------------	------------------	----------------------	-------------------------	---------------------------	----------------------	-----------------------------------------------------------	----------
	CO/H ₂ (1/1, 500 psi), 75°								377
	Catalyst	Solvent	Time (h)	I:II:1,3-8	Si shifted	Yield			
	Rh-clay	C ₆ H ₆	36	96:4:0		(95)			
	Rh-clay	PhMe	36	95:5:0		(88)			
	[Rh(COD)Cl]2	C ₆ H ₆	36	42:44:14		(76)			
	[Rh(COD)Cl] ₂ Na ⁺ -clay	C ₆ H ₆	36	62:23:15		(91)			
	Na ⁺ -clay	C6H6	48			(0)			
	Rh-clay calcined	C ₆ H ₆	48	100:0:0		(11)			
~	·						CHO	5	
(MeO) ₃ Si	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 8 CO/H ₂ (1/1, 80 kg/cm ² )	0°, 6 h,		(MeO) ₃ S	i CI	HO I + (MeO	) ₃ Si	П I+II (83) I:II = 52:48	375
	Co ₂ (CO) ₈ , C ₆ H ₆ , 120°, 6 h CO/H ₂ (1/1, 100 kg/cm ² )	,		I + II (63	3), I:II = 62;3	38			375
	Rh-clay, CO/H ₂ (1/1, 500) 75°, 24 h	osi), C ₆ H ₆ ,		I + II (89	9), <b>I:II =</b> 8:92	2			377
C ₈	,					(	סער		
Et ₃ Si	Ir(COD)BPh ₄ , CHCl ₃ , 100 CO/H ₂ (7/1, 800 psi)	°, 9 h,		Et ₃ Si	CHO	I + Et ₃ Si		I + II (73) I:II = 94:6	118
	[Ir(COD) ₂ ]BF ₄ , C ₆ H ₆ , 100 CO/H ₂ (7/1, 800 psi)	°, 3 h,		I + II +	⊦ SiEt ₄ (Ⅲ)	<b>I</b> + <b>Π</b> (60)	, <b>I</b> :II = 97:	3; III (12)	118
	CO (65 psi), H ₂ (135 psi),	100°		I + II +	OSiEt ₃	IV			118
	Cataluat		in) Satura		. <b>1.17</b> 1				
		additive (equ	C U	1 1 me (n	) 1:11 1	(+11 + 11)			
	Rh(COD)BPh, n	0110	CIL	1.5	65.25 (	54) (0) 66) ( )			
	Rh(COD)BPh ₄ n	000	DhMa	15	66-34 /	53) (8)			
	Rh(COD)BPh, n	one	Phore.	1.5	72.28 (	53) (6) 52) (13)			
	Rh(COD)BPh, n	one	CHCl	1.5	95.5 (	38) (20)			
	Rh(COD)BPh ₄ R	Ph. (1)	C.H.	1.5	80.20	01) ()			
	Rh(COD)BPh, P	$P_{h_2}(2)$	C.H.	1.5	03.7 (	91) (—) 97) ( )			
		1 113 ( <i>2</i> )	С 11 С 11	1.5	67.22 (	40) ( <del>~</del> )			
		one		2	67.55 (	40) (0) 50) (2)			
		0110	C6R6 DhMa	3	71.20 (	30) (3) 21) (6)			
			DECE	1.5	/1.29 (	31) (0) 17) ( )			
			CUCI	2	01.17 (	17) (—) 0) (0)			
	[RI(COD) ₂ ]BF ₄ II	DH. (1)	C.H.	5 15	TRK (	0) (0)			
		F 113 (1)	C6H6	1.5	78.22 (	93) (—)			
	IrCl ₃ , AgBF ₄ , C ₆ H ₆ /CHCl ₃ CO/H ₂ (7/1, 800 psi)	, 100°, 3 h,		I + II (59	), I:II = 98:2	; 🎹 (16)			118
	$[Co_3(\eta^6-C_6H_6)_3(\mu_3-CO)_2]B$	Ph ₁ , 100°, 3	h	I + II + I	II (—), I:II:I	<b>II</b> = 59:18:23			118
	Rh-clay, CO/H ₂ (1/1, 500 p 75°, 36 h	osi), C ₆ H ₆ ,		I (98)					377
G.	Rh-clay, CO/H ₂ (1/1, 500 p 75°, 36 h	osi), PhMe,		I (93)					377
Me ₃ Si Bu	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , L/ CO/H ₂ (1/1, 400 psi), 50°	Rh = 50, C ₆ l , 20 h	Н ₆ ,	Me ₃ Si	HO CHO	+ OSiMe ₃	Bu II	<b>I</b> + <b>II</b> (79) <b>I</b> : <b>II</b> = 50:50	376
Me ₃ Si Bu	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , L/ CO/H ₂ (1/1, 400 psi), 50°	Rh = 50, C ₆ I , 20 h	H ₆ ,	I + II (81	), I:II = 50:5	0			376
Cti								634	
Sime3	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , L/ CO/H ₂ (1/1, 400 psi), 50°,	Rh = 50, C ₆ I 20 h	H ₆ ,	$\bigcirc$	SiMe,	³ I +	) CH	. SiMe3 П Ю	315, 376

#### TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) C. Silicon Compounds (Continued)





I + II (86), I:II >98:2

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
SiMe3	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , L/Rh = 50, C ₆ H ₆ , CO/H ₂ (1/1, 400 psi), 50°, 20 h	I + II (80), I:II >98:2	376
C ₁₂ TBDMSO	Rh(CO) ₂ (acac), BIPHEPHOS, THF, CO/H ₂ (1/1, 70 psi), 60°	TBDMSO CHO (86) n:iso > 40:1	135
$\mathbf{R}^{1}$ $\mathbf{R}^{2}$	$HRh(CO)(PPh_3)_3$ , PPh ₃ , I/Rh = 50, C ₆ H ₆ , CO/H ₂ (1/1, 400 psi)	$\begin{array}{cccc} R^1 & & R^2 \\ \hline & & R^1 & & \\ \hline & & CHO & & R^1 & & \\ \hline & & & R^2 & & \\ \hline \end{array} $	376
	Temp. Time (h)	$\frac{\mathbf{R}^{\mathbf{I}}}{\mathbf{R}^{2}} = \mathbf{I} + \mathbf{I} \mathbf{I} = \mathbf{I} \cdot \mathbf{I} \mathbf{I}$	
	90° 20	TBDMS Bu (87) 70:30	
	65° 90 65° 90	Ph ₃ Si Bu (69) 90:10 Ph ₂ Si Me (82) 90:10	
	80° 90	TBDPS Bu (80) 96:4	
OTBDMS		OTBDMS OTBDMS	
	$Rh(acac)(CO)_2$ , P(OPh)_3, P/Rh = 4, PhMe, CO/H ₂ (1/1, 20 bar), 80°, 48 h		743
C ₁₄		I + II (35), I:II = 1:1	
n-Bu ₃ Si	RhH(CO)(PPh ₃ ) ₃ , C ₆ II ₆ , 90°, CO/H ₂ (1/1, 80 kg/cm ² )	$\begin{array}{ccc} \text{CHO} & \mathbf{I} + \\ n - Bu_3 Si \end{array} \xrightarrow{\text{CHO}} & \mathbf{II} & \mathbf{I} + \mathbf{II} (100) \\ \mathbf{III} = 85:15 \\ \text{CHO} \end{array}$	375
Ph ₂ MeSi	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , 90°, CO/H ₂ (1/1, 80 kg/cm ² )	Ph ₂ MeSi CHO I + Ph ₂ MeSi II I + II (91) I:II = 90:10	375
Ph ₃ Si	Rh(COD)BPh ₄ , C ₆ H ₆ , 100°, CO (65 psi), H ₂ (135 psi)	Ph ₃ Si CHO I + Ph ₃ Si CHO I + II (55) I:II = 95:5	118
	Rh/C (5%), DPPP, CO (8.5 atm), HCO ₂ H, DME, 100-105°, 18-24 h	<b>I</b> + <b>II</b> (92), <b>I</b> : <b>II</b> = 83:17	368
	Rh-clay, CO/H ₂ (1/1, 500 psi), C ₆ H ₆ , 75°, 18 h	I (99)	377
H O OTBDMS	[Rh(COD)(OAc)] ₂ , CO/H ₂ (1/1, 560 psi), C ₆ H ₆ , 76°, 3.25 h	$\begin{array}{c} H \\ H $	833, 292, 835
		OHC	
	$[Rh(COD)(OAc)]_2, P(OC_6H_4Bu-t-2)_3, L/Rh = 20, CO/H_2 (1/1, 660 psi), C_6H_6, 77^\circ, 75 min$	I(5) + II(15) + III(54)	833
TBDPSR	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , L/Rh = 50, $C_6H_6$ , CO/H ₂ (1/1, 400 psi)	$\begin{array}{ccc} CHO & \mathbf{I} + & TBDPS \\ TBDPS & \mathbf{R} & CHO \\ \end{array} $	315, 375
<u>R</u>	Time (h) Temp.	<u>I:H I + H</u>	
CH(OH)Me	66 80°	>98:2 (83)	
CH(UMe)Me Bu	20 80°	>98:2 (17)	
CH ₂ OSiMe3	20 70°	>98:2 (70)	
CH(OH)Pr	90 80°	>98:2 (51)	
CH(OH)Ph	66 80°	>98:2 (33)	
TBDPSOMe	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , L/Rh = 50, 50°, CO/H ₂ (1/1, 400 psi), Et ₃ N, C ₆ H ₆ , 20 h	TBDPS OMe I + TBDPS OMc II CHO	315, 375
C ₂₁		<b>I</b> + <b>II</b> (83), <b>I</b> : <b>II</b> = 97:3	
TBDPS	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , C ₆ H ₆ , CO/H ₂ (1/1, 400 psi), 80°, 66 h	TBDPS OSiMe ₃ (60)	315

# TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) C. Silicon Compounds (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , L/Rh = 50, CO/H ₂ (400 psi), 40°, 20 h	(I + I) = (I +	387
HO ₂ C (1/8)	Rh(CO) ₂ (acac), BIPHEPHOS, THF, CO/H ₂ (1/1, 70 psi), 60°	HO ₂ C $(68)$ n:iso > 40:1	135
C ₁₂ O O Ph O O	Rh(CO) ₂ (acac), BIPHEPHOS, THF, CO/H ₂ (1/1, 70 psi), 60°	Ph $O$ $CHO$ $(73)$ n:iso > 40:1	135
L Cr(CO) ₃	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , L/Rh = 50, CO/H ₂ (400 psi), 50°	Cr(CO) ₃ (~ 100)	387
	1. HRh(CO)(PPh ₃ ) ₃ , CO/H ₂ (1/1, 28 bar), 50°, PhMe, 72 h 2. LiAlH4, rt, 1 h	(34) + (20) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) +	388
	Catalyst, CO/H ₂ , 100°	$\overbrace{Cr(CO)_3}^{I} I + \overbrace{Cr(CO)_3}^{I} Cr(CO)_3 I + \overbrace{Cr(CO)_3}^{I} Cr(CO)_3 I + II (33), I:II = 1:1$	387
	Rh ₄ (CO) ₁₂ , hexane, 100°, 4.5 h, CO/H ₂ (1/1, 80 bar)	$\underbrace{\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	385
	<ol> <li>HRh(CO)(PPh₃)₃, CO/H₂ (1/1, 28 bar), 50°, PhMe, 72 h</li> <li>LiAiH₄, π, 1 h</li> </ol>	$(CO)_{3}C_{r}^{T} \times H$ $(CO)_{3}C_{r}^{T} \times H$ $(CO)_{3}C_{r}^{T} \times H$ $(RR + SS)$ $(RS + SR)$ $(RS + SR)$	388
C ₁₃	[Rh(NBD)Cl] ₂ , PPh ₃ , L/Rh = 2, CO/H ₂ (1/1, 160 bar), PhMe, 100°, 7 h	$\frac{X}{(CO)_{3}Cr} \xrightarrow{I} \frac{I}{Me} \xrightarrow{I} \frac{I}{(69)} \frac{II}{(8)} \frac{III}{(20)}$ $OMe (72) (8) (16)$ $OPr-i (56) (8) (19)$ $Fe$ $I (-) + Fe$	386
	HRh(CO)(PPh ₃ ) ₃ , PPh ₃ , L/Rh = 50, CO/H ₂ (400 psi), 50°	CHO (CO) ₃ Cr (ca. 100)	387

#### TABLE IX. HYDROFORMYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) D. Other Compounds

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Ref
R ¹ R ² OH	( <i>R.S</i> )-BINAPHOS	Rh(acac)(CO) ₂ , L/Rh = 4, CO/H ₂ (1/1, 30 atm), PhH, 60 °, 30 h	$HO^{R} \xrightarrow{R^2} O^{R^3} I + \xrightarrow{R^3} CHO H II +$	836
			онс он ш	
		$R^1$ $R^2$	$\mathbf{R}^{3}$ Conv. (%) I:II:III I (%ee) II (%ee)	
		нн	H >99 90:10:0 — 16	
		Me H	H 51 $26:74:0 - 27(R)$ ND	
		н ы	$\frac{1}{10} \frac{1}{10} \frac$	
		••• ••		
-S		$Rh(acac)(CO)_2$ , PhII,	R ^S CHO	0.27
	(x,s)-BINAPHOS	L/Rh = 4.4.4		837
		<u>R</u>	Temp. Time (h) Conv. (%) <b>I</b> : <b>II I</b> (%ee)	
		Et	50° 96 60 86:14 (66),—	
		Pr-i	50° 48 >99 92:8 (72),—	
		Bu-t	40° 27 70 96:4 (89), —	
		C ₆ H ₁₁	$40^{\circ}$ 36 32 91:9 (72), —	
		p-MeC _s H ₄	$40^{\circ}$ 20 96 96:4 (74),	
		r		
~			СНО	
c0 ⁻		Rh(acac)(CO) ₂ , L/Rh = 4, CO/H ₂ (1/1, 100 atm), C ₆ H ₆	Aco I+ Aco CHO II	34, 113
		Temp. Time (h) C	onv. (%) I:II I (%ee)	
	(R,S)-BINAPHOS	60° 36 >	99 86:14 92 <i>(S)</i>	
	(R,R)-BINAPHOS	50° 37	46 92:8 73 (S)	
	OP(OPh) ₂ OP(OPh) ₂	Rh(CO) ₂ (acac), C ₆ H ₆ , H ₂ /CO (1/1, 100 atm), L/Rh = 1.0, 30°, 48 h	Ac0 + $Ac0$ CHO	35
			$\mathbf{I}(77), 12(\mathbf{R})$ $\mathbf{II}(3)$	
	"	Rh(CO) ₂ (acac), C ₆ H ₆ , H ₂ /CO (1/1, 100 atm), L/Rh = 1.0, 30°, 40 h	I (27), 45 ( $R$ ) + II (2)	35
	v	[Rh(CO) ₂ Cl] ₂ , C ₆ H ₆ , H ₂ /CO (1/1, 70 atm), L/Rh = 2.5, 60°, 40 h	I (86), 41 ( <i>R</i> ) + II (5)	35
	·	[Rh(CO) ₂ Cl] ₂ , C ₆ H ₆ , H ₂ /CO (1/1, 70 atm), L/Rh = 2.5, 60°, 40 h	I (75), 34 ( $R$ ) + II (6)	35
	( <i>R,R</i> )-(-)-DIOP	Rh ₂ (µ-OMe) ₂ (COD) ₂ , CO/H ₂ (1/1, 20 bar), 20 h (MeO) ₂ CMe ₂ , 70°	I (80), 25 ( <i>R</i> ) + II (20)	663
	( <i>R,R</i> )-(-)-DIOP	[RhCl(CO) ₂ ] ₂ , C ₆ H ₆ , CO/H ₂ (49/51, 95.2 atm) 120°, 18 h	I (61), 16 ( <i>S</i> ) + II (—)	838
	(R)-C ₅ Ph ₄ O ₂ CCH(OMe)Ph	Rh(η ⁵ -Chiral Ligand)(CO) ₂ , CO/H ₂ (1/1, 100 atm), 50°, 2 d	I (), 3	839
	OP(OC ₆ H ₄ Me-4) ₂ OP(OC ₆ H ₄ Me-4) ₂	Rh(CO) ₂ (acac), C ₆ H ₆ , H ₂ /CO (1/1, 100 atm), L/Rh = 1.5, 40°, 40 h	I (76), 45 ( <i>R</i> ) + II (6)	35

TABLE X. ASYMM Reactant Chiral Licend	Conditions	Product(s) and Yield(s) (%). Gee	Refs
OP(OC ₆ H ₃ Me ₂ -3,5) ₂	$Rh(CO)_2(acac), C_6H_6,$ $H_2/CO (1/1, 100 atm),$ $L/Rh = 2.5, 30^\circ, 40 h$	I (11), 45 ( $R$ ) + II (1)	35
	Rh(CO) ₂ (acac). C ₆ H ₆ , H ₂ /CO (1/1, 100 atm), L/Rh = 2.5, 60°, 40 h	I(11), 14(R) + II(1)	35
(-)- <b>BPPM</b>	PtCl ₂ (BPPM)/SnCl ₂ , CO/H ₂ (1/1, 2700 psi), C ₆ H ₆ , 60°, 40 h	<b>Ι</b> (), 82 ( <i>S</i> ) + <b>Π</b> (), <b>Ι</b> : <b>Π</b> = 3:7	406
$R_2P$ $R_2P$ $R_2P$ $R = Ph$	[RhCl(CO) ₂ ] ₂ , C ₆ H ₆ , CO/H ₂ (49/51, 95.2 atm) 120°, 18 h	I (29), 1 ( <i>S</i> ) + II (—)	838
R = DBP		I(46), 6(R) + II(-)	838
$R_2P$ $R_2P$ $H$ $R = Ph$	{RhCl(CO) ₂ ] ₂ , C ₆ H ₆ , CO/H ₂ (49/51, 95.2 atm) 120°, 18 h	I(12), 6(R) + II()	838
R = DBP	Pt(Chiral ligand)Cl ₂ , SnCl ₂ , C ₆ H ₆ , 60°,	I (58), 10 ( <i>S</i> ) + II ()	838
$H = \begin{array}{c} 0 \\ 0 \\ -H \\ R_2 P \\ PR_2 \\ PR_2 \\ PR_2 = DBP \end{array}$	$\frac{\text{CO/H}_2 (1/1, 2700 \text{ psi})}{42 \text{ h}}$ $\frac{100 \text{ h}}{100 \text{ h}}$	I (), 58 (S) + II (), I:II = 1:1 I (), 57 (S) + II (), I:II = 1:1	411, 412
(–)-DBP-DIOP	Pt(DBP-DIOP)Cl ₂ , SnCl ₂ , C ₆ H ₆ , 60°, 42 h, CO/H ₂ (1/1, 2700 psi)	I (), 61 ( <i>S</i> ) + II (), I:II = 5.2:1	411, 412
(-)-DIOP	[RhCl(CO) ₂ ] ₂ , L/Rh = 2, CO/H ₂ (1/1, 100 atm), 70°, 42 h	I (12), 23 + II (1)	840
$O = PPh_2$	[RhCl(CO) ₂ ] ₂ , L/Rh = 10, CO/H ₂ (1/1, 9.6 MPa), C ₆ H ₆ , 120°, 19 h	I (71), 6 + II (<1)	841
(R,R)-DIOP	Rh(COD)(acac), L/Rh = 4, 70°, CO/H ₂ (44/56, 250 psi)	I (), 40 ( <i>S</i> ) + II ()	842

	IADLE A. AS I MI	METRIC III DROI ORMITEAT	(Commuta)	
Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
	(R,R)-1-NA-DIOP	Rh(COD)(acac), L/Rh = 3, 80°, CO/H ₂ (44/56, 250 psi)	I (), 6 ( <i>S</i> ) + II ()	842
	(R,R)-2-NA-DIOP		I (), 39 ( <i>S</i> ) + II ()	842
	(R,R)-m-CF3DIOP	Rh(COD)(acac), L/Rh = 3, 50°, CO/H ₂ (44/56, 150 psi)	I (), 42 (S) + II ()	842
	$\begin{array}{c} Ph & O \\ O \\ Ar_2P & O \\ PAr_2 \end{array} \\ O \\ PAr_2 \end{array}$	Rh(COD)(chiral ligand)BF4, CO/H2 (1600 psi), hexane	<b>1</b> (—), 14 + <b>11</b> (—), <b>1</b> : <b>11</b> = 92:8	843
	$Ar = 3,5-(CF_3)_2C_6H_3$	[Rh(CO)(PPh ₃ )(L [*] )]ClO ₄ , CO/H ₂ (1/1, 60 atm), C ₆ H ₆ , 50°, 16 h	I (—), 12 ( <i>R</i> )	844
	$(RO)_2 P \xrightarrow{O} P(OR)_2$	Rh(acac)(CO) ₂ , L [*] /Rh = 4. PhMe, 50°, CO/H ₂ (1/1, 130 psi)	I (), 50 (S)	38
	$P(OR)_2 = P$ t-Bu OMe			
	Ph ₂ P N	Rh(acac)(CO) ₂ , C ₆ H ₆ , L*/Rh = 2.5, 80°, 6 h, CO/H ₂ (1/1, 80 atm)	<b>I + II</b> (90), — , <b>I:II =</b> 96:4	714
	Ph ₂ P N	Rh(acac)(CO) ₂ , C ₆ H ₆ , L [*] /Rh = 2.5, 80°, 1 h, CO/H ₂ (1/1, 80 atm)	I + Π (95), —, I:Π = 97:3	714
	$\overset{\text{II}}{\text{O}}$ ( <i>R</i> , <i>R</i> ) DIPHOL	Rh(COD)(acac), L/Rh = 6, 80°, CO/H ₂ (44/56, 500 psi)	I (), 51 ( <i>R</i> ) + II ()	842
	( <i>R</i> , <i>R</i> )-DMPP-DIOP	Rh(COD)(acac), L/Rh = 6, 70°, CO/H ₂ (44/56, 250 psi)	I (), 18 ( <i>R</i> ) + II ()	842
	(R,R)-DIPH-DIOP	Rh(COD)(acac), L/Rh = 4, 80°, CO/H ₂ (44/56, 250 psi)	I(-), 29(S) + II(-)	842
	Ph ₂ P X PPh ₂	Rh(CO) ₂ (acac), C ₆ H ₆ , H ₂ /CO (50 atm), $40^{\circ}$ , 20 h	$\begin{array}{l} \frac{X}{CH_2} & I(,-) \\ 0 & I(,-) \end{array}$	845
	(-)-DIOP	Rh ₂ (μ-OMe) ₂ (COD) ₂ , PPTS, (MeO) ₂ CMe ₂ , CO/II ₂ (1/1, 20 bar), 24 h, 70°	$\begin{array}{c} CH(OMe)_2 \\ AcO \end{array} + AcO CH(OMe)_2 \\ (96), 29 \qquad (4) \end{array}$	663

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs
	(-)-BPPM	PtCl ₂ (BPPM)/SnCl ₂ , CO/H ₂ (1/1, 2700 psi), HC(OEt) ₃ , 60°, 240 h	$\begin{array}{c} CH(OEi)_{2} \\ AcO \\ I(-), >98 S  I:II = 1.5:1  II(-) \end{array}$	406
	PPh ₂ OR	Rh(acac)L copolymerized with divinylbenzenes, CO/H ₂ (1/1, 100 atm), $C_6H_6$ , 60°, 12 h	I (), 93 <i>S</i> , I:II = 90:10	416
[ /*	$R = -P \qquad $			
	Rh, P, P, Ph	⁷ 4) ₂ CO/H ₂ (1/1, 6 atm), 90°	I () 84, I:II = 80:20, TOF = 125 h ⁻¹	846 847
OMe	O PPh ₂	[Rh(CO)(PPh ₃ )(–)L]ClO ₄ , CO/H ₂ (1/1, 60 atm), C ₆ H ₆ , 60°, 16 h	CHO O OMe I + OHC O OMe II I (), 92 R, I:II = 97:3	848
$\langle \mathbf{x} \rangle$		Rh(acac)(CO) ₂ , L/Rh = 4, H ₂ /CO (1/1, 100 atm), $C_6H_6$	CHO X I	849
<u>x</u> o o	( <i>R,S</i> )-BINAPHOS ( <i>R,S</i> )-3,3'-Me₂-BINAPHOS	<u>Temp. Time (h)</u> 40° 48 40° 41	<u>I</u> (63), 62 <i>R</i> (93), 63 <i>R</i>	
NBoc NBoc NAc NAc	(R,S)-BINAPHOS (R,S)-3,3'-Me ₂ -BINAPHOS (R,S)-BINAPHOS (R,S)-3.3'-Me+BINAPHOS	60° 72 60° 72 60° 73 60° 72	(98), 47 <i>R</i> (99), 73 <i>R</i> (92), 66 — (97), 65 —	
$\langle \mathbf{x} \rangle$		Rh(acac)(CO) ₂ , L/Rh=4, H ₂ /CO (1/1, 100 atm), C ₆ H ₆ , 60°		84 <del>9</del>
X O NBoc NBoc	( <i>R,S</i> )-3,3'-M₀ ₂ BINAPHOS ( <i>R,S</i> )-BINAPHOS ( <i>R,S</i> )-3,3'-M¢ ₂ BINAPHOS	<u>Time (h)</u> 60 72 72	I + II         I:II         I (%ee)         II (%ee)           (77)         50:50         38 S         ND           (>99)         33:67         71 S         97 S           (>99)         37:63         22 S         88 S	
$\mathbf{R}^1$ $\mathbf{R}^2$		Rb(CO) ₂ (acac), C ₆ H ₆ , H ₂ /CO (1/1, 100 atm)	$R^1 \xrightarrow{CHO} I + R^1 \xrightarrow{R^2} R^2 I$ $R^2 \xrightarrow{CHO} R^1 = R^2 I$	414
	(S, R)-BIPHEMPHOS "	60°, 40 h 60°, 40 h 30°, 40 h	H OAc (55), 90 R (10) Me Me (), 85 R H n-Bu (12), 85 S (39)	
	" ( <i>S, R</i> )-BINAPHOS "	60°, 42 h 60°, 40 h 60°, 40 h	H Ph (90), 94 S (10) H OAc (56), 92 R (9) Me Me $()$ , 82 R	
	13	30°, 40 h 60°, 42 h	н n-ви (12), /5 S (39) Н Ph (88), 94 S (12)	

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Re
$\sim$		(Chiral Ligand)PtCl ₂ / SnCl ₂ , C ₆ H ₆ , 80°, CO/H ₂ (7/15, 220 atm)	$OHC \underbrace{\qquad }_{\mathbf{I}} + \underbrace{\qquad }_{\mathbf{II}} + \underbrace{\qquad }_{\mathbf{III}} + \underbrace{\qquad }_{\mathbf{III}}$	407
	( <i>R</i> , <i>R</i> )-BCO-DPP ( <i>R</i> , <i>R</i> )-BCO-DBP ( <i>R</i> , <i>R</i> )-DIOP-DBP	<u>Time (h)</u> 2.0 h 4.0 h 5.5 h	Conv. (%)         I: II: III         %ee           85         6:4:1         7.7 S           34         43:7:8         67.1 S           95         17:3:20         39.0 S	
	( <i>R</i> , <i>R</i> )-EtDIOP	$Rh_4(CO)_{12}$ , L/Rh = 4, 80°, $CO/H_2$ (1/1, 80 atm), 22 h	I () + II (), 3.1 <i>R</i> , I:II = 71:29	850
	( <i>R</i> , <i>R</i> )-CyDIOP	$Rh_4(CO)_{12}$ , L/Rh = 4, 80°, CO/H ₂ (1/1, 80 atm), 4 h	I () + II (), 3.5 <i>R</i> , I:II = 59:41	850
	(S,S)-CHIRAPHOS	[Rh(NBD)Cl] ₂ , L/Rh = 4, 6 h, CO/H ₂ (1/1, 80 atm), 100°	<b>I</b> + Π (35), 7.1 <i>R</i> , <b>I</b> :Π = 54:46	130
	(S,S)-CHIRAPHOS	Pt(CHIRAPHOS)(SnCl ₃ )Cl, CO/H ₂ (1/1, 80 atm), 100°	I () + II (), 40 <i>S</i> , I:II = 91:9	130
	( <i>R</i> , <i>R</i> )-DIOP	RhH(CO)(PPh ₃ ) ₃ , L/Rh = 4, 95°, 3 h, CO/H ₂ (1/1, 80 atm)	<b>I</b> + <b>Π</b> (70), 5.9 <i>R</i> , <b>I</b> : <b>Π</b> = 92:8	130
	( <i>R</i> , <i>R</i> )-DIOP	Pt(DIOP)(SnCl ₃ )Cl, 100°, CO/H ₂ (1/1, 80 atm)	I () + II (), 24.8 <i>R</i> , I:II = 94:6	130
	(R.R)-DIOP	Pt(DIOP)(SnCl ₃ )Cl, 60°, CO/H ₂ (1/1, 80 atm), 6.5 h	I + II (32), 46.7 <i>R</i> . I:II = 96:4	130
	(+)-DICOL	HRh(CO)(PPh ₃ ) ₃ /DICOL (1/3), C ₆ H ₆ , 60°, 16 h, CO/H ₂ (1/1, 80-90 atm)	I (54) + II (36), i <i>S</i>	851
	(-)-DIOCOL	HRh(CO)(PPh ₃ ) ₃ /(-)- DIOCOL (1/1.5), C ₆ H ₆ , CO/H ₂ (1/1, 80-90 atm), 60°, 65 h	I (79) + II (12), 3.8 <i>R</i>	851
	(–)-DIOP	Pt[(-)-DIOP]Cl ₂ , SnCl ₂ ·2H ₂ O, PhEt, CO/H ₂ (1/1, 100 atm), 100°, 1 h	I (43) + II (7), 2.8 R	852
	BDP-DIOP	Pt(BDP-DIOP)Cl ₂ , SnCl ₂ ·2H ₂ O, PhEt, CO/H ₂ (1/1, 100 atm), 100°, 3 h	I (33) + II (18), 12.1 <i>S</i>	852
_/		(Chiral Ligand)PtCl ₂ / SnCl ₂ , C ₆ H ₆ , 80°, CO/H ₂ (7/15, 220 atm) Time	Conv. (%) I: II: III % ee	407
	(R,R)-BCO-DPP	5.3 h	68 31:69:1 3.7 R	
	(R,R)-BCO-DBP	21 h	67 13:87:2 30.4 R	
	(R,R)-DIOP-DBP	22 h	40 12:88:— 12.2 <i>R</i>	
	(R,R)-EtDIOP	Rh ₄ (CO) ₁₂ , L/Rh = 4, 80°, CO/H ₂ (1/1, 80 atm), 10 h	I () + II (), 0.1 <i>S</i> , I:II = 5:95	850
	( <i>R</i> , <i>R</i> )-CyDIOP	$Rh_4(CO)_{12}$ , L/Rh = 4, 80°, CO/H ₂ (1/1, 80 atm), 8 h	I () + II (), 1.4 <i>S</i> , I:II = 29:71	850
	(S,S)-CHIRAPHOS	{Rh(NBD)Cl] ₂ , L/Rh = 4, CO/H ₂ (1/1, 80 atm), 100°, 72 h	<b>II</b> (55, 18.4 (S))	130
	(S,S)-CHIRAPHOS	Pt(CHIRAPHOS)(SnCl ₃ )Cl, CO/H ₂ (1/1, 80 atm), 100°	$I() + II(, 23.1(R)), I \cdot II = 28:72$	130

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
	( <i>R</i> , <i>R</i> )-DIOP	RhH(CO)(PPh ₃ ) ₃ , L/Rh = 4, 95°, 22 h, CO/H ₂ (1/1, 80 atm)	II (30), 8.0 <i>S</i>	130
	( <i>R</i> , <i>R</i> )-DIOP	Pt(DIOP)(SnCl ₃ )Cl, 100°, CO/H ₂ (1/1, 80 atm)	I () + II (), 7.7 <i>S</i> , I:II = 45:55	130
	DIOP	RhH(CO)(PPh ₃ ) ₃ , L/Rh = 4, 20°, 30 d, CO/H ₂ (1/1, 16 psi)	II (—), 27	853
	BDP-DIOP	Pt(BDP-DIOP)Cl ₂ , SnCl ₂ ·2H ₂ O, PhEt, CO/H ₂ (1/1, 100 atm), 100°, 8 h	I (17) + II (43), 0.6 R	852
	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , C ₆ H ₆ , ( <i>R</i> ,5)-BINAPHOS, CO/H ₂ (1/1, 100 atm), 60°, 44 h	Ш (—), 82 <i>S</i>	36
	$PR_2 = DBP$	[Rh(CO) ₃ ] ₄ , L/Rh = 4, CO/H ₂ (1/1, 100 atm), PhEt, 120°	I () + II (), 16.8 R	854
	(+)-DICOL	HRh(CO)(PPh ₃ ) ₃ /(+)- DICOL (1/3), C ₆ H ₆ , 80°, CO/H ₂ (1/1, 80-90 atm)	П (91), 0	851
	()-DIOCOL	HRh(CO)(PPh ₃ ) ₃ /(-)- DIOCOL (1/1.5), CO/H ₂ (1/1, 80-90 atm), 90°, mesitylene	П (90), 1 <i>S</i>	851
	()-DIOP	Pt[()-DIOP]Cl ₂ , SnCl ₂ ·2H ₂ O, PhEt, CO/H ₂ (1/1, 100 atm), 100°, 3 h	I (18) + II (22), 9.9 S	852
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	HRh(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , CO/H ₂ (1/1, 45 psi), 25°, 26 d	<b>П</b> (—), 28.4	853
$\sim$		(Chiral Ligand)PtCl ₂ / SnCl ₂ , C ₆ H ₆ , 80°, CO/H ₂ (7/15, 220 atm)		407
		Time	Conv. (%) I: II: III % ee	
	(R,R)-BCO-DPP (R,R) BCO-DPP	9.8 h 30 h	50 25:75:1 1.6 <i>S</i> 65 13:87:3 280.P	
	(R,R)-DIOP-DBP	21 h	80 13:87:11 3.6 R	
	(R,R)-EtDIOP	Rh ₄ (CO) ₁₂ , L/Rh = 4, 80°, CO/H ₂ (1/1, 80 atm), 46 h	I () + II (), 2.4 <i>S</i> , I:II = 2:98	850
	( <i>R</i> , <i>R</i> )-CyDIOP	Rh ₄ (CO) ₁₂ , L/Rh = 4, 80°, CO/H ₂ (1/1, 80 atm), 24 h	I () + II (), 2.3 <i>S</i> , I:II = 3:97	850
	( <i>S</i> , <i>S</i> )-CHIRAPHOS	{Rh(NBD)Cl] ₂ , L/Rh = 4, CO/H ₂ (1/1, 80 atm), 100°, 97 h	I + II (40), 18.5 <i>S</i> , I:II = 1:99	130

 TABLE X. ASYMMETRIC HYDROFORMYLATION (Continued)

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs
	(S,S)-CHIRAPHOS	Pt(CHIRAPHOS)(SnCl ₃ )Cl, CO/H ₂ (1/1, 80 atm), 100°	I () + II (), 8.8 R, I:II = 31:69	130
	( <i>R,R</i> )-DIOP	RhH(CO)(PPh ₃ ) ₃ , L/Rh = 4, 95°, 22 h, CO/H ₂ (1/1, 80 atm)	II (25), 3.2 <i>S</i>	130
	( <i>R</i> , <i>R</i> )-DIOP	Pt(DIOP)(SnCl ₃ )Cl, 100°, CO/H ₂ (1/1, 80 atm)	I (—) + II (—), 13.4 <i>S</i> , I:II = 49:51	130
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	HRh(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , CO/H ₂ (1/1, 45 psi), 25°, 21 d	Ш (—), 7.2	853
	(-)-DIOP	Pt[(-)-DIOP]Cl ₂ , SnCl ₂ ·2H ₂ O, PhEt, CO/H ₂ (1/1, 100 atm), 100°, 3.5 h	I (30) + II (35), 12.8 <i>S</i>	852
	BDP-DIOP	Pt(BDP-DIOP)Cl ₂ , SnCl ₂ ·2H ₂ O, PhEt, CO/H ₂ (1/1, 100 atm), 100°, 9 h	I (13) + II (32), 1.8 <i>R</i>	852
	( <i>R,S</i> )-BINAPHOS	Rh(acac)(CO) ₂ , C ₆ H ₆ , ( <i>R</i> ,S)-BINAPHOS, CO/H ₂ (1/1, 100 atm), 60°, 45 h	П (—), 48 S	36
	()-DIOP	RhH(CO)(PPh ₃ ) ₃ , 80°, CO/H ₂ (1/1, 100 psi), 24 h	CHO + CHO I:II = 68:32 I (), 0.2 S II ()	855
OMe 0	N N	[Rh(COD)(L [*] )]ClO ₄ , CO/H ₂ (1/1, 60 atm), C ₆ H ₆ , 60°, 16 h	CHO OMe + OHC $OMeOHC$ $OMeOHC$ $OMeOHC$ $OHC$ $OH$	844
		[Rh(CO)(PPh ₃ )(L [*] )]ClO ₄ , CO/H ₂ (1/1, 60 atm), C6H ₆ , 60°, 16 h	<b>1</b> (−−), 92 <i>R</i> + <b>11</b> (−−), <b>1</b> : <b>11</b> = 97:3	844
	π	[Rh(CO)(PPh ₃ )(L [*] )]ClO ₄ , CO/H ₂ (1/1, 60 atm), C ₆ H ₆ , 100°, 16 h	I (—), 53 R	844
	(S.S)-Chiraphos	[Rh(CO) ₂ Cl] ₂ /( <i>S</i> , <i>S</i> )- Chiraphos/Et ₃ N (1/4/20), 130°, 63 h, CO/H ₂ (1/1, 160 atm), PhMe	HO $(51)$ + $(38)$ + $(-1)$ + $(-1)$ + $(-1)$	762
	(DIOP	HRh(CO)(PPh ₃ ) ₃ /(-)- DIOP (1/2), C ₆ H ₆ , 95°, CO/H ₂ (1/1, 90 atm), 60 h	(10), <1 S	856
	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , C ₆ H ₆ , 30°, H ₂ /CO (1/1, 100 atm), L/Rh = 4	EZ = 76/24 II EZ = 76/24 II EZ = 76/24 II	857
	(R,S)-BINAPHOS	Rh (acac)(CO) ₂ , C ₆ H ₆ , H ₂ /CO (1/1, 100 atm) L/Rh = 4, 30°	CHO (100)	413

~			<b>B 1</b> (1) <b>1 1 1 1</b>	
Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs
СН	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , C ₆ H ₆ , CO/H ₂ (1/1, 30 atm), 60 °	I + I = 1000  II = 1000  II = 12000  II = 12000  II = 12000  II = 1200000000000000000000000000000000000	836
$\overset{\mathbf{R}^{1}}{\underset{\mathbf{R}^{2}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{3}}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}{1$	(R.S)-BINAPHOS	Rh(acac)(CO) ₂ , ligand, H ₂ /CO (1/1, 100 atm), L/Rh = 4, C ₆ H ₆ , 60°	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113
$\langle  \rangle$	(+)-DICOL	HRh(CO)(PPh ₃ ) ₃ /DICOL (1/3), C ₆ H ₆ , 60°, 30 h, CO/H ₂ (1/1, 80-90 atm)	CHO I (90), 0	851
	(-)-DIOCOL	HRh(CO)(PPh ₃ ) ₃ /(-)- DIOCOL (1/1.5), C ₆ H ₆ , CO/H ₂ (1/1, 80-90 atm), 60°, 44 h	I (93), 3.3 <i>R</i>	851
$\sim$	()-DIOP	1. HRh(CO)(PPh ₃ ) ₃ /(-)- DIOP (1/2), C ₆ H ₆ , 95°, CO/H ₂ (1/1, 90 atm), 24 h 2. Ag ₂ O	CO ₂ H (40), <1 R	856
	(-)-DIOP	HRh(CO)(PPh ₃ ) ₂ /(-)- DIOP (1/2), C ₆ H ₆ , 95°, CO/H ₂ (1/1, 90 atm), 160 h	CHO + + CHO + $I (-), 32.3 S$ II $I + II (25)$ other aldehydes (27)	856 7)
	(-)-DIOCOL	HRh(CO)(PPh ₃ ) ₃ /(-)- DIOCOL (1/1.5), C ₆ H ₆ , CO/H ₂ (1/1, 80-90 atm), 80°, 140 h	I (—), 34.2 S + II (—) + other aldehydes	851
	(R,S)-BINAPHOS	Rh (acac)(CO) ₂ , PhH, H ₂ /CO (1/1, 100 atm) L/Rh = 4, 30°	сно (), 24	413
	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , C ₆ H ₆ , H ₂ /CO (1/1, 100 atm). $30^{\circ}$ , L/Rh = 4	СНО І (75), 22 R	857
	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , C ₆ H ₆ , H ₂ /CO (1/1, 100 atm), 30°, L/Rh = 4	I (88), 20 <i>R</i>	857
0Ac	$OR = -Q_{O} PPh_{2}$	Rh(acac)(CO) ₂ , THF CO/H ₂ (1/1, 40 atm), L/Rh = 5, 80°	Ac0 $(-), 32 (+), I:II = 76:24$ CHO II	858
	$\frac{\sqrt{-1}}{PPh_2}$	Rh(acac)(CO) ₂ , THF CO/H ₂ (1/1, 40 atm), L/Rh = 5, 80 ⁻	I (), 44 (+), I:II = 64:36	858
	P-O PPh2	Rh(acac)(CO) ₂ , THF, CO/H ₂ (1/1, 40 atm), L/Rh = 5, 80°	I (), 1 (+-), I:II = 1:1	858

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
	$OR = -O PPh_2$	Rh(acac)(CO) ₂ , THF CO/H ₂ (1/1, 40 atm), L/Rh = 5, 80°	I (—), 12 (–), I:II = 72:28	858
	$\frac{1}{OR} =O$	Rh(acac)(CO) ₂ , THF CO/H ₂ (1/1, 40 aum), L/Rh = 5, 80°	I (), 14 (+-), I:II = 60:40 CHO	858
		Rh(acac)(CO) ₂ , I/Rh = 4, H ₂ /CO (1/1, 100 atm), C ₆ H ₆ , 48 h Temp.		849
	( <i>R,S</i> )-BINAPHOS ( <i>R,S</i> )-3,3'-Mc ₂ -BINAPHOS ( <i>R,S</i> )-BINAPHOS ( <i>R,S</i> )-3,3'-Me ₂ -BINAPHOS	40° 40° 60° 60°	$\begin{array}{c c} \hline R \\ \hline H \\ \hline (95), 73 \\ \hline H \\ (99), 56 \\ \hline \\ Mc \\ (77), 73 \\ R \\ Me \\ (98), 69 \\ R \end{array}$	
$\mathbf{r}^{\mathbf{R}^1}_{\mathbf{R}^2}$	( <i>R,R</i> )-DIOP	PtCl(SnCl ₃ )(DIOP), CO/H ₂ (1/1, 80 bar), PhMe, 100°	$OHC \xrightarrow{R^1} I + \xrightarrow{R^1} R^2$	859, 762
		Time (h) 45 24 21.5 18 27 15	R ¹ R ² I         II $CO_2Me$ Me         (83), 37.2 S         (16),           Me $CH_2CO_2Me$ (85), 10 S         (15), $CO_2Me$ $CH_2CO_2Me$ (51), 45.2 R         (44), 33.7 R $CO_2Ph$ Me         (56), 23.8 R         (44), $CO_2Me$ Ph         (40), 16.3 R         (54), 27.2 S $CO_2Ph$ $CH_2CO_2Ph$ (55), 42.5 S         (45), 35.5 S	2
	( <i>R,R</i> )-DIOP	PtCl(SnCl ₃ )(DIOP), CO/H ₂ (1/5, 240 bar), PhMe, 50° $\frac{\text{Time (h)}}{110}$ 45 145	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	859
	(S,S)-BDPP	$\begin{array}{c c} PtCl(SnCl_3)(DBPP), \\ CO/H_2 (1/1, 80 bar), PhMe \\ \hline Temp. & Time (h) \\ \hline 100^\circ & 6.5 \\ \hline 50^\circ & 18 \\ 100^\circ & 12 \\ \hline 50^\circ & 70 \\ 100^\circ & 4.5 \\ \hline 50^\circ & 110 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	109
o v o	( <i>\$,\$</i> )-DIOP	Rh(NBD)(DIOP) BPh ₄ , L/Rh = 3, 80°, C ₆ H ₆ , CO/H ₂ (44/56, 250 psi)	$\begin{array}{c} O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ I \\ \hline \\ (-), 29 R \end{array} + \begin{array}{c} O \\ \hline \\ O \\ \hline \hline \\ O \\ \hline \\ O \\ \hline \hline \hline \\ O \\ \hline \hline \hline \\ O \\ \hline \hline \hline \hline$	842
	( <i>R</i> , <i>R</i> )-2-NA-DIOP	Rh(COD)(acac), L/Rh = 3, C ₆ H ₆ , 80°, CO/H ₂ (44/56, 250 psi)	I (), 36 S + II ()	842

Reactant	Chiral Liga	nd C	Conditions	LATIO	III (Continue	Product(s) a	nd Yield(s) (%)	Whee	
Redetaint						Tioduci(s) al		, //	T
	( <i>R</i> , <i>R</i> )- <i>m</i> -CF ₃ DIOP	L/Rh = 3, 0 CO/H ₂ (44	cac), C ₆ H ₆ , 60°, /56, 150 psi)		I (), 33 S	+ II (—)			842
	(R,R)-DIPHOL	Rh(COD)(ar) L/Rh = 4,	cac), C ₆ H ₆ , 80°,		I (—), 32 R	+ 🏾 ()			842
		CO/H ₂ (44	/56, 250 psi)						
	(R.R)-DIPH-DIOP	Rh(COD)(ac	cac), C.H. 80°		I() 18 S	+ II ()			842
	(0.0)-0111-0101	CO/H ₂ (44)	/56, 250 psi)		I (—), 105	· <b>m</b> (—)			042
	(R,S)-BINAPHOS	Rh(acac)(C( H ₂ /CO (1/) L/Rh = 4, H	D) ₂ , ligand, I, 100 atm), PhH, 60°, 78 h		I (), 90 S	+ <b>Ⅱ</b> (>99), I	l: <b>II =</b> 85:15		113
		CO/H ₂ (1/1,	600 psi)		СН	0			756
Ŭ	Chiral Ligand (eq)	Catalyst	Solvent	Temp.	Time (h)	Conv. (%)	Yield (%) GC (Isolated	%ee )	
	(R)-BINAP (1)	Rh(COD)(n ⁶ -PhBPh ₃ )	CH ₂ Cl ₂	60°	42	100	13 (9)	2	
	(R)-BINAP (2)	Rh(COD)(n ⁶ -PhBPh ₃ )	CH ₂ Cl ₂	60°	42	5	5 (4)	17	
	(R)-BINAP (2)	$Rh(COD)(\eta^6\text{-}PhBPh_3)$	CH ₂ Cl ₂	100°	48	73	69 (58)	18	
	(S,S)-CHIRAPHOS (2)	$Rh(COD)(\eta^6\text{-}PhBPh_3)$	$CH_2Cl_2$	100°	66	100	10 (9)	0	
	(R)-BINAP (2)	[Rh(COD)(DPPB)]BF4	$CH_2Cl_2$	100°	66	95	80 (68)	4	
	(R)-BINAP (2)	[Rh(COD)(DPPB)]BF4	$CH_2Cl_2$	$100^{\circ}$	66	92	65 (60)	4	
	(S,S)-CHIRAPHOS (2)	[Rh(COD)Cl]2	CH ₂ Cl ₂	100°	66	9	6 (5)	20	
	(R)-BINAP (2)	[Rh(1,5-hd)(phen)]Cl	$CH_2Cl_2$	100°	66	37	32 (29)	21	
	(R)-BINAP (6)	[Rh(1,5-hd)(phen)]Cl	THF	80°	170	15	15 (12)	37	
	(R)-BINAP (6)	[Rh(1,5-hd)(phen)]Cl	THF	100°	66	37	36 (33)	35	
	(R)-BINAP (15)	[Rh(1,5-hd)(phen)]Cl	THF	$100^{\circ}$	144	56	56 (50)	36	
	(R)-BINAP (6)	[Rh(COD)Cl] ₂	THF	105°	66	22	22 (20)	35	
= CO-Me	(-)-BPPM	PtCl ₂ (BPPM CO/H ₂ (1/ C ₆ H ₆₁ 60°,	4)/SnCl ₂ , 3, 2650 psi), 50 h		онс	(- CO2Me	-), 60 <i>S</i>		406
H CO ₂ R ¹						R ¹			940
R ³ NHCOR ²		CO/H ₂ (10	Ph ₃ ) ₃ , C ₆ H ₆ , 00 atm), 70 h		онс	$-R^3$		³	861
					<u>R1</u>	<u> R² F</u>			<u> </u>
	(-)-DIOP	CO/H ₂ (1	(/10), 60°		ме	Me r	1 (90), 307 1 (90,00) (	16 P (2	9 10)
		CO/H ₂ (1	(/4), <b>6</b> 0°		Bn	MC r	1 (80-90).	-c) AUC	10)
	(-)-DIOCUL		/1), 80°		Bn M-		1 (80-90),	33 R (3-	10) 9\
	()-DIOP		(1), 60		Nic No.	Ma T	1 (70-00),. Dh na maatii	52 N (2-	0)
		CO/H ₂ (1	1/3), 80°		н	Me H	H (0)	(—	-)
$\downarrow$	( <i>R</i> , <i>R</i> )-BCO-DPP	[( <i>R</i> , <i>R</i> )-Bco- SnCl ₂ , C ₆ ]	-dpp]PtCl ₂ / H ₆ , 80°, 12.5 h	ı,	онс		+ +	н	40
I			13, 220 aun)		I (	-) 1845 + )	, П (). L:II = 9	0:10	
	( <i>R</i> , <i>R</i> )-BCO-DBP	[( <i>К</i> ,К)-ВСО- SnCl ₂ , C ₆ I CO/H ₂ (7/	dop]PtCl ₂ / H ₆ , 80°, 17 h, 15, 220 atm)		I (), 46.1	,,,), I S + Щ (—),	, <b>І:П = 86</b> :14		40
	(R,R)-DIOP-DBP	[( <i>R</i> , <i>R</i> )-Diop SnCl ₂ , C ₆ I CO/H ₂ (7/	-dbp]PtCl ₂ / H ₆ , 80°, 116 h 15, 220 atm)	,	I (—), 36 I	₹ + II (—), I	: <b>H</b> = 85:15		40
	(R,R)-EtDIOP	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/	, L/Rh = 4, 80° /1, 80 atm), 22	°, 2 h	<b>I</b> (—), 0.1	R			85
	(R,R)-CyDIOP	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/	, L/Rh = 4, 80 /1, 80 atm), 23	°, h	<b>I</b> (—), 0.1	R			85
	(S,S)-CHIRAPHOS	[Rh(NBD)0 CO/H ₂ (1/ 100°, 168	Cl] ₂ , L/Rh = 4 /1, 80 atm), h		I (43), 21.3	8 R			13

	TABLE X. ASY	MMETRIC HYDROFORMYLAT	ION (Continued)	
Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
	(S,S)-CHIRAPHOS	Pt(CHIRAPHOS)(SnCl ₃ )Cl, CO/H ₂ (1/1, 80 atm), 100°	I (—), 19.8 S	130
	( <i>R</i> , <i>R</i> )-DIOP	RhH(CO)(PPh ₃ ) ₃ , L/Rh = 4, 100°, 96 h, CO/H ₂ (1/1, 80 atm)	I (82), 3.5 S	130
	( <i>R</i> , <i>R</i> )-DIOP	Pt(DIOP)(SnCl ₃ )Cl, 80°, CO/H ₂ (1/1, 80 atm)	I (), 15.0 R	130
	(-)-DIOP	1. HRh(CO)(PPh ₃ ) ₃ /(-)- DIOP (1/2), C ₆ H ₆ , 95°, CO/H ₂ (1/1, 90 atm), 160 h	$CO_2H$ (18), 5.7 R + aldehydes (22)	856
	(+)-DIOP	2. Ag ₂ O Pt( $C_2H_4$ )((+)-DIOP)/ PtCl ₂ ((+)-DIOP) (3/7), CO/H ₂ (1/1, 50 atm), PhMe, 100°, 72 h	OHC + CHO I (74) + II (12), 10.4 R	862
	(RO) ₂ P O O P(OR) ₂	Rh(acac)(CO) ₂ , L [*] /Rh = 4, Me ₂ CO, CO/H ₂ (1/1, 600 psi)	I(-) + II(-), 20 S, I:II = 1:2	38
	$P(OR)_2 = OMe$ $P(OR)_2 = OMe$ POMe POMe POMe			
	( <i>R</i> , <i>R</i> )-DIOP	[Rh(NBD)Cl] ₂ , PhMe, CO/H ₂ (1/1, 80 bar), 100°, 15 h	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	806
	( <i>S,S</i> )-BDPP	[Rh(NBD)Cl] ₂ , PhMe, CO/H ₂ (1/1, 80 har), 40°, 425 h	I(20), 5 + II(1) +	806
o no	16	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , L/Rh = 2, 6 d, 57°, CO/H ₂ (1/1, 500 psi)	$0 \xrightarrow{N} 0 + 0 \xrightarrow{N} 0$ I:II = 83:17 CHO I (), 19.8 R II ()	801
	(+)-DIPHOL	RhH(CO)(PPh ₃ ) ₃ . C ₆ H ₆ , L/Rh = 4, 8 d, 54°, CO/H ₂ (1/1, 500 psi)	I (—), 27.4 S	801
	(-)-DIPHOL	RhH(CO)(PPh ₃ ) ₃ , C ₆ H ₆ , L/Rh = 4, 7 d, 46°, CO/H ₂ (1/1, 500 psi)	I (), 41 <i>R</i>	801
Xø	(+)-DICOL	HRh(CO)(PPh ₃ ) ₃ /DICOL (1/3), C ₆ H ₆ , 60°, 24 h, CO/H ₂ (1/1, 80-90 atm)	СНО (75) + СНО (6), 1 5	851
	(R,S)-BINAPHOS	Rh (acac)(CO) ₂ , C ₆ H ₆ , H ₂ /CO (1/1, 100 atm) L/Rh = 4, 30°, 96 h	$L \rightarrow 84$ $R + U \rightarrow 14$ $R = 81:19$	413
r-Bu (Jn	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , L/Rh = 4, H ₂ /CO (1/1, 100 atm), $C_6H_6$ , 50°	$t$ -Bu $(t)_n$ CHO I + CHO II $(t)_n$ CHO II $(t)_n$	863
<u>n</u> 0		Time (h)         Conv. (%)           49         49           87         87		
2		68 68	74:26 77 ()	

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%). %ee	Refe
Natan	Cimai Ligana	Conditions		Ken
R	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , ligand, D ₂ /CO (1/1), C ₆ H ₆ , I /Rh = 4	R CDO I + R CDO II	51
		R Temp. H ₂ /CO	Time (h) Conv. (%) I:II I (% ee)	
		Bu 30° 100	48 18 18:82 77 ( <i>R</i> )	
		Bu 30° 20	24 19 21:79 77 ( <b>R</b> )	
		Bu 30° 1	24 22 19:81 77 (R)	
/		Rh ₄ (CO) ₁₂ /(-)-DIOP,		
CONEt ₂		CO/H ₂ (1/1, 300 bar), PhMe, 130°, 32 h	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	803
~//	¹ CO ₂ Bu- <i>t</i>	$Rh(acac)(CO)_2, L/Rh = 4,$	∧ ∧ ∠CHO	
R ×	(R,S)-BINAPHOS	H ₂ /CO (1/1, 100 atm), C ₆ H ₆ , 50°	$\mathbf{R}' \checkmark CHO \mathbf{I} + \mathbf{R}' \checkmark \mathbf{II}$	863
<u>R</u>		Temp. Time (h)	Conv. (%) I:II II (%ee)	
Pr-i		50° 68	54 74:26 83 (-)	
Ph3C TMS3C		50° 20 60° 69	>99 40:60 >99 (+) 51 93:7 —	
$\downarrow$	(R,S)-BINAPHOS	$Rh(acac)(CO)_2$ , $L/Rh = 4$ ,		857
~~ ~		H ₂ /CO (1/1), C ₆ H ₆	I II	1
		Temp. Press. (atm.)	) Time (h) Conv. (%) I:II I	
		60° 100	18 92 78:22 (—), 80 R	
		30° 20	76     79     83:17     (), 84 R	
			I	
R∕ ^S ∕∕∕∕	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , C ₆ H ₆ , CO/H ₂ (1/1, 100 atm),	$R^{-S}$ CHO + $R^{-S}$ CHO	837
		$L/Rh = 4-4.4, 50^{\circ}$	I II	
<u> </u>		Time (h) Conv. (%)	<u>I:II I (%ee)</u>	
Յu- <i>r</i> Դ		47 76 48 100	56:44 (64), 67:33 (80),	
п		40 100	СНО	
		$Rh(acac)(CO)_2$ , ligand,	CHO CHO	112
BuCO ₂	(R,S)-BINAPHOS	$H_2/CO(171, 100 am),$ L/Rh-4 C-H _c 40 ° 47 h		115
			I = 88:12, I (), 98 S + II (38)	
A		[(R,R)-BCO-DPP]PtCl ₂ /	A	
	(R,R)-BCO-DPP	SnCl ₂ , C ₆ H ₆ , 80°, 0.5 h,	СНО +	407
		CO/H ₂ (7/15, 220 atm)	I (79), 29.8 1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i> II ()	
	(R,R)-BCO-DPP	[(R,R)-BCO-DBP]PtCl ₂ / SnCl ₂ , C ₆ H ₆ , 80°, 0.5 h,	I (63), 7.3 1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i> + II (—)	407
		(R,R)-DIOP-DBP]PtCl ₂ /		
	( <i>R</i> , <i>R</i> )-DIOP-DBP	SnCl ₂ , C ₆ H ₆ , 80°, 15 h, CO/H ₂ (7/15, 220 atm)	I (), 0.6 1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i> + II (21)	407
	(R,R)-EtDIOP	Rh ₄ (CO) ₁₂ , L/Rh = 4, 80°, CO/H ₂ (1/1, 80 atm), 0.6 h	I (), 2.3 1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>	850
	(R,R)-CyDIOP	$Rh_4(CO)_{12}$ , L/Rh = 4, 80°, CO/H ₂ (1/1, 80 atm), 0.75 h	I (), 4.8 1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>	850
	()- <b>B</b> PPM	PtCl ₂ (BPPM)/SnCl ₂ , CO/H ₂ (1/1, 2700 psi), CsH ₆ , 30°, 20 h	1 (—), 60 1 <i>S</i> , 2 <i>S</i> ,4 <i>R</i>	406

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
		PH/DBP-DIOP/CI-		
	(-)-DBP-DIOP	SnCl ₂ . C ₆ H ₆ , 60°, 3 h CO/H ₂ (1/1, 2650 psi)	I (), 26 1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i> + II (), I:II = 88:12	411, 412
	(R,R)-DIOP	Pt(DIOP)(SnCl ₃ )Cl, 80°, CO/H ₂ (1/1, 80 atm)	I (), 29.2 1 <i>R</i> ,2 <i>R</i> .4 <i>S</i>	130
	( <i>R</i> , <i>R</i> )-DIOP	RhH(CO)(PPh ₃ ) ₃ , L/Rh = 4, 100°, 1 h, CO/H ₂ (1/1, 80 atm)	I (100), 3.3 1 <i>5</i> ,2 <i>5</i> ,4 <i>R</i>	130
	(S,S)-CHIRAPHOS	[Rh(NBD)Cl] ₂ , L/Rh = 4, CO/H ₂ (1/1, 80 atm), 100°, 3 h	I (100), 16.4 1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>	130
	(S,S)-CHIRAPHOS	Pt(CHIRAPHOS)(SnCl ₃ )Cl, CO/H ₂ (1/1, 80 atm), 100°	I (), 8.3 1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>	130
	$PR_2 = DBP$ $R_2P$ $PR_2 = DBP$ $R_2P$ $PR_2$	Pt(Chiral ligand)Cl ₂ , SnCl ₂ , C ₆ H ₆ , 60°, CO/H ₂ (1/1, 2650 psi) $\frac{\text{Time}}{3 \text{ h}}$ 4 h	X = 0, I (), 20 1R, 2R, 4S + II (), I:II = 86:14 X = 0.1, I (), 20 1R, 2R, 4S + II (), I:II = 87:13	411, 412
	()- <b>B</b> PPM	PtCl ₂ (BPPM)/SnCl ₂ . CO/H ₂ (1/1, 2700 psi), HC(OEt) ₃ , 30°, 140 h	CH(OEl) ₂ (), 60 15, 25,4R	406
	$(RO)_2 P$ $O$ $P(OR)_2$	Rh(acac)(CO) ₂ , L [*] /Rh = 4, Me ₂ CO, 50°, CO/H ₂ (1/1, 130 psi)	сно (—). 60 1 <i>R.2R.4S</i>	38
	$P(OR)_2 = \bigcup_{\substack{r \in Bu \\ r \in Bu}} OMe$	PtCl(SnCl3)(DIOP), PhMe	OHC CO ₂ Me I+ CO ₂ Me II	859
CO ₂ me		$\frac{\text{CO/H}_2 \text{(bar)}}{40/40}  \text{Temp.}$	$\frac{\text{CO}_2\text{Me}}{\text{Time (h)}  \text{Conv. (\%)}  \mathbf{I} \qquad \mathbf{II}}$ 21.5 95 (51) 45.2 (44) 33.7	
		100           80/40         100°           40/80         100°           40/200         100°           120/120         100°           40/40         50°	67         97         (66), 34.5         (31), 7.7           15         100         (40), 58.7         (60), 31.0           15         100         (26), 64.0         (74), 40.1           15         99         (55), 56.6         (45), 30.3           174         86         (66), 70.6         (20), 45.0	
	(R,R)-DIOP	Rh4(CO) ₁₂ , 8 DIOP, PhMe, 100°, 6 h, CO/H ₂ (1/1, 80 bar)	I (3), $-+$ II (40), 1.1 S + $CO_2Me$ + OHC $CO_2Me$ III (43), 8.3 S	767
			$\sum_{MeO_2C} CO_2Me  IV (6)$	
	( <i>R</i> , <i>R</i> )-DIOP	RhH(CO)(PPh ₃ ) ₃ , 2 DIOP, PhMe, 100°, CO/H ₂ (1/1, 80 bar), 6 h	I(4), -+ II(10), 0 + III(73), 9.1 S + IV(6)	767
	( <i>R</i> , <i>R</i> )-DIOP	[Rh(CO) ₂ Cl] ₂ , 4 DIOP, PhMe, 100°, Et ₃ N, 17 h, CO/H ₂ (1/1, 80 bar)	<b>I</b> (5), + <b>II</b> (44), 0 + <b>III</b> (43), 7.2 S + <b>IV</b> (6)	767

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
X	(-)-DIOCOL	HRh(CO)(PPh ₃ ) ₃ /(-)- DIOCOL (1/1.5), C ₆ H ₆ , CO/H ₂ (1/1, 80-90 atm),	100° (50), 1.1 R	851
	Ph ₂ P N O	Rh(acac)(CO) ₂ , C ₆ H ₆ , L*/Rh = 2.5, 80°, 3 h, CO/H ₂ (1/1, 80 atm)	$\bigcup_{N}^{CHO} \mathbf{I} + \bigcup_{N}^{CHO} \mathbf{I}$	714
		Rh(acac)(CO) ₂ , C ₆ H ₆ , L [*] /Rh = 2.5, 80°, 16 h,	I + II (95), —, I:II = 99:1 I + II (67), —, I:II = 99:1	714
C ₈ O PhS	~	CO/H ₂ (1/1, 80 atm) Rh(COD)BPh ₄ , CH ₂ Cl ₂ , CO/H ₂ (600 psi), 75°	O CHO PhS Yield % de % ee	371
	(R)-(+)-BINAP (S)-(-)-BINAP (S/R)-(±)-BINAP		(27) 40 18 (22) 50 21 (43) 46 0 CHO	
		Rh(CO) ₂ (acac), C ₆ H ₆ , H ₂ /CO (1/1, 100 atm)	CO/H ₂ (atm) 1 % ee II	34 113
	(S,R)-BINAPHOS (R,S)-BINAPHOS (R, S)-BINAPHOS	60°, 43 h rt, 39 h 60°, 40 h	10012 (att.) $17$ rote $12$ $50/50$ (88), 94 S         (12) $50/50$ (92), 95 R         (8) $63/8$ (88), 92 R         (12)	
	(R,S)-BINAPHOS + (R,R)-BINAPHOS $(1/1)$	Rh(acac)(CO) ₂ , ligand, H ₂ /CO (1/1, 100 atm), L/Rh = 4, C ₆ H ₆ , 25°, 42 l	I (), 85 R + II (), I:II = 90:10	113
	$OR PPh_2$	Rh(acac)I. copolymerized divinylbenzenes, CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 60°, 12 h	with I:II = 85:15, I (—), 90 <i>R</i>	416
	$PPh_2$ $OP(OR)_2$ $P(OR)_2 = P$	Rh(acac)(CO) ₂ , L/Rh = 4, H ₂ /CO (1/1, 100 atm), C ₆ H ₆ , $60^{\circ}$ , 40 h	<b>І:П = 89:</b> 11, <b>І</b> + <b>П</b> (>98), 69 <i>S</i>	113
	( <i>R</i> , <i>R</i> )-BIPHEMPHOS	Rh(acac)(CO) ₂ , 1/Rh = 4, H ₂ /CO (1/1, 100 atm), C ₆ H ₆ , 60 [°] , 40 h	$I:\Pi = 92:8, I + \Pi (95), 16 R$	113

Reactant	Chiral Ligand	Cor	ditions		Produ	ct(s) and Yi	eid(s) (%), 9	<i>%</i> ee	Kef
	(+)-BDPP	[Rh(µ-OMc)(C	OD)] ₂ ,						865
		ligand, H ₂ /CC	), THF						
		P/Rh Temp	. H ₂ /CO (bar)	Time (h	n) Conv. (	%)I:II	I (% ee)		
		2 65°	1/1 (5)	7	88	77:23	<1(R)		
		2 65°	1/1 (10)	12	100	84:16	2 ( <i>S</i> )		
		2 65°	1/1 (30)	12	100	90:10	5 (R)		
		2 65°	4/1 (10)	1.5	90	84:16	17 ( <i>S</i> )		
		4 65°	1/1 (10)	7	92	94:6	56 ( <i>S</i> )		
		4 40°	1/1 (30)	24	12	96:4	60 (S)		
		8 65°	1/1 (10)	7	76	95:5	45 ( <i>S</i> )		
		8 65°	1/1 (30)	24	92	94:6	48 ( <i>S</i> )		
	PAr2								
	OP(OR)	Rh(acac)(CO)	, L/Rh = 4,	I:П=9	0:10, I ()	, 85 <i>R</i> + II (	>99)		113
		H ₂ /CO (1/1, 1 C ₆ H ₆ , 60°, 37	$H_2/CO (1/1, 100 \text{ atm}),$ C ₆ H ₆ , 60°, 37 h						
	$Ar = 3.5 - Me_2C_6H_3$								
	P(OK)2 = P								
		Rh(acac)(CO)	•. L∕Rh = 4.	I:II = 1	91:9, I (—)	, 83 R + II	(>99)		113
	$Ar = Ph$ $Q^{-P}Q$	$H_2/CO (1/1, 100 \text{ atm}),$ $C_6H_6, 60^\circ, 43 \text{ h}$							
	P(OR) ₂ =	-0r*0, 00 + 1							
		Pt(chiral ligar SnCl ₂ , Sn/Rl H ₂ /CO (1/2,	d)(P-P) ₂ , n = 20, 100 atm),						661
		125°, 24 h, T	ΉF						
	Ligand	P-P		I + II	I:II	I (%cc)	PhEt	Alcohol	
	(–)-DIOS	(PPh ₃ ) ₂		(19)	54:46	2 (S)	(4)	_	
	(R)-BINAS	(PPh ₃ ) ₂		(58)	14:86	2 (S)	(4)	(1)	
	(-)-DIOS	DPPB		(59)	39:61	7 (S)	(22)		
	(R)-BINAS	DPPB		(79)	44:56	4 (S)	(18)		
	(–)-DIOS	DPPB		(80)	32:68	7 (S)	(17)	_	
	(R)-BINAS	DPPB		(76)	42:58	14 (S)	(24)	-	
		PtCl ₂ (Chiral I	igand),	<b>I:II</b> = 0	0.5 I + II	(29), 0 + Et	Ph (3)		601
	PAr ₂ PAr ₂	PhMe/H ₂ O,	100°,						
	Ar = $ ^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$	CO/H ₂ (1/1,	1000 psi)						
	×/	DICLUCE:	icond)						<i>2</i> 01
		Such an electron	aganu),						001
		DhMa U O	55,						
		CO/ $\mu_{\rm c}$ (1/)	(000 nei)						
		CO/112 (1/1,	1000 psi)						
		Temp. Ti	ne (h) TOF	<u>I + II</u>	I:II I (	%ee) Pl	nEt		
		100° 24	1.6	(28)	0.7 10	0.7(R) (1	2)		
		60° 48	0.8	(36)	0.5 14	L1 (S) (2	8)		
	(R.S)-BINAPHOS	Rh(acac)(CO)	<b>7.</b>	I + Π·	I (66) R				866
	(190) 22111 1100	CO/H ₂ ( 40 a	رم tm).	1 + 11,	- (00), N				300
		CO. (d=0.4	), 8 g/ml)						
		$c_{1}c_{2}$ ( $u = 0.4$	s Eum)						

TABLE X. ASYMMETRIC HYDROFORMYLATION (Continued)



				~~~ ( <i>Contu</i>				
Reactant	Chiral Ligand	Conditions			Product	(s) and Yield	<u>(s) (%), %ee</u>	Refs
	Ph ₂ P PPh ₂	Rh(CO) ₂ (acac), H ₂ /CO (1/1, 40 atm) C ₆ H ₆ , 30°, 30 h Rh(CO) ₂ (acac), H ₂ /CO (1/1, 40 atm) C ₆ H ₆ , 30°, 30 h	I (—),— I (—),—	845 845				
	rn ₂ r							
	Catalyst	Pressure (bar)	Temp.	Time (h)	Conv. (%	b) I:II	I (%ee)	870
	Rh ₂ (COD) ₂ (BINAS)	30	80°	24	77	56:44	11	
	Rh ₂ (COD) ₂ (BINAS)/2 PPh ₃	30	60°	4	100	92:8	7	
	[Rh(COD)(Me ₂ BINAS)]BF ₄	30	80°	24	98	51:49	6	
	[Rh(COD)(Me ₂ BINAS)]BF ₄ /3 Me ₂ BIN	IAS 80	80°	24	100	84:16	15	
	[Rh(COD)(Me ₂ BINAS)]BF ₄ /3 Me ₂ BIN	IAS 80	40°	24	100	94:6	6	
	[Rh(COD)(Me ₂ BINAS)]BF ₄ /3 Me ₂ BIN	IAS 80	25°	24	81	96:4	2	
		Pt(Chiral Ligand)Cl ₂ /						
	(-)-BPPM	SnCl ₂ , C ₆ H ₆ , 60°, 4	h.	I (), 7	7 + II (—).	I:II = 1.1:2		871.
	()	CO/H ₂ (1/1, 2400 ps	i)					409
		2. 7 1						
	P P CO ₂ Bu- <i>t</i>	Pt(Chiral Ligand)Cl ₂ / SnCl ₂ , C ₆ H ₆ , 60°, 4 CO/H ₂ (1/1, 2400 ps	h, i)	I (—), 1	2 + II (—),	I:II = 1.35:1		409
	Ph ₂ P	Pt(Chiral Ligand)Cl ₂ / SnCl ₂ , C ₆ H ₆ , 60°, 4 CO/H ₂ (1/1, 2400 ps	h, i)	I (—), 74	4 + II (—),	I:II = 1 .0:1		409
	$\begin{array}{c} R_2P \\ \\ N \\ CO_2Bu-t \end{array} $	Pt(Chiral Ligand)Cl ₂ / SnCl ₂ , C ₆ H ₆ , 60°, 4 CO/H ₂ (1/1, 2400 ps	h, i)	I (), 4	0 + II (),	I : II = 3.2:1		409
	$PR_2 = \frac{p}{p}$ (R,R) -EIDIOP	Rh ₄ (CO) ₁₂ , L/Rh = 4, CO/H ₂ (1/1, 80 atm)	80°, , 2.5 h	I (), C	0.2 \$			850
	(R,R)-CyDIOP	$Rh_4(CO)_{12}$, L/Rh = 4, CO/H ₂ (1/1, 80 atm)	80°, , 4 h	I (—), C).4 R + II (-	—), I : II = 90:	10	850
	(S,S)-CHIRAPHOS	[Rh(NBD)Cl] ₂ , L/Rh = CO/H ₂ (1/1, 80 atm), 100°, 3 h	= 4,	I + 11 (8	30), 24.2 <i>R</i> ,	I:II = 94:6		130
	(S,S)-CHIRAPHOS	Pt(L*)(SnCl ₃)Cl, 100° CO/H ₂ (1/1, 80 atm)	,	I (—), 4	15.0 <i>R</i> + II ((), I:II = 62	2:38	130
	(<i>R</i> , <i>R</i>)-DIOP	RhH(CO)(PPh ₃) ₃ , L/Rh = 4, 100°, 1 h, CO/H ₂ (1/1, 80 atm)		I + II (9	94), 10.0 <i>R</i> ,	I:II = 71:29		130
	(<i>R</i> , <i>R</i>)-DIOP	Pt(DIOP)(SnCl ₃)Cl, 1 CO/H ₂ (1/1, 80 atm)	00°,	I (), 4	1.4 <i>S</i> + II (–	—), I : II = 38	:62	130
	(<i>S</i> , <i>S</i>)-BDPP	PtCl(SnCl ₃)(BDPP), CO/H ₂ (1/1, 80 bar), PhMe, 40°, 55 h		I (31), 6	54.5 <i>S</i> + II (42) + PhEt (3	3)	109

 Cima Ligand							,,	
(<i>S,S</i>)-BDPP	PtCl(SnCl ₃)(BDPP), 2 SnCl ₂ , PhMe, 40°, CO/H ₂ (1/1, 80 bar), 115 b		I (23), 75.5 S + Π (32) + PhEt (1)					
	CO/H ₂	(1) 1, 00 0a	PhMe	I + II + Pi	hEL (III)			110
		m (1)	, 1 11110			<i>a</i>		
	1emp. 40°	240		Conv. (%)	21:66:2	76.0.5		
PICI ₂ (BDPP)+SIF ₂ PrCl (BDPP)+S=F	40	240		12	17:57:25	166 P		
PICI2(DDFP)+SIIF2	140	50		80 70	40.27.33	10.0 K		
PrC1 (PDDD) SpC1	200	30 70		36	50.40.1	25.75 45.0 S		
$P(C_1(BDPP) + SnC_2)$	1000	10		30 70	21.62.7	43.03 28 A P		
	400	10		30	31.67.7	20.0 K		
PrCl_(BDPP)+PRu+25nCl_	70 25°	240		69	35-56-9	7255		
1 612 6 6 1 7 1 6 6 3 2 5 1 6 1 2	(Chiral L	.igand)PtC	2/SnCl ₂ ,	07	55.56.7	12.50		40
	CO/H ₂	(7/15, 220	atm), C_6H_6					87.
	Temp.	Time (h)	-	Conv. (%)	1:11:111	<u>%ee</u>		
(R,R)-BCO-DPP	80°	1.0		100	21:29:10	23.4 <i>S</i>		
(<i>R</i> , <i>R</i>)-BCO-DBP	80°	0.5		100	77:23:49	68.1 S		
(R,R)-BCO-DBP	40°	10		98	80:20:	86.3 <i>S</i>		
(R,R)-DIOP-DBP	80°	5.5		80	35:15:21	55.8 S		
	PtCl(SnC CO/H ₂	13)(Chiral) (1/1, 70 ba	Ligand), r), PhMe					112
	Temp.	Time (h	1	<u>I + II</u>	I:II	I (%ee)	ш	
(S,S)-BDPP-(pNMe2)4	30°	550		17	1:1.52	60.6 S	0	
(S,S) -BDPP- $(pNMe_2)_4$	100°	3		32	1:3.32	41.4 <i>R</i>	4	
(S,S) -DIOP- $(pNMe_2)_4$	25°	480		20	1:1.3	20.0 R	0	
(S,S) -DIOP- $(pNMe_2)_4$	100°	2		18	1:1.84	6.4 <i>S</i>	5	
(S,S)-CHIRAPHOS-(pNMe ₂) ₄	25°	300		12	1:0.62	46.0 R	<1	
(S,S)-CHIRAPHOS-(pNMe ₂) ₄	100°	12		20	1:1.46	12.4 R	2	
(S) PROLOPHOS	$Pt(PROLOPHOS)Cl_2/SnCl_2,$ Sn/Pt = 2.5, 40°, 40 h,			I (50), 29 <i>R</i> -	+ II (42) + II	I (5) I:II = 1	.2:1	873
	CO/H ₂ (1/2, 130 at	m), C ₆ H ₆					
(-)-(2 <i>S</i> ,4 <i>S</i>)-BDPP	PtCl ₂ (PPl SnCl ₂ , F PhMe, 2	h ₃) ₂ , BDPH Pt/L/Sn = 2 20°, 210 h,	e, /1/4,	I (4), 88.8 S + starting r	+ II (10) + II naterial (86)	I (tr)		874
		0.000 (1.0)	au)					07
	Phile, C	$J/H_2(1/1,$	SU Dar)					8/4
Catalyst	Temp.	Time (l	1) Conv. (4	%) I	п	<u> </u>		
$PtCl_2(PPB_3)_2 + 1/2 (-)-DIOP + 2 SnCl_2$	120°	1.5	70	(19), 5.1.	s (31)	(20)		
$PICI_2(PPII_3)_2 + (-) - DIOP + 2 SnCl_2$ $PICI_2(PPII_3)_2 + (-) - DIOP$	120°	2	/0	(24), 5.0.	s (42)	(10)		
$P(CL(DDb) \rightarrow 1/2 () PDDb \rightarrow 0.0 CL$	120~	2	82 27	(25), 2.6.	5 (42)	(15)		
$\mathbf{PrCl}_{2}(\mathbf{rru}_{3})_{2} + \frac{1}{2} (-) - \mathbf{BDPP} + 2 \operatorname{SnCl}_{2}$ $\mathbf{PrCl}_{2}(\mathbf{DPb}) + \frac{1}{2} (-) \operatorname{BDPP} + 2 \operatorname{SnCl}_{2}$	401	68 149	37	(14), 79.4	FB (22)	(1) (0.2)		
$r_1C_{12}(r_{FB3})_2 + (-) - BDPP + 2 SBC_{12}$ $PrC_{12}(PDh_{2})_2 + \frac{1}{2}(-) - BDPD + 2 S - C_{12}$	231	108 3	14	(4), 85.9.	a (10) (22)	(0.2)		
$\frac{1}{2} \frac{1}{2} \frac{1}$	123-	<u>ь</u>	54 63	(8), 9.0 K	(22) P (40)	(4)		
$r(C_{12}((-)-DDrr) + 2 rr_{13} + 3 rC_{12})$ $PrC_{12}(C_{12})((-)-PDPD)$	125-	55	03 76	(14), 9.8 J (31) 64 F	n (40)	(9)		
$Pt(1_{(-)} R \cap DD) \rightarrow 2 S \cap C^{1}$	900	55	70 50	(31), 04.3	S (42)	(3)		
$PtC_{a}((-)-BDPD) = 2 StC_{4}$	1100	15	59 76	(17), 14.0	D (37)	(3)		
$P_{1}(-1) = P_{1}(-1) = P_{1$	1000	65	27	(22), 13.3	C (17)	(0) (1)		
$PtCh_{(-)} = DIOP_{+} + CuCl_{2}$	100%	3	32 22	(11), 10.0 (7) 80 8	(17) G	(4)		
$P(C_{1}(-)-P(D)) + C_{1}(-)$	100	3 10	17	(1), 8.93	(12)	(3)		
$PtCl_{2}((-)-BDPP) + CuCl_{2}$	120°	8.5	14	(4), 12.3 I (3), 14.5 I	R (12)	(1)		
(-)-BDP-DIOP	Pt(DBP-E	DIOP)Cl ₂ /S	nCl ₂ ,	I (), 64 S +	П (—) + П	(—)		404
	CO/H ₂ (1/1, 2600 p	osi),			I:II = 3.4;1		
	60°, 16 1	1						
OPPh ₂	60°, 16 ł [RhCl(CO	1))2]2, L/R h	= 2,					

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
	PPh ₂ PPh ₂	[RhCl(CO) ₂] ₂ , L/Rh = 2, CO/H ₂ (1/1, 100 atm), C_6H_6 , 90°	I (, 15.1 (S)) + II ()	854
	$PR_2 PR_2 = dbp$	$[RhCl(CO)_2]_2, L/Rh = 2,$ CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 80°	I (), 0.6 <i>R</i> + II ()	854
	PPh ₂	$[Rh(CO)_3]_4$, L/Rh = 2, CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 80°	I (), 4.2 <i>R</i> + II ()	854
	PR_2 $PR_2 = dbp$	[Rh(CO) ₃] ₄ , L/Rh = 2, CO/H ₂ (1/1, 100 atm), C ₆ H ₆ , 80°	I (), 40.3 S + II ()	854
	(+)-DIOP	Pt(C ₂ H ₄)((+)-DIOP)/ PtCl ₂ ((+)-DIOP) (1/1), CO/H ₂ (1/1, 50 atm), PhMe, 100°, 72 h	I (40), 27.6 R + II (22) + PhEt (2)	862
	R^1 R^2 Ph ₂ PO N(Mc)PPh ₂	PtL [*] ₂ Cl ₂ , SnCl ₂ ·H ₂ O, CO/H ₂ (1/1, 130 bar), C ₆ H ₆ , 80°, 4 h		875
	R^1 R^2	Conv. (%)	(I + II): III I / II I (%ee)	
	H Me	68	95:5 0.75 24 <i>S</i>	
	H Pr-i	80	96 : 4 1.06 14 <i>S</i>	
	H Bu-i	85	96 : 4 0.96 4 S	
	H Ph	72	97:3 0.99 2 <i>S</i>	
	H Bn	57	95 : 5 0.89 <1 <i>S</i>	
	Ph ₂ PO	PtL [*] ₂ Cl ₂ , SnCl ₂ ·H ₂ O, CO/H ₂ (1/1, 130 bar), C ₆ H ₆ , 80°, 4 h		875
	PPh ₂			
	<u>R</u>	<u>Conv. (%)</u>	$(\mathbf{I} + \mathbf{I}\mathbf{I})$: $\mathbf{I}\mathbf{I}\mathbf{I}$ $\mathbf{I}\mathbf{I}\mathbf{I}$ \mathbf{I} (%ee)	
	CO ₂ Et	57	92:8 0.86 16.5 R	
	COBu-n	75	93:7 1.01 11.8 <i>R</i>	
	COCH ₂ CH ₂ OEt	25	95:5 1.06 0.35 <i>S</i>	
	OPPh ₂ N PPh ₂	PtL $^{*}_{2}$ Cl ₂ . SnCl ₂ ·H ₂ O, CO/H ₂ (2/3, 162.5 bar), C ₆ H ₆ , 50°, 36 h	$\mathbf{I} + \mathbf{II}$ (68), 48.1 <i>S</i> , $\mathbf{I}:\mathbf{II} = 0.7$	875
	Ph ₂ PN OPPh ₂	RhCl(CO)L [*] /2e [°] , L [*] /Rh = 2, 40°, 111 h, CO/H ₂ (1/1, 1 atm)	I (), 30.9 <i>R</i> + II (); I:II = 9.1	53
	(S)-BINAP	PtCl ₂ [(5)-BINAP]/SnCl ₂ , CO/H ₂ (1/1, 80 bar), PhMe		54
		Temp. Time (h)	Conv. (%) I II PhEt	
		50° 52	37 (12), 68.8 <i>S</i> (24) (1)	
		70° 26	38 (14), 11.2 <i>S</i> (22) (2)	
		90° 12	45 (17), 1.5 <i>R</i> (25) (3)	
		100° 7	40 (15), 11.3 <i>R</i> (22) (3)	
		115~ 5	95 (28), 19.2 R (42) (15)	
	(+) DICOL	HRh(CO)(PPh ₃) ₃ /DICOL (1/3), C ₆ H ₆ , 80°, 4 h, CO/H ₂ (1/1, 80-90 atm)	I (27), 1 <i>R</i> + II (3)	851

TABLE X. ASYMMETRIC HYDROFORMYLATION (Continued)

	TABLE X. ASYM	METRIC HYDROFORMYLAT	ION (Continued)	
Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
	(-)-DIOCOL	HRh(CO)(PPh ₃) ₃ /(-)- DIOCOL (1/1.5), C ₆ H ₆ , CO/H ₂ (1/1, 80-90 atm), 80°, 16 h	I (58), 6.3 <i>R</i> + II (27)	851
	(-)-DBP-DIOP	(-)-DBP-DIOP-PtCl ₂ / SnCl ₂ ·H ₂ O (1/2.5), CO/H ₂ (1/2.9, 314 kg/cm ²), C ₆ H ₆ , 36°, 55 h	I (52), 79.8 S + II (12) + PhEt (36)	404, 405
	(-)-DIOP	Pt[()-DIOP]Cl ₂ , SnCl ₂ ·2H ₂ O, C ₆ H ₆ , CO/H ₂ (1/1, 250 atm), 100°, 1 h	I (34), 18.1 <i>S</i> + II (26)	852
	BDP-DIOP	Pt(BDP-DIOP)Cl ₂ , SnCl ₂ ·2H ₂ O, C ₆ H ₆ , CO/H ₂ (1/1, 235 atm), 100°, 1 h	I (39), 22.1 <i>S</i> + II (12)	852
	Polystyrene-divinylbenzene (1%), 10.5% ring substitution with (–)-DIOP	Polymer-bound (-)-DIOP- PtCl ₂ -SnCl ₂ , SnCl ₂ /Pt = 2.1, C ₆ H ₆ , CO/H ₂ (1/1, 87 kg/cm ²), 60° , 12 h	I + II (94), 28, I : II = 0.57	404
4	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	PtCl ₂ , SnCl ₂ , C ₆ H ₆ , CO/H ₂ (1/1, 2200 psi), 60°, 24 h	I (14, 70) + II (31)	871
	O CF3	Rh(CO) ₂ (Chiral Ligand), CO/H ₂ (65 bar), 85°, 4 h	I + II (),, I:II = 4:1	876
	Polystyrene-divinylbenzene copolymerized with:	Rh(acac)(CO) ₂ , CO/H ₂ , 50atm, C ₆ H ₆ , 60°, 40 h	I (94), 82	877
	$R = -P \begin{bmatrix} 0 \\ 0 \end{bmatrix}$			
	$\begin{array}{c} V_{0.8} + & J_{0.1} + & J_{0.1} \\ \hline \\ PPh_2 & N \\ PPh_2 & PPh_2 \end{array}$	Pt(Chiral ligand)Cl ₂ , SnCl ₂ , 60°, 90 h CO/H ₂ (1/1, 2600 psi)	I (—), 73 <i>S</i> + II (—) + III (—); I:II = 0.53:1	412. 871
		Pt(Chiral ligand)Cl ₂ , SnCl ₂ , 60°, 24 h CO/H ₂ (1/1, 2600 psi)	X = 0, I (), 65 S + II () + III (), I:II = 1.6:1 X = 0.1, I (), 56 S + II () + III (), I:II = 1:1	411, 412
	$H = \begin{pmatrix}H \\ R_2P \\ PR_2 \end{pmatrix} PR_2 = DBP$			

					-	sonninucu)			
Reactant	Chiral Ligand		Conditio	ns		Product(s) and Yield	(s) (%), %ee	Refs.
		HRh(C CO/F 25°, 7	CO)(PPh ₃) ₃ , C H ₂ (1/1, 45 ps 72 h	C6H6, i),	I (-	—),11.4 + II (—)	+ III (), I:	: ∏ = 2:1	853
	$PPh_2 PPh_2$ $Ph O O O Ph O O Ph$ PAr_2 $Ar = 3,5-(CF_3)_2C_6H_3$	Rb(CC CO/H hexan	DD)(L*)BF4, I ₂ (1600 psi), ie		I (~), 24 + 11 (—), 1	I: II = 96:4		843
	SMe PPh2	[Rh(CC CO/H C ₆ H ₆ ,	DD)(L [*])]CF ₃ 5 ₂ (1/1, 60 bar 60°, 4 h	50 ₃ , '),	I (), 2.5 + II (),	I:11 = 88:12		878
[SPr-i PPh2	Rh(aca L*/Rh CO/H	c)(CO) ₂ , L [*] , a = 4, C ₆ H ₆ , 4 b ₂ (1/1, 120 ba	10°. ar)	I (-	—), 14 + II (—), 1	[: Ⅲ = 96:4		878
	o-PPh ₂	[Rh(CC CO/H C ₆ H ₆ ,	DD)(L [*])]ClO, I ₂ (1/1, 50 atn , 70°, 4 h	4, n),	I (-	—), 6 R + II (),	I:II = 88:12		844
		[Rh(CC CO/H C ₀ H ₆ ,	D)(PPh ₃)(L [*])] 2 (1/1, 30 atn 70°, 4 h	CIO4, n),	I (-	—), 6 <i>R</i> + II (—),	I:II = 78:22		844
									• •
		Rh(aca	ic)(CO) ₂	_					38
	$(\mathbf{RO})_2\mathbf{P}$ $\mathbf{P}(\mathbf{OR})_2$	L*/Rh	Solvent	Temp.	H_2/CO	Pressure (psi)	1:11	%ee	
	r-Bu	4:1	PhMe	70°	1:1	130	12.4:1	60	
	$P(OR)_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$	4:1	PhMe	70°	1:1	75	6.9:1	45	
	<u>0</u> - ↓	4:1	PhMe	70°	2:1	130	13.2:1	61	
	P, L	4:1	PhMe	50°	1:1	200	18.5:1	71	
		8:1	PhMe	50°	1:1	130	27.0:1	71	
	OMe	8:1	PhMe	50°	1:1	130	28.9:1	72	
	<i>i-D</i> u	8:1	PhMe	25°	1:1	130	45.3:1	81	
		4:1	PhMe	25°	1:1	500	49.2:1	90	
		4:1	EtOAc	70°	1:1	130	14.4:1	61	
		4:1	Et ₂ CO	70°	1:1	130	14.2:1	66	
		4:1	Me ₂ CO	70°	1:1	130	12.9:1	66	
		2:1	PhNO ₂	25°	1:2.7	130	91.0:1	85	
		Rh(aca P/Rh CO/H 40°, 5	$(CO)_2, L^*,$ = 2.5, PhMe, I_2 (1/1, 9 bar) b h	la.	I (-), 67 <i>S</i> + II ()), I:∏ = 94:6		56
	n	Ru(aca CO/H	$(c)_3, L^*/Ru = 1$ $(c)_2 (1/1, 500 pt)$	2, 70°, si),	I (-), 54 <i>S</i> + ∏ (—)), I:HI = 17:1		38
		Me ₂ C	0			. ,			

	TABLE X. ASYM	ALEIKICHYDROFORMYLATION (Continued)	
Reactant	Chiral Ligand	Conditions Product(s) and Yield(s) (%), %ee	Ref
	OMe P-O Bu-/	Rh(acac)(CO) ₂ , L*/Rh = 2, PhMe, 45°, I (), $10 S + II$ (), I:II = 6:1 CO/H ₂ (1/1, 130 psi)	38
	$(RO)_2 P \xrightarrow{O} P(OR)_2$ $t-Bu \xrightarrow{O} P \xrightarrow{O} Bu-t$ $P(OR)_2 = \bigvee_{P \in O} Bu-t$	Rh(acac)(CO)2 L*/Rh Solvent Temp. H2/CO Pressure (psi) I:II %ee 4:1 PhMe 70° 1:1 130 21:1 44 4:1 PhMe 50° 1:1 130 55:1 61 8:1 PhMe 50° 1:1 130 54:1 67	38
		8:1 PhMe 40° 1:1 130 58:1 66	
	t-Bu Bu-t	2:1 Me ₂ CO 25 ¹ 4:1 150 190:1 77	
	μ	$Rh(acac)(CO)_2, L^*, PhMe$	56
		P/Rh Temp. H_2/CO Pressure (har) Time (h) Conv. (%) I:II % ee	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$2.5 40^{\circ} 1:1 9 5 89 96:4 50 S$	
		2.5 40° 1:3 18 5 45 96:4 57 S	
		2.5 40° 3:1 18 5 78 80:20 8 <i>S</i>	
		2.5 40° 1:1 45 5 63 96:4 63 S	
	OP(OR) ₂ OP(OR) ₂	Rh(acac)(CO) ₂ , L [*] , P/Rh = 2.5, PhMe, 5 h, CO/H ₂	56
	р		
	1-Bu 0 1 0 Bu-	K^{*} Temp. Conv. (%) I:II % ce Bu-t 40° 74 93:7 19.5	
	P(OR) =	Bu-t 25° 18 95:5 30 S	
		OMe 40° 99 92:8 25 S	
	$\mathbf{R}^{\mathbf{i}}$ $\mathbf{R}^{\mathbf{i}}$	OMe 25° 40 93:7 34 S	
	Ph ₂ P O O PPh ₂	Rh(acac)(CO) ₂ , L*/Rh = 4, PhMe, 70°. I (), 5 S + II (), I:II = 3.4:1 CO/H ₂ (1/1, 130 psi)	38
	tris[(S)-1,1'-bi-2-Naphthol] bisphosphite	$Rh(acac)(CO)_2$, $L^*/Rh = 4$, PhMe, 70°, $I ()$, 25 S + II (), I:II = 3:1 CO/H_2 (1/1, 130 psi)	38
	SH SH SH	CO/H ₂ (1/1, 30 bar), THF, 65°	879
		Cataryst Time (h) Conv. (%) I:II % e $[Rb_2(\mu_{-}(-)-DIOS)(COD)_2]_2$ 22 100 64:36 5.5	-
		$[Rh_2(\mu-(-)-DIOS)(COD)_2]_2/4 PPh_3 \qquad 3 \qquad 97 \qquad 91:9 \qquad 4 S$	
		Rh ₂ (µ-(-)-DIOS)(COD) ₂ /4 PPh ₃ 3 100 91:9 3 S	
		$[Rh_2(\mu-(-)-DIOS)(COD)_2]_2/4 (+)-DIOP 23 99 59:41 17 5$	
	н	[Kii2(µ-(~)~D/O3)(COD) <u>212</u> /4 (~)~D/O1 17 84 00.34 35	800
		[Rh(COD)L]ClO4, CO/H ₂ (1/1, 30 bar), THF, 65°	880
	$\sim H^{\circ}$ SR	[Rh(COD)L]ClO ₄ , CO/H ₂ (1/1, 30 bar), THF, 65° R Time (h) Conv. (%) 1:11 %ee	880
	$\sim 0 + SR$	R Time (h) Conv. (%) I:II %ee Me 14 57 69:31 3(5)	880

Reactant	Chiral Ligand		Conditions		Pr	oduct(s) and	Yield(s) (%), %ee	Refs.
	$P(OR)_2$	Rh(acac) L*/Rh = CO/H ₂	(CO) ₂ , = 4, PhMe, 70°, (1/1, 130 psi)	I	(), 4 <i>S</i> + D	[(), Ⅰ : Ⅱ = 8	8.8:1		38
	$P(OR)_2 = $	t							
		Rh(acac) L*/Rh = CO/H2	(CO) ₂ , : 1, PhMe, 70°, (1/1, 130 psi)	I	(—), 6 R + I I	[(),]:∏ = 7	7.25:1		38
	$(RO)_2 P$ $P(OR)_2$	Rh(acac) L*/Rh = CO/H ₂ ((CO) ₂ , 70°, 1.2, Me ₂ CO, (1/1, 130 psi)	I	(—), 14 <i>R</i> + 1	II (—), I:II =	4.6:1		38
	$P(OR)_2 = O^{-P} O$								
	u a	Rh (acac) P/Rh = 2 CO/H ₂ ((CO) ₂ , L [*] , 2.5, PhMe, 40°, 1/1, 9 bar), 5 h	I	(—, 11 (<i>R</i>)) +	- II (), I:II :	= 80:20		56
	Ph ₂ P N -0	Rh(acac) $L^*/Rh = CO/H_2$ ((CO) ₂ , C ₆ H ₆ , 2.5, 30°, 20 h, 1/1, 90 atm)	I	+ Ⅲ (70), <1,	I:II = 95:5			714
		Rh(acac) L*/Rh = CO/H ₂ ((CO) ₂ , C ₆ H ₆ , 2.5, 30°, 5 h, (1/1, 90 atm)	I	+ II (97), <1,	I:II = 95:5			714
		Rh(acac) P/Rh = 2	(CO) ₂ , L [*] , 2.5, PhMe						55
	ò	Temp.	Pressure (bar)	CO/H ₂	Time (h)	Conv. (%)	І:П	% ee	
		40°	9	1	5	51	92:8	51 S	
	Ţ	25° 40°	9	1 3	5 5	3 23	91:9 97:8	02 S 53 S	
	<i>t-Bu</i> , 0 ⁻¹⁻ 0 <i>I</i> 1 1 Bu- <i>t</i>	40°	45	9	70	99	92:8	43 S	
		40°	18	0.33	5	98	51:13	48 <i>S</i>	
	K = (40°	45	1	5	21	91:9	53 S	
	MeO OMe	40°	25	4	5	38	94:6	50 S	
	$R = \frac{0}{0} + \frac{1}{0}$	Rh(acac) CO/H ₂ PhMe, f	(CO) ₂ , L [*] , 40°, (4/1, 25 bar), 5 h	I	(), 3 <i>S</i> + I	I (—), I:II = 1	83:17		55
	Č-Č	"		-	4) 40 5	11 () 1 1 1 7	- 05-5		55
	$R = P_{O}$			1	. (<i>)</i> , 40 3 +	(<i>—)</i> , 1:11 =	- 73.3		23
	t-Bu Bu-t								

TABLE X. ASYMMETRIC HYDROFORMYLATION (Continued)

Reactant	Chiral Ligand	(Conditions			P	roduct(s) and	Yield(s)	(%), %ee	Refs
		Rh(acac)(Co P/Rh = 2.5	O) ₂ , L*, i, PhMe							55
	$R = \bigcup_{t-Bu} P \bigcup_{P \in U} Bu-t$	R ¹ Bu-t Bu-t OMe OMe	Temp. 40° 25° 40° 25° 25°	<i>P</i> (bar 40 40 25 25 25	r) CO/H ₂ 1 1 4 4 4 4	Time (1 5 5 5 5 110	h) Conv. (%) 67 3 38 42 14	97:3 97:3 96:4 95:5 93:7	% ee 31 R 50 R 45 R 53 R 64 R	
	R = $H = $ $H =$									
	B20 OB2 OR RO OMe	Rh(acac)(C P/Rh = 2.5 CO/H ₂ (1/	O) ₂ , L [*] , 5, PhMe, 4(1, 40 bar),)°. 5 h	Conv	ersion >	99%, I (—), () + II (–), I:Ⅲ = 94:6	55
	RO OMe	11			Conve	ersion >	99%, I (—), 7	7 S + II (ć—), 1:Ⅲ = 93:7	55
		n			Conve	ersion 4	9%, I (—), 8 .	S + 11 (-	–), I:II = 92:8	55
	RO O OMe	n			Conve	ersion 9	4%, I (), 2 .	S + II (-	—), I : II = 93:7	55
	$X \xrightarrow[P(R^1)_2]{} OP(R^2)_2$	PtCl ₂ (L [*])/St CO/H ₂ (2/3 50°	nCl ₂ , PhMe 3, 130 atm)	:, ,						59
	$\begin{array}{c cccc} X & R^1 & R^2 \\ \hline H_2 & Ph & Ph \\ H_2 & C_6H_{11} & Ph \\ H_2 & Ph & C_6H_{11} \\ H_2 & C_6H_{11} & C_6H_{11} \\ O & Ph & Ph \\ O & C_6H_{11} & C_6H_{11} \\ O & C_5H_9 & C_5H_9 \\ \hline OP(OP)_{2} \end{array}$	Time (h) 36 70 38 200 15 160 70 Ph (c) 1/2	Conv. (% 100 100 100 100 100 70 90	<u>)</u>	<u>I : II :</u> 39 : 50 40 : 50 37 : 60 38 : 50 29 : 60 33 : 60 22 : 40	PhEt 9:2 2:8 2:1 4:8 8:3 2:4 7:30	% ee 42 S 40 S 55 S not deten 40 S 56 S 47 S	mined		
	$P(OR)_{2}$	Rh (acac)(C P/Rh = 2.5, CO/H ₂ (1/1	O) ₂ , L*, , PhMe, 40 , 9 bar), 5	°, h	$R^1 = t$ $R^1 = 0$	-Bu: I (- OMe: I (—), 1 <i>R</i> + П ((—), 7 <i>R</i> + П	:—), I:D (—), I:I	= 93:7 1 = 92:8	56

Reactant	Chical Ligand		Conditic			Produ	ct(s) and Yield(s) (%). %cc	Refs
Reactain	Clinal Elgand			*	· · ·	11044	cus) and Trend(s) (70), rec	
	Ph Ph	Rh (acac	2.5 PhMa	•				56
	$(RO)_2 PO OP(OR)_2$	$\Gamma/MI = CO/H_2$	(1/1 9 har	-) 5 h				50
	P	T	(1/1,) ou	(0)	7.11	<i>(</i> 7		
	t-Bu Bu-t	<u>1 emp.</u>	Conv.	(%)	<u>1:11</u> 00-10	47 S		
	$P(OR)_{n} =$	40 25°	29 45		95.10	62.5		
		20			2010			
	MeO OMe							
	(PO)-PO OP(OP)-	Ph (acar						
		P/Rh =	2.5. PhMe	,				56
	o du to	CO/H ₂	(1/1, 9 bar), 5 h				
		Temn	Conv	(%)	ĿП	% сс		
	Ph	40°	81	(10)	92:8	3 \$		
	t-Bu O P O Bu-t	25°	27		95:5	10 <i>S</i>		
	\rightarrow							
	$P(OR)_2 = \sqrt{2}$							
	(-Bu Bu-f							
	, na na-t							
	1	[Rh ₂ (µ-B	BCOS)(CO	D) ₂] ₂ ,				808
		PPh ₃ , T	HF, CO/H	2 (1/1)	— (1)	<i>c</i>		
	SH SH	P/Rh	P (bar)	Temp.	Time (h)	Conv. (<u>%) I:II I+II</u>	
	∽ sh	2	5U 5	80°	24	99 47	54.40 (—)	
		2	10	80°	12	47 86	86:14 ()	
		4	10	80°	8	86	86:14 ()	
		8	10	80°	8	81	85:15 ()	
		8	10	65°	24	81	90:10 (—)	
		{Rh ₂ (µ-E	BCOS)(CO	D) ₂] ₂ ,				881
	•••	ligand,	THF, CO/I	$H_2(1/1)$	T	C (0)		
	Ligand	P/Rh	P (bar)	Temp.	Time (h)	Conv. (%)	1:11 1 (% ee)	
	PPh.	4	5	80°	24 24	50	43.51 85 73:27 7.5	
	PPh ₂	4	10	65°	24	93	90:10 55	
	BPPP	2	10	65°	12	88	92:8 10 S	
	(+)-DIOP	4	10	65°	23	98	60:40 16 S	
	(-)-DIOP	4	10	65°	23	98	57:43 8 R	
	(+)-BDPP	4	10	65°	23	99	95:5 55 S	
	(-)-BDPP	4	10	65°	23	99	94:6 43 R	
	(+)-BDPP	2	10	65°	12	94	94:6 52 <i>S</i>	
	(-)-BDPP	2	10	65°	12	96	94:6 48 R	
		{Rh(µ-O	Me)(COD))] ₂ ,				
	(+)-DIOP	CO/H ₂	(1/1, 10 ati	m), • 7 1	I (57),	12 S + H (3	37), 1:11 = 61:39	865
		P/Rh =	4, THF, 65	5', 7 h				
		Pi(CH ₃)	Cl(chiral li	gand),				890
	(S,S)-DIOP	SnCl ₂ ,	Pt/Sn = 1, 1	PhMe,				882
		H ₂ /CO	(1/1, 100 a		07\ ¥.¥X			
		<u>1 emp.</u> 30°	66	/6.8	<u>%) I+II</u> (67)	0.29 20	$\frac{6}{2}$ R (4) (29)	
		50°	22	- 0.0 52.6	(70)	0.41 25	2.2 R (5) (25)	
		80°	2	56.6	(67)	0.59 20	0.7 R (9) (24)	
	\sim	Rh(acac)	(CO). lio	and.			., .,	
	OR OR	toluene	-d ₈ , L/Rh =	= 1.1,	I (20),	40 R + H (1) + PhEt (<1); I:II = 94:5	883
	Ma S:	H ₂ /CO	(1/1, 20 ba	ır),		,		
	Megal	25°, 5 b	ı					
	OR = O - P							
	ò							
	me ₃ Si							

		C IN			Des d		-d Vield(a			Paf
Reactant Chiral ILigand		Conditio	ons		Prod	uci(s) a	na riela(s)(%),%	ee	Kei
	Pt(PhCN)	2Cl ₂ , Sn	Cl ₂ ,							
v	P/Pt = 2	.05, Sn/P	t = 1,	I (—), 9	P1 R + II	() + 1	PhEt (54);	I:II = 60	0:40	408
	H ₂ /CO (1/1, 100	atm),							
	CH ₂ Cl ₂ ,	17°, 701	h							
	Pt(CH ₃)C	l(chiral l	igand),							
	SnCl ₂ , P	\dot{v} Sn = 1,	PhMe,							882
(R)-BINAP	H ₂ /CO (atm)								002
	11/00	Toma	Time (h)	Conv (%)	I⊥II	ĿП	I (% ee)	ш	Polymer	
	<u>H₂/CO</u>	20°	. 1111e (11)	22.5	(63)	0.50	58 4 R	(3)	(34)	
	50/50	50	119	33.3 70.8	(84)	0.58	416R	(4)	(12)	
	50/50	20	110	07.4	(67)	0.50	398	(5)	(29)	
	50/20	500	120	75 5	(80)	0.50	23 1 R	(8)	(12)	
	50/20	500	104	81.0	(87)	0.63	55 2 R	(2)	(11)	
	50/110	50°	00	01.9 77 7	(85)	0.72	66 8 R	(2)	(13)	
	110/50	50°	00 88	877	(75)	0.72	48.4 R	(12)	(13)	
	110/50	30	00	62.7	(75)	0.75	-+0.+ K	(12)	(15)	
	Pt(CH ₃)C	l(chiral l	igand),							
(S)-MOBIPH	SnCl ₂ , F	₽t/Sn = 1,	PhMe,							882
	H ₂ /CO (atm)								
	H ₂ /CO	Temp.	Time (h)	Conv. (%)	I + II	I:II	I (% ee)	ш	Polymer	
	50/50	30°	240	52.7	(85)	1.09	75.8 S	(3)	13	
	50/50	50°	164	86.7	(75)	0.73	56.3 S	(4)	22	
	50/50	80°	17	97.8	(77)	0.77	0.1 S	(7)	17	
	50/20	50°	148	70.0	(68)	0.79	28.8 <i>S</i>	(9)	23	
	50/80	50°	65	60.7	(70)	0.86	67.1 S	(2)	28	
	50/110	50°	74	74.5	(71)	0.96	72.1 S	(2)	28	
	110/50	50°	87	100	(73)	0.92	58.5 S	(7)	20	
(+)-BINAP	CO/H_2 (P/Rh = 4	1/1, 10 a 4, THF, 6	tm), 55°, 7 h	1 (57), 2	25 <i>S</i> + H	(6), I:I	I = 91:9			865
	Rh (acac))(CO) ₂ ,		<u>x</u>	1	П	1:11			
	ligand, l	L/Rh = 2		Р	(94), —	- (4)	24.8			664
i-Pr	CO/H ₂ ((1/1, 50 a	tm),	СН	(28), —	(<1)	46.7			
t-Bu	20°, 22 I	h								
\frown		(CO) 1	m 1 1							
jo o	Rh(acac)	$(CO)_2, L_1$	/Rh = I,	T/ X			1 - 6 7			004
o-P P-o		1/1, 6 au	m),	I (—),<	(10 + 11)), I:I	1 = 0.7			884
à ó í	CH ₂ Cl ₂	, 35								
$\mathbf{R} = \begin{pmatrix} \mathbf{N} \\ \mathbf{N} \end{pmatrix}$										
<u></u> o/										
	$PtCl_2((S,$	S)BDPP), SnX ₂ ,							
(S,S)-BDPP	H ₂ /CO	(1/1, 801	bar),							60
	AgY, P	hMe								
	Х	y s	n/Ag/Pt T	emp. Time (h) Con	IV. (%)	I + II	I:II	I (% ee)	
	Cl	2.	/0/1 1	00° 3	50		(88)	32:68	9.9 R	
	Cl	TfO 2	/2/1 1	00° 25	75		(88)	37:63	1.6 R	
	Cl	_ 2	/0/1 6	0° 30	60		(90)	38:62	63.0 S	
	Cl	TfO 2	/2/1 6	0° 100	98		(69)	44:56	0.9 <i>S</i>	
	Cl	— 2	/0/1 4	0° 115	58		(98)	42:58	75.5 S	
	F	- 2	/0/1 1	00° 5	26		(95)	31:69	15.1 <i>S</i>	
	F	_ 2	/0/1 4	0° 240	72		(98)	32:68	76.0 <i>S</i>	

F

F

1/5/1

 40°

180

65

(97) 33:67 71.3 *S*

Reactant Chiral	Ligand		Conditio	ns		- Prod	uct(s) and Yi	ield(s) (%	6), %ee	Refs.
(<i>S</i> , <i>S</i>)-BDBPP	<u> </u>	cis-PtCl(((SnCl ₃), I H ₂ /CO (1	(S,S)-BDB PhMe, /1, 70 bar)	PP)						885
		<u>Temp.</u> 70° 100°	<u>Time (†</u> 27 8	a) Conv. (%) 90 27	I:II 6.14 3.84	I (%ee) 19 (S) 12 (S)	<u>III</u> (27) (47)			
(<i>S</i> , <i>S</i>)-BDPP		PtCl ₂ ((<i>S</i> , <i>S</i>) H ₂ /CO (Pt/SnCl ₂ PhMe, 1	5)BDPP), 1/1, 80 bai 2/Sn(OTf) ₂ 00°, 35 h	r), = 1/2/2,	I (39),	29.3 <i>S</i> + I	I (57) + Ш ((5)		60
Fe PPh ₂		Rh(acac)(chiral lig CO/H ₂ (CO) ₂ , THI gand, L/Rh 1/1, 6 atm)	F, 80°, = 4,	I (—),-	— + II (—	-), I:II = 2			886
PPh ₂ PPh ₂ PPh ₂ PPh ₂	OH	Rh(acac)(chiral lig CO/H ₂ (CO) ₂ , THI gand, L/Rh 1/1, 6 atm)	F, 80°, = 4,	I (—),-	— + II (-), I:II = 4			886
PPh ₂ PPh ₂ PPh ₂ PPh ₂	= ⟨ B R	Rh(acac)(chiral lig CO/H ₂ (CO) ₂ , THI gand, L/Rh 1/1, 6 atm)	F, 80°, = 4,	I (—),-	— + II (-), I:II = 4-5	i		886
Fe pph2	NMe2	PtCl ₂ , Sn CO/H ₂ PhMe	Cl ₂ , (1/1, 80 ba	r),	I + I	(+ III				887
A	dditional Ligand	Time (h)	Temp	Conv. (%)	(I + II)	/(I+II+III) (I)/(I +	-Ⅲ) I (9	%ee)	
-	-	100	80°	89	74		58	_	-	
B	DPP DPP	30 15	80° 100°	79 90	93 83		32 60	21(7(;	(S) S)	
Ala-Xaa ₁ -Ala Ala-Ala-Xaa Xaa ₁ = aminoi Xaa ₂ = diphen	-ala-Xaa ₂ -Val- ₂ -Ala-Xaa ₁ -Ala isobutyric acid ylphosphinoserine	Chiral Li CO/H ₂	gand/Rhco	omplex,	I (85),	, 40 <i>S</i>				888
Ph ₂ P	\sim	Rh(acac) L*/Rh = CO/H ₂	(CO) ₂ , C ₆ = 2.5, 30°, (1/1, 90 at	H ₆ , 20 h, m)	I (—,	1 (<i>R</i>)), I +	H (70), I:H	= 95:5		889
		Rh(CO)(30°, 21 CO/H ₂	L [*])Cl, C ₆ I h, (1/1, 85 at	H ₆ , m)	I (—)	, 28 <i>R</i> , I +	II (15), I:II	= 90:10		889
		PtCl(liga C ₆ H ₆ , 6 CO/H ₂	und)(SnCl ₃ 50°, 18 h, (1/1, 90 at), m)	I ()	, 31 <i>R</i> , I +	П (12), І:П	= 70:30		889
Ph2P	°×	Rh(acac) L [*] /Rh = CO/H ₂)(CO) ₂ , C ₆ = 2.5, 30°, (1/1, 90 at	H ₆ , 5 h, m)	I + II	(95), 1 <i>R</i> ,	I:II = 95:5			889

\checkmark	Conditions	Product(s) and Yield(s) (%), %ee	Refs
	Rh(acac)(CO) ₂ . C ₆ H ₆ , L [*] /Rh = 2.5, 30 °, 1 h, CO/H ₂ (1/1, 90 atm)	I + II (95), 1 <i>R</i> , I:II = 97:3	889
Ph Tfo ⁻ Ph	Rh (acac)(CO) ₂ , P/Rh = 2, CO/H ₂ (1/1, 50 atm), 20 °, 22 h	I (10), <5 + II (<1), I:II = 29.8	664
O PPh2 O PPh2 O Pr-i	Rh (acac)(CO) ₂ , P/Rh = 2, CO/H ₂ (1/1, 50 atm), 20 °, 22 h	I (5), —, I:II = 100:0	664
	Rh(acac)(CO) ₂ , ligand, L/Rh = 1.1, toluene-d ₈ , CO/H ₂ (1/1, 20 atm)		883
$P(OR)_2 = $ $Me_3Si \qquad O > p - O \qquad SiMe$	Temp. Conv. (%) TOF 50° 98 281 40° 89 259 25° 21 45	I II III I (% ee) (89) (10) (1) 8 R (91) (8) (1) 18 R (94) (5) (1) 40 R	
	Rh(acac)(CO) ₂ , ligand, H ₂ /CO (1/1)		890
Ligand L/Rh Solvent	P(atm) Temp. Time	e (h) Conv. (%) I I (% ee)	
(S)-NAPHOS 3 toluene	100 40° 24	53 (83) 34 <i>S</i>	
(S)-NAPHOS 3 toluene	70 40° 40	89 (96) 32 <i>S</i>	
(S)-BINAS 4 McOH-H ₂ C	D/toluene 100 40° 25	92 (95) 18 <i>S</i>	
(R)-BDPAP 3 toluene (R)-BDPAP 3 toluene	80 50° 24 100 25° 18	98 (97) 0 52 (98) 0	
	100 20 10		
$\mathbf{x} = \mathbf{x} + $	Rh(acac)(CO) ₂ , ligand,		883
ò ò	CO/H_2 (1/1, 20 atm)		505
$(RO)_2 P \longrightarrow P(OR)_2$			
$P(OR)_2 = \bigvee_{k=1}^{N} \bigvee_{k=1$			
$(RO)_2 P \xrightarrow{O} P(OR)_2$ $P(OR)_2 = \xrightarrow{R^1 \qquad O \xrightarrow{P} O \qquad R^1}$ $P(OR)_2 = \xrightarrow{R^1 \qquad P/Rh Temp. Time}$	e (h) Conv. (%) TOF	<u>I II III I (% ee)</u>	
$\frac{R^{1}}{Me_{3}Si} = \frac{P/Rh}{2.2} = \frac{R^{1}}{50^{\circ}} + \frac{P/Rh}{15} = \frac{Time_{1}}{15}$	e (h) Conv. (%) TOF 38 104		
$(RO)_{2}P \xrightarrow{P} P(OR)_{2}$ $R^{1} \xrightarrow{P} O \xrightarrow{P} O \xrightarrow{R^{1}} R^{1}$ $P(OR)_{2} = \xrightarrow{R^{1} P'Rh Temp. Time}$ $Me_{3}Si 2.2 50^{\circ} 15$ $Me_{3}Si 2.2 25^{\circ} 23$ $Me_{3}Si 2.2 25^{\circ} 23$	e (h) Conv. (%) TOF 38 104 20 14 26 11	I II III I (% ee) (86) (13) (1) 21 S (91) (7) (2) 47 S (94) (6) (0) 57 S	
$(RO)_{2}P^{-C} = V^{-}P(OR)_{2}$ $R^{1} = V^{-}P(OR)_{2} = V^{-}P(OR)_{2}$ $R^{1} = V^{-}R^{1}$ $P(OR)_{2} = V^{-}P(OR)_{2} = V^{-}P(OR)_{2}$ $R^{1} = V^{-}R^{1}$ $P(OR)_{2} = V^{-}P(OR)_{2} = V^{-}P(OR)_{2}$ $R^{1} = V^{-}R^{1}$ $P(OR)_{2} = V^{-}P(OR)_{2}$ $R^{1} = V^{-}R^{1}$ $P(OR)_{2} = V^{-}P(OR)_{2}$ $R^{1} = V^{-}R^{1}$ $R^{1} = V^{R$	e (h) Conv. (%) TOF 38 104 20 14 26 11 94 256	I II III I (% ee) (86) (13) (1) 21 S (91) (7) (2) 47 S (94) (6) (0) 57 S (90) (9) (1) 20 S	
$(RO)_2 P^{-O} P(OR)_2$ $R^1 P(OR)_2 = P^{-O} R^1$ $P(OR)_2 = P^{-O} R^1$ $R^1 P'Rh Temp. Time$ $Me_3Si 2.2 50^{\circ} 15$ $Me_3Si 8.8 25^{\circ} 15$ $Et_3Si 2.2 50^{\circ} 15$ $Et_3Si 2.2 25^{\circ} 24$	e (h) Conv. (%) TOF 38 104 20 14 26 11 94 256 51 17	I II III I (% ee) (86) (13) (1) 21 S (91) (7) (2) 47 S (94) (6) (0) 57 S (90) (9) (1) 20 S (94) (6) (0) 28 S	
$\frac{R^{1}}{Rc_{3}Si} = \frac{P/Rh}{2.2} + \frac{P/Rh}{2} + \frac{Temp.}{15} + \frac{Time}{15}$ $\frac{R^{1}}{Rc_{3}Si} = \frac{P/Rh}{2.2} + \frac{Temp.}{15} + \frac{Time}{15}$ $\frac{R^{1}}{Rc_{3}Si} = \frac{P/Rh}{2.2} + \frac{Temp.}{15} + \frac{Time}{15}$ $\frac{R^{1}}{Rc_{3}Si} = \frac{2.2}{2.5} + \frac{2.3}{23}$ $\frac{R^{2}}{Rc_{3}Si} = \frac{2.2}{2.5} + \frac{2.3}{24}$ $\frac{R^{2}}{TBDMS} = \frac{2.2}{2.5} + \frac{2.3}{24}$	e (h) Conv. (%) TOF 38 104 20 14 26 11 94 256 51 17 47 163	I II III I (% ee) (86) (13) (1) 21 S (91) (7) (2) 47 S (94) (6) (0) 57 S (90) (9) (1) 20 S (94) (6) (0) 28 S (85) (14) (1) 7 S	
$(RO)_2 P^{-O} P(OR)_2$ $R^{1} P(OR)_2 = P^{-O} R^{1}$ $P(OR)_2 = P^{-$	e (h) Conv. (%) TOF 38 104 20 14 26 11 94 256 51 17 47 163 36 16	I II III I (% ee) (86) (13) (1) 21 S (91) (7) (2) 47 S (94) (6) (0) 57 S (90) (9) (1) 20 S (94) (6) (0) 28 S (85) (14) (1) 7 S (93) (6) (1) 15 S	
$(RO)_2 P^{-O} P(OR)_2$ $R^{1} P(OR)_2 = P^{-O} R^{1}$ $P(OR)_2 = P^{-O} R^{1}$ $P(OR)_2 = P^{-O} R^{1}$ $R^{1} P/Rh Temp. Time$ $Me_3Si 2.2 50^{\circ} 15$ $P(OR)_2 = P^{-O} R^{1}$ $R^{1} P/Rh Temp. Time$ $Re_3Si 2.2 50^{\circ} 15$ $P(OR)_2 = P^{-O} R^{1}$ $R^{1} P/Rh Temp. Time$ $Re_3Si 2.2 50^{\circ} 15$ $P(OR)_2 = P^{-O} R^{1}$ $R^{1} P/Rh Temp. Time$ $Re_3Si 2.2 50^{\circ} 15$ $R^{1} P/Rh Temp. Time$ $Re_3Si 2.2 50^{\circ} 15$ $R^{1} P/Rh Temp. Time$ $R^{1} P/Rh Temp. Time$ $R^{1} P/Rh Temp. Time$ $Re_3Si 2.2 50^{\circ} 15$ $R^{1} P/Rh Temp. Time$ $R^{1} P/Rh Temp. Time. Time.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IIIIII $I (\% ee)$ (86) (13) (1) $21 S$ (91) (7) (2) $47 S$ (94) (6) (0) $57 S$ (90) (9) (1) $20 S$ (94) (6) (0) $28 S$ (85) (14) (1) $7 S$ (93) (6) (1) $15 S$	883
$(RO)_2 P^{-O} P(OR)_2$ $R^{1} P(OR)_2 = P^{-O} R^{1}$ $P(OR)_2 = P^{-O} R^{1}$ $R^{1} P(Rh Temp. Time$ $R^{1} P(OR)_2 = P^{-O} R^{1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I II III I (% ee) (86) (13) (1) 21 S (91) (7) (2) 47 S (94) (6) (0) 57 S (90) (9) (1) 20 S (94) (6) (0) 28 S (85) (14) (1) 7 S (93) (6) (1) 15 S I II III II I (% ee)	883
$(RO)_2 P^{-O} P(OR)_2$ $R^{1} P(OR)_2 = P^{-O} R^{1}$ $P(OR)_2 = P^{-O} R^{1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I II III I (% ee) (86) (13) (1) 21 S (91) (7) (2) 47 S (94) (6) (0) 57 S (90) (9) (1) 20 S (94) (6) (0) 28 S (85) (14) (1) 7 S (93) (6) (1) 15 S I II III I (% ee) (87) (10) (3) 12 S	883

TABLEX	ASYMMETRIC HYDROFORMYLATION (Continued
INDED A.	AST MULTICE IT DIGIT DIGIT DI TION (communacu)

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Keis.
R	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , L/Rh = 4, H ₂ /CO (1/1, 100 atm), C ₆ H ₆ , 60° $\frac{\text{Time (h)}}{20}$ 34 34 66	$R = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{R}} + \frac{\mathbf{I} + \mathbf{II}}{\mathbf{III}} = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{I} + \mathbf{III}} = \frac{\mathbf{I} + \mathbf{III}}{\mathbf{I} + \mathbf{III}} = \frac{\mathbf{I} + \mathbf{IIII}}{\mathbf{I} + \mathbf{III}} = \frac{\mathbf{I} + \mathbf{III}}{\mathbf{I} + \mathbf{III}} = \frac{\mathbf{I} + \mathbf{IIII}}{\mathbf{I} + \mathbf{III}} = \frac{\mathbf{I} + \mathbf{III}}{\mathbf{I} + \mathbf{II}} = \frac{\mathbf{I} + \mathbf{III}}{\mathbf{I} + \mathbf{II}} = \frac{\mathbf{I} + \mathbf{III}}{\mathbf{I} + \mathbf{I} + \mathbf{II}} = \frac{\mathbf{I} + \mathbf{III}}{\mathbf{I} + \mathbf{II}} = \frac{\mathbf{I} + \mathbf{III}}{\mathbf{I} + \mathbf{II} + \mathbf{II}} = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{I} + \mathbf{II}} = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{I} + \mathbf{II}} = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{I} + \mathbf{I} + \mathbf{II}} = \frac{\mathbf{I} + \mathbf{II}}{\mathbf{I} + \mathbf{I} + \mathbf{II} + \mathbf{I} + I$	34, 113
x	()-BPPM	PtCl ₂ (BPPM)/SnCl ₂ , CO/H ₂ (1/1, 2650 psi), C ₆ H ₆ , 60°, 8 h		406
		X Conv. (%) I/II % ee H 89 0.47 70 Br 49 0.53 75 Ac 47 0.87 85 NO2 14 1.40 58 Me 77 0.57 72 OMe 65 0.60 73	+ X II	I
Ph	(-)-DIOP	RhH(CO)(PPh ₃) ₃ , 95°, CO/H ₂ (1/1, 85 psi), 28 h	Ph CHO I + CHO II Ph () II (), 0.9 R, I:II = 62:38	855 3
<i>n</i> -C ₆ H ₁₃	(-)-DIOP	RhH(CO)(PPh ₃) ₃ , 95°, CO/H ₂ (1/1, 80 psi), 24 h	<i>n</i> -C ₈ H ₁₇ CHO I + $H_{n-C_0H_{13}}$ () (), 0.2 S, I:II = 74:26	855
Co	~ ~			
	$\begin{array}{c} Ph & \bigcirc \\ O & O & O \\ O & O & \bigcirc \\ O & O & O \\ O & O & O \\ O & O & O \\ O & O &$	Rh(COD)(L [*])BF ₄ , CO/H ₂ (1600 psi), hexane	СНО + СНО I (—), 30 II (—) I:II = 94:6	843
Ph-S	(R.S)-BINAPHOS	Rh(acac)(CO) ₂ , PhH, 40°, CO/H ₂ (1/1, 100 atm), L/Rh = 4-4.4, 46 h	Ph^{-S} CHO I + Ph^{-S} II 1 (), 65 (+) + II (), I:II = 86:14	837
N I CO ₂ Bu- <i>t</i>	()-DIPHOL	RhH(CO)(PPh ₃) ₃ , L/Rh = 4, C ₆ H ₆ , 52°, CO/H ₂ (500 psi), 8 d	CHO (), 0.35 R CO ₂ Bu-t	801
	(S, R)-BIPHEMPHOS	Rh(CO) ₂ (acac), C ₆ H ₆ , H ₂ /CO (1/1, 100 atm), 60° , 20 h	СНО + СНО I (57), 88 (+) II (5)	414
	(S, R)-BINAPHOS		I (57), 83 (+) + II (5)	414
	(R,S)-BINAPHOS		I (), 83 () + II (), I:II = 92:8	36
	(R,R)-BCO-DBP	Pt(BCO-DBP)Cl ₂ /SnCl ₂ , CO/H ₂ (7/15, 220 atm), C ₆ H ₆ , 80°, 7 h	I (21), 45 + starting material (78)	872
	(R,S)-BINAPHOS	Rh(CO) ₂ (acac), C ₆ H ₆ , H ₂ /CO (1/1, 100 atm), 60°, 50 h	СНО + СНО I (—), 92 R II (—), ЕП = 97:3	36
E:Z = 1:1	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , ligand, H ₂ /CO (1/1, 100 atm), L/Rh = 4, C ₆ H ₆₀ , 60°	1 (—), 79 <i>R</i> + H (—), I : H = 78:22	113

Reactant	Chiral Ligand	C	Conditions	Product(s) and Yield(s) (%), %ee						
Å		CO/H ₂ (1/1, PhMe	, 80 bar),	(S-exo) CH	I + Ю ОНС	(<i>R-exo</i>) II +	у ш	894		
				+ (R-end		+ OHC (S-endo)	v			
	Catalyst	Temp.	Time (h)	I + II	І:П	$\blacksquare \qquad IV + V$				
	$[Rh(NBD)Cl]_2 + 6 PPh_3$	100°	8	(93)	_	(0) (7)				
	[Rh(NBD)Cl]2 + 3 (2S, 3S)-CHIRAPHOS	100°	8	(96)	61.0:39.0	(0) (4)				
	[Rh(NBD)Cl] ₂ + 3 (2S, 3S)-CHIRAPHOS	50°	8	(59)	—	(0) (2)				
	[Rh(NBD)Cl] ₂ + 3 (25, 35)-CHIRAPHOS	50°	15	(98)	48.3:51.7	(0) (2)				
	$[Rh(NBD)Cl]_2 + 3 (4S, 5S)-DIOP$	100°	8	(98)	48.5:51.5	(0) (2)				
	$PtCl(SnCl_3)[(S, S)-BDPP]$	100°	4	(96)	46.2:53.8	(0) (3)				
	$P(C (SnCl_3) (S, S)-BDPP]$	25"	60	(90)	41.9:30.1	(0) (2) (TT) (2)				
	$P(Cl_2[(3, 3) - BPPM] + SnCl_2$ $P(Cl_2[(2), BPOPHOS] + SnCl_2$	100	10	(93)	40.7.39.3 50 6:49 4	(d) (2) (4) (3)				
	$PrCl_2[(R) - PROPHOS] + SnCl_2$	250	115	(89)	49.6:50.4	(2) (2)				
	$PtCl_2[(R) - PROPHOS] + SnCl_2$	25°	20	(18)		(2) (2)				
	·····2(()) ·····························						сно			
		[(<i>R</i> , <i>R</i>)-DIOI	P]PtCl(SnCl ₃),	\sim	, L c	но 🔨				
Í	(R, R)-DIOP	C ₆ H ₆ , hydı	roquinone,	ſ	Ţ	I + []	п	895		
		80°, CO/H	2 (180 bar)	R	/	R				
I				CI CI NO	>99:1 >99:1 5 ₃ >99:1 D ₂ —	$\begin{array}{c} (02) & (13) \\ (30) & (12) \\ (55) & (13) \\ (0) & (-) \end{array}$				
	(R,R)-BCO-DPP	[(<i>R</i> , <i>R</i>)-BCC SnCl ₂ , C ₆ CO/H ₂ (7/	D-DPP]PtCl ₂ / H ₆ , 80°, 8.5 h, /15, 220 atm)		сно (—), 12.5 S	I + (44)	П	407		
	(R,R)-BCO-DBP	[(<i>R</i> , <i>R</i>)-BCC SnCl ₂ , C ₆ l CO/H ₂ (7/	D-DBP]PtCl ₂ / H ₆ , 80°, 9 h, /15, 220 atm)	I (), 1	5.9 <i>R</i> + H (74)		407		
	(R,R)-EtDIOP	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/ 80°, 165 h	L/Rh = 4, (1, 80 atm),	I (), 0	+ 2.0	Ш (—) I:Ш = 86:14		850		
	(<i>R</i> , <i>R</i>)-CyDIOP	Rh4(CO) ₁₂ , CO/H ₂ (1/ 80°, 66 h	L/Rh = 4. (1, 80 atm),	I (—), 1	.5 S + III ()), I:III = 91:9		850		
	(S,S)-CHIRAPHOS	[Rh(NBD)C CO/H ₂ (1/ 100°, 70 h	Cl] ₂ , L/Rh = 4, 1, 80 aun),	I + III (30), 21.4 <i>R</i> , I	III = 99:1		130		
		Pt(CHIRAN CO/H ₂ (1/	PHOS)(SnCl ₃)Cl, /1, 80 atm), 100°	I (—), 3	.0 <i>S</i> + III ()), I : III = 99:1		130		
	(<i>R</i> , <i>R</i>)-DIOP	RhH(CO)(H L/Rh = 4, CO/H ₂ (1/	PPh ₃) ₃ , 100°, 46 h, ⁄1, 80 atm)	I (77), 1	4 R			130		
	п	Pt(DIOP)(S CO/H ₂ (1/	SnCl ₃)Cl, 100°, (1, 80 atm)	I (), 7.	2 <i>S</i>			130		
	TABLE X. A	SYMMETRIC HYDROFORMYLAT	FION (Continued)							
----------	--	--	---	------------						
Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.						
	(+)-DICOL	HRh(CO)(PPh ₃) ₃ /DICOL (1/3), C ₆ H ₆ , 90°, 110 h, CO/H ₂ (1/1, 80-90 atm)	I (49), ł <i>R</i> + III (2.6)	851						
	(RO) ₂ P ⁻⁰ P(OR) ₂	Rh(acac)(CO) ₂ , L*/Rh = 4, Me ₂ CO, 50°, CO/H ₂ (1/1, 600 psi)	I (—), 26 <i>S</i>	38						
	$P(OR)_2 = $ MeO	Bu-t OMe								
		Bb(cocc)(CO)								
	(R)-BPNAP	(<i>R</i>)-BPNAP, L/Rh = 1.7, PhMe, CO/H ₂ (1/1, 7 atm), 110°, 20 h	I (96), 0	893						
	()-DIOCOL	HRh(CO)(PPh ₃) ₃ /(-)- DIOCOL (1/1.5), C ₆ H ₆ , CO/H ₂ (1/1, 80-90 atm), 90° 240 b	I (48), 1 <i>S</i> + III (3)	851						
Ph 0	(<i>S</i> , <i>S</i>)-DIOP	Rh(NBD)(DIOP)-BPh ₄ , L/Rh = 3, 80°, C ₆ H ₆ , CO/H ₂ (44/56, 250 psi)	$\begin{array}{c} O \\ Ph \\ \hline \\ I \\ (-), 30 R \end{array} + \begin{array}{c} O \\ Ph \\ \hline \\ I \\ (-) \end{array} CHO \\ \hline \\ CHO \\ CHO \\ \hline \\ CHO \\ (-) \end{array}$	842						
	(<i>R,R</i>)-DIPHOL	Rh(COD)(acac), L/Rh = 4, C ₆ H ₆ , 80°, CO/H ₂ (44/56, 1000 psi)	I (), 12 R + II ()	842						
	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , ligand, H ₂ /CO (1/1, 100 atm), L/Rh = 4, C ₆ H ₆ , 60°, 71 h	I (), 89 S + II (>99), I:II=91:9	113						
Ph		Rh(acac)(CO) ₂ , ligand, L/Rh = 4, C ₆ H ₆ , CO/H ₂ (1/1), 60°		836						
	Ligand	H ₂ /CO (atm/atm) Time (h)	I I (% cc)							
	PPh ₃	50/50 72	(>99) —							
	(R,S)-BINAPHOS	15/15 30	(>99) 88 (+)							
	(3)-BINAP (B)-7-Nan-BIPNITE	15/15 30 15/15 30	(0) - (599) - 5(4)							
	(R.S)-BINAPHOS	50/50 57	(>99) 6(+)							
	(R,S)-BINAPHOS	50/50 20	(53) 12 (+)							
	(R,S)-BINAPHOS	25/25 30	(65) 15 (+)							
	(R,S)-BINAPHOS	20/20 30	(73) 40 (+)							
	(R,S)-BINAPHOS	5/5 30	(64) 75 (+)							
	(R,S)-BINAPHOS	0.5/0.5 30	(22) 70 (+)							
			CHO							
		$Rh(CO)_2(acac), C_6H_6,$	CHO	414						
	(A, S)-BIFTIEMPHUS	$n_2/CO(1/1, 100 \text{ aum}),$ 60°, 12 h		717						
		00,121	I (70), 96 (-) II (4),							
	(R, S)-BINAPHOS	"	I (71), 97 (-) + II (3), —	414, 36						
0		PtCl2(BDPP)/SnCl2.								
Ţ,	(+)-BDPP	CO/H ₂ (1/1, 80 bar), PhMe, 100°, 7 h	I (), (5 <i>R</i> ,8 <i>R</i>):(5 <i>R</i> ,8 <i>S</i>) = 70:30	896						
\sim			СНО							
	(-)-BDPP	п	I (), (5 <i>R</i> ,8 <i>R</i>):(5 <i>R</i> ,8 <i>S</i>) = 44:56	896						

T.	Chiral Ligand	Conditions CO/H ₂ (1/1, 80 bar),	Product(s) and Yield(s) (%), %ee	897
V.		PhMe , 100°	THE THE	
•	Catalyst	Time (h) Conv. (%)	$\mathbf{I}(\mathbf{I} + \mathbf{II})$ (%) $\mathbf{I}[(1R, 3S, 4S):(1R, 3R, 4S)]$	
	[Rh(NBD)Cl] ₂ /PPh ₃	10 > 99	93 60:40	
	[Rh(NBD)Cl]2/DPPE	20 85	87 65:35	
	[Rh(NBD)Cl]2/DPPB	20 91	88 66:34	
	[Rh(NBD)Cl]2/(S,S)-DIOP	20 90	90 69:31	
	[Rh(NBD)Cl] ₂ /(R,R)-DIOP	20 91	91 52:48	
	PtCl ₂ (DPPE)/SnCl ₂	13 2		
	PtCl ₂ ((+)-BDPP)/SnCl ₂	20 68	93 67:33	
	PtCl ₂ (DPPB)/SnCl ₂	20 17	83 62:38	
o II		Rh(acac)(CO) ₂ , ligand,		но
7H15 0	(R,S)-BINAPHOS	H ₂ /CO (1/1, 100 atm),	C_7H_{15} 0 CHO + C_7H_{15} 0	113
		$L/Rh = 4$, C_6H_6 , 60°, 72 h	I (), 80 <i>S</i> II (>99), I : II = 88:1	2
\frown		$CO(H_{1}/1)$ (1/1 (20 hor)	сно ста	807
		CO/H_2 (1/1, 80 bal),		097, 804
\sim		PhMe, 100 ⁻	$\uparrow \checkmark \qquad \uparrow \checkmark$	890
11				
		11me (h) Conv. (%)	$\frac{1}{1}(1+11)(\%) \qquad 1 \left[(4R,8S):(4R,8R)\right]$	
	[Rh(NBD)Cil ₂ /PPh ₃	22 98	97.8 45:55	
	[Kn(NBD)Cl]2/DPPP	20 91	93.5 49:51	
	[Rn(NBD)CI]2/DPPB	38 96	94,4 50:50	
	[Rh(NBD)CI] ₂ /(S,S)-DIOP	20 96	95.5 49:51	
		16 87	93.0 49:31	
	PICI ₂ (DPPP)/SIICI ₂	35 20	> 99 32.48	
	PICI ₂ ((+)-BDPP)/SIICI ₂	35 28 25 27	> 99 58.02	
		PhMe, 100°		
	Catalyst	Time (h) Conv. (%)	I [(3 <i>R</i> ,6 <i>R</i> ,8 <i>S</i>):(3 <i>R</i> ,6 <i>R</i> ,8 <i>R</i>)]	
	[Rh(NBD)Cl] ₂ /PPh ₃	10 97	43:57	
	[Rh(NBD)CI] ₂ /DPPB	20 90	48:52	
	$[Rh(NBD)Cl]_2/(R,R)-DIOP$	20 88	49:51	
	[Kn(NBD)Ci] ₂ /(S,S)-DIOP	20 86	53:47	
	PICI2(BDPP)/SnCl2	11 95	41:59	
	PiCl ₂ (DPPB)/SnCl ₂	24 7	45:55	
	PICI2(DPPE)/SIICI2	20 9	48:52	
	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , L/Rh = 4, H ₂ /CO (1/1), PhH	Ph CHO I+ Ph CHO	II 857
				IV
			10 000	
		Temp. Press. (atm) Tin	ne (h) Conv. (%) I:II:III:IV I (% ee)	
		<u>Temp. Press. (atm) Tin</u> 60° 100 18	ne (h) Conv. (%) I:II:III:IV I (% ee) >99 57:2:28:13 64 R	
		Temp. Press. (atm) Tin 60° 100 18 30° 100 48	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Temp. Press. (atm.) Tin 60° 100 18 30° 100 48 30° 100 72	herita Conv. (%) I:II:III:IV I (% ee) >99 57:2:28:13 64 R 62 91:5:2:2 89 R 90 42:1:56:1 56 R	
		Temp. Press. (atm.) Tin 60° 100 18 30° 100 48 30° 100 72 30° 40 24	ne (h) Conv. (%) I:II:III:IV I (% ee) >99 57:2:28:13 64 R 62 91:5:2:2 89 R 90 42:1:56:1 56 R 88 92:5:2:1 90 R	
		Temp.Press. (atm.)Tin60°1001830°1004830°1007230°402430°2012	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(R.S)-BINAPHOS	Temp. Press. (atm) Tim 60° 100 18 30° 100 48 30° 100 72 30° 40 24 30° 20 12 Rh (acac)(CO) ₂ , C ₆ H ₆ , H ₂ /CO (1/1) 100 atm)	$\frac{\text{he (h)} \text{Conv. (\%)} \text{I:II:III:IV} \text{I (\% ee)}}{>99} \qquad 57:2:28:13 \qquad 64 R \\ 62 \qquad 91:5:2:2 \qquad 89 R \\ 90 \qquad 42:1:56:1 \qquad 56 R \\ 88 \qquad 92:5:2:1 \qquad 90 R \\ 47 \qquad 94:6:0:0 \qquad 92 R \\ \text{Pb} \qquad - CHO \text{I} + \text{Pb} \qquad CHO \\ \text{CHO} \text{I} + \text{Pb} \qquad CHO \\ \text{CHO} \text{I} + \text{Pb} \qquad $	413 H
	(<i>R,5</i>)-BINAPHOS	Temp. Press. (atm) Tim 60° 100 18 30° 100 48 30° 100 72 30° 40 24 30° 20 12 Rh (acac)(CO) ₂ , C ₆ H ₆ , H ₂ /CO (1/1, 100 atm) J/Rh = 4.30°	$\frac{1}{10} + \frac{1}{10} $	413 II
	(<i>R,S</i>)-BINAPHOS	Temp. Press. (atm) Tim 60° 100 18 30° 100 48 30° 100 72 30° 40 24 30° 20 12 Rh (acac)(CO) ₂ , C ₆ H ₆ , H ₂ /CO (1/1, 100 atm) L/Rh = 4, 30°	$\frac{\text{he (h)} \text{Conv. (\%)} \textbf{I:II:III:IV} \textbf{I (\% ee)}}{99} = 57:2:28:13 64 R}$ $62 91:5:2:2 89 R}$ $90 42:1:56:1 56 R}$ $88 92:5:2:1 90 R}$ $47 94:6:0:0 92 R$ $Ph \qquad \qquad$	413 II
	(<i>R,S</i>)-BINAPHOS	Temp. Press. (atm) Tin 60° 100 18 30° 100 48 30° 100 72 30° 40 24 30° 20 12 Rh (acac)(CO) ₂ , C ₆ H ₆ , H ₂ /CO (1/1, 100 atm) L/Rh = 4, 30° Time (h) Conv. (%) 72	$\frac{1}{12} + \frac{1}{12} $	413 II

Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs
	()-DIOP	HRh(CO)(PPh ₃) ₂ /DIOP (1/2), C ₆ H ₆ , 100°, 24 h, CO/H ₂ (1/1, 100 atm)	0 N CHO I (98), 0	825
	()-DIOCOL	HRh(CO)(PPh ₃) ₃ /DIOCOL (1/2), C ₆ H ₆ , 100°, 24 h, CO/H ₂ (1/1, 100 atm)	I (90), 0	825
	(-)-DIOP	HRh(CO)(PPh ₃) ₃ /Chiral Ligand (1/2), C ₆ H ₆ , 70°, CO/H ₂ (1/1, 100 atm), 15-20 h	$ \begin{array}{c} 0 \\ N \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 + \prod (95), 1 R, 1:\Pi = 1.3 \end{array} $	825
			($)$ $($ $)$ $()$ $($	875
	(-)-DIOCOL		1 + 11 (90), 1.5 K, 1.1 = 1.7	823
Cr(CO) ₃	(-)-DIOP	$[RhCl(CO)_2]_2$, L/Rh = 2, CO/H ₂ (400 psi), 50°, 66 h	$\begin{array}{c} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	387
	(-)-BPPM	9	I + II (70), 14 <i>S</i> , I : II = 95:5	387
	(-)-BINAP	11	I + Ⅲ (89), 7 <i>R</i> , I:Ⅲ = 93:7	387
	(-)-DIOP	Pt(DIOP)Cl ₂ /SnCl ₂ , 50°, CO/H ₂ (400 psi), 48 h	I + II (73), 46 <i>R</i> , I : II = 73:27	387
	(-)-BPPM	Pt(BPPM)Cl ₂ /SnCl ₂ , 50°, CO/H ₂ (400 psi), 88 h	I + II (84), 40 <i>S</i> , I:II = 24:76	387
	(-)-BINAP	Pt(BINAP)Cl ₂ /SnCl ₂ , 65°, CO/H ₂ (400 psi), 66 h	I + II (36), 0, I:II = 32:68	387
	(-)-CHIRAPHOS	Pt(CHIRAPHOS)Cl ₂ /SnCl ₂ , CO/H ₂ (400 psi), 80°, 20 h	I + II (19), 6 <i>R</i> , I : II = 65:35	387
12			сно	
R		Rh(CO) ₂ (acac), C ₆ H ₆ , H ₂ /CO (1/1, 100 atm)		34 113
	(S,R)-BINAPHOS " "	60°, 34 h 60°, 20 h 60°, 34 h 60°, 66 h	R I II $4-\text{ClC}_6\text{H}_4$ (87), 93 (+) (13) $4-\text{MeC}_6\text{H}_4$ (86), 95 (+) (14) $4-\text{MeOC}_6\text{H}_4$ (87), 88 (+) (13) $4-(i-C_4\text{H}_9)\text{C}_6\text{H}_4$ (88), 92 S (12)	
	(R,S)-BINAPHOS	Rh(acac)(CO) ₂ , ligand, H ₂ /CO (1/1, 100 atm), L/Rh = 4, C ₆ H ₆	R Temp. Time $I + II$ I:II I (% exp p-FC ₆ H ₄ 40° 39 h (43) 89:11 92 (—	<u>*)</u> 113)
	(R,R)-DIOP	Rh ₄ (CO) ₁₂ , L/Rh = 2, CO/H ₂ (1/1, 80 bar), hexane, 100°	$(81)_{-}$	385

	TABLE X. AS	YMMETRIC HYDROFORMYLAT	ION (Continued)	
Reactant	Chiral Ligand	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
	(R,R)-DIOP	HRh(CO)(PPh ₃) ₃ , 240 h, L/Rh = 4, rl, PhMe, CO/H ₂ (1/1, 1 bar)	I (71), 11.9 (-) + II (29)	385
	(R,R)-DIOP	PtCl(SnCl ₃)(DIOP), CO/H ₂ (1/1, 80 bar), PhMe, 50°	$\mathbf{I}(18), -+\mathbf{II}(64) + \overbrace{Fe}^{Fe} (19)$	385
	(R.R)-BCO-DPP	Pt(BCO-DPP)Cl ₂ /SnCl ₂ , CO/H ₂ (7/15, 220 atm), C ₆ H ₆ , 50°, 48 h	I (81), 20 + Starting Material (15)	872
	(R,R)-BCO-DBP	Pt(BCO-DBP)Cl ₂ /SnCl ₂ , CO/H ₂ (7/15, 220 atm), C ₆ H ₆ , 50°, 7 h	I (31), 48 + Starting material (65)	872
	ВРРМ	Pt(BPPM)Cl ₂ /SnCl ₂ , CO/H ₂ (7/15, 220 atm), C ₆ H ₆ , 50°, 70 h	I (32), 43 + Starting material (67)	872
	(-)-BPPM	Pt(BPPM)Cl ₂ /SnCl ₂ , CO/H ₂ (1/1, 2400 psi), C ₆ H ₆ , 60°, 18 h	+ Сто	406
	o ^{PPh2}	[Rh(CO)(PPh ₃)(L [*])]ClO ₄ , CO/H ₂ (1/1, 80 atm), C ₆ H ₆ , 100°, 16 h	I (22), 78 S II () $1/11 = 0.53$ I (), 78 R	844
	Ph to o to Ar ₂ P O to O OPh	Rh(COD)(chiral ligand)BF4, CO/H2, rt, 18 h		843
	PAr ₂	Solvent Pressure	(psi) Conv. (%) I II I:II	
	$Ar = 3,5-(CF_3)_2C_6H_3$	C ₆ H ₆ 1600	43 (), 38 () 97:3	
		C ₆ H ₁₄ 1600	53 (), 51 () 96:4	
		C_6H_{14} 500	100 (-), 49 (-) 95:3	
		C6H14 2400 THE 1600	$71 \qquad (-), 51 \qquad (-), 90.4$	
		$C_{c}H_{1a}/HC(OEt)_{3}$ 1600	85 (), 17 () 95:5	
		Et ₃ SiH 1600	20 (—), 72 (—) 95:5	
	Ph O O OPh Ph ₂ P O OPh PPh ₂	Rh(COD)(chiral ligand)BF ₄ , CO/H ₂ (1600 psi), rt, C ₆ H ₆ , 18 h	I (—), 10 + II (—): I:II = 95:5	843
	R_2P N CO_2Bu-r	Pt(Chiral Ligand)Cl ₂ , SnCl ₂ , PhCl, 60°, 38 h CO/H ₂ (1/1, 2400 psi)	I (), 39 <i>S</i> + II (), I:II = 10:1	409
	PR ₂ =	Pt(Chiral Ligand)Cl ₂ , SnCl ₂ , PhCl, CH(OEt) ₃ , CO/H ₂ (1/1, 2400 psi), 60°, 145 h	I (-), 96 S + $I:II = 3.4:1$ $I (-)$	409

	TABLE X.	ASYMME	TRIC HYDROFORM	IYLATIO	ON (Cor	ntinued)	
Reactant	Chiral Ligand		Conditions			P	roduct(s) and Yield(s) (%), %ee	Refs.
	(RO) ₂ P ^{-O} O. P(OR) ₂	3	Rh(acac)(CO) ₂ , L [*] /Rh = 4, Mc ₂ CO, CO/H ₂ (4/1, 200 psi)		I (—),	, 85 <i>S</i> +	II (), I : II = 80:1	38
	$P(OR)_2 = $ $P(OR)_2 = $ $Ph \longrightarrow O$	Bu- <i>t</i>						
	Ar ₂ p O OPh		Rh(COD)(chiral ligand) CO/H ₂ , rt, 18 h)BF4,				843
	Ar	Solvent	Pressure (psi)	Conv. ((%)	1:11	I II_	
	3,5-Me ₂ C ₆ H ₃	C ₆ H ₁₄	500	<5		_	(), <1 ()	
	C ₆ H ₅	C ₆ H ₁₄	500	ৎ			(), ()	
	3,5-F ₂ C ₆ H ₃	C_6H_{14}	500	<5			(), 24 ()	
	3,5-(CF ₃) ₂ C ₆ H ₃	C6H14	500	73		90:10	(), 12 ()	
	$3,5-Me_2C_6H_3$	C ₆ H ₁₄	1600	4		—	(), <2 ()	
	C ₆ H ₅	C ₆ H ₁₄	1600	<5			(), 10 ()	
	$3,5-F_2C_6H_3$	C ₆ H ₁₄	1600	<) 73		04.6	(), 25 () () 39 ()	
	3.5-MeaCcHa	C/Hu	2400	75 55		<u> </u>	(-), 55 (-)	
	C2H5	CaH14	2400	ব			(-), 7 (-)	
	3,5-F ₂ C ₆ H ₂	C ₄ H ₁₄	2400	<5		_	(), 16 ()	
	3,5-(CF ₃) ₂ C ₆ H ₃	C6H14	2400	31		95:5	(), 12 ()	
	3.5-Me ₂ C ₆ H ₃	THF	500	<5		_	(), <3 ()	
	C ₆ H ₅	THF	500	18		94:6	(—), 8 (—)	
	3,5-F ₂ C ₆ H ₃	THF	500	38		95:5	(), <1 ()	
	3,5-(CF ₃) ₂ C ₆ H ₃	THF	500	35		95:5	(), 24 ()	
	α,α-TREDIP		Rh(CH ₂ CH=CH ₂) ₃ , 48 CH ₂ Cl ₂ , CO/H ₂ (1/1)	h,	I + II	(95), 0	, I : II = 95:5	250
	R ₂ P N CO ₂ Bu- <i>t</i>		Pt(Chiral Ligand)Cl ₂ , SnCl ₂ , PhCl, 60°, 40 h CO/H ₂ (1/1, 2400 psi)	1,	I (—)	, 37 <i>S</i> +	Π (), I : Π = 3.3:1	409
	PR ₂ =P)	Pt(Chiral Ligand)Cl ₂ , SnCl ₂ , PhCl, CH(OEt))3,	McO		OEt I (), 96 S +	409
			CO/H ₂ (1/1, 2400 pst) 60°, 182 h PtCl ₂ (BPPM)/SnCl ₂ ,	•	Me	.o	$\mathbf{II} ()$ ELO OEL $\mathbf{I} : \mathbf{II} = 3.$	4:1
	(-)-BPPM		CO/H ₂ (1/1, 2700 psi), HC(OEt) ₃ , 60°, 200 h	,	I (—)	, >96 S	+ II (), I:II = 7:10	406
N Ph	Ph ₂ P 0		Rh(acac)(CO) ₂ , C ₆ H ₆ , L [*] /Rh = 2.5, 80°, 21 h, CO/H ₂ (1/1, 80 atm)	•	N	Ph C	$I + \prod_{CHO} I + \prod_{Ph} I = 99:1$	714
	Ph ₂ P N O O O O O O O O O O O O O		Rh(acac)(CO) ₂ , C ₆ H ₆ , L [*] /Rh = 2.5, 80°, 69 h. CO/H ₂ (1/1, 80 atm)	,	I + II	(60), ~	10, I : II = 99:1	714

Reactant Chiral Ligand Conditions Product(s) and Yield(s) (%), %ee Refs. BnO BnO BnO BnO-BnO-BnO-.Q Rh(acac)(CO)2, .CHO I+ 900 OH 1 CO/H₂ (1/1, 80 atm), юн I+II = 81, I:II = 83:17 toluene, 80°, 48 h BnO BnO BnO -Он Тон ,_{СНО} П

TABLE XI. HYDROFORMYLATION OF ALKYNES

· · · · · · · · · · · · · · · · · · ·			
Reactant	Conditions	Product(s) and Yield(s) (%), %ee	Refs.
C ₈ Ph	Rh/C (5%), DPPP, HCO ₂ H, CO (8.5 atm), THF, 105°, 27 h	Ph $I + Ph$ CHO $II I + II (55)$ I:II = 60:40	368
C ₆ H ₁₃ —===	Rh/C (5%), DPPP, HCO ₂ H, CO (8.5 atm), THF, 130°, 26 h	$\begin{array}{c} CHO\\ C_6H_{13} \end{array} I + C_6H_{13} \end{array} CHO II I + II (52)\\ I:II = 40:60 \end{array}$	368
R— <u>—</u> R	Catalyst, C ₆ H ₆ , Et ₃ N, 150°, CO/H ₂ (1/1, 70 atm)	$\begin{array}{c} R \\ \hline \\ \\ CHO \\ \hline \\ CHO \\ CHO \\ \hline \\ CHO \\ CHO$	266
		Ph II IV	
R	Catalyst Time (h) Conv.	(%) I II III IV	
Et	$PdCl_2(PCy_3)_2-Co_2(CO)_8 = 1 \qquad 96$	(88) (3) (3) ()	
n-Bu	$PdCl_2(PCy_3)_2-Co_2(CO)_8 = 1 = 97$	(90) (2) (5) ()	
$n-C_5H_{11}$	$PdCl_2(PCy_3)_2-Co_2(CO)_8$ 1 95	(95) (2) (2) ()	
Ph	$PdCl_2(PCy_3)_2-Co_2(CO)_8 = 1 = 99$	(53) (0) (30) (16)	
Ph	$PdCl_2(PCy_3)_2 \qquad 5 \qquad 94$	(77) (0) (15) (2)	
	Creative C. H., Pt N. 150.9	<i>n</i> -Pr Pr- <i>n n</i> -Pr Pr- <i>n n</i> -Pr Pr- <i>n</i>	266
n-Pr-m	Catalyst, C_6H_6 , Et_3N , 150°,		266
	$CO(H_2(1)), TO(aun)$	СНО СНО	
	Catalyst Time (h) Cony	<u>v. (%) I II III</u>	
	$PdCl_2(PCy_3)_2 \qquad 1 \qquad 20$	(16) (<1) (0)	
	$PdCb_2(PCy_3)_2 \qquad \qquad$	(83) (<1) (<1)	
	$Co_2(CO)_8 = 1 = 12$	(0) (<1) (1) (2) (2)	
	$C_{\infty}(CO)_{w} = 2FCy_3 \qquad f \qquad 25$	(21) (2) (2) (2) (50) (24) (15)	
	$PdCl_{2}(PCv_{3}) = Co_{2}(CO)_{0} = 1 $	(30) (24) (13)	
	$PdC_{12}(PC_{y_2}) \rightarrow W(CO)_{6} = 1$ 92	(85) (tr) (tr)	
	$PdCl_2(PCy_3)_2 - Fe_3(CO)_{12} = 76$	(68) (tr) (tr)	
	$PdCl_2(PCy_3)_2 Rh_4(CO)_{12}$ 1 65	(46) (16) (3)	
	(Cy ₃ P) ₂ PdCl ₂ , C0 ₂ (CO) ₈ , CO/H ₂ , 150°	CHO (95)	901
		0	
		R	
$R^1 \longrightarrow R^2$	Rh(COD)BPh ₄ , CO/H ₂ (1/1, 100 bar),	$N-R^3$ I	902
	dioxane, R ³ NH ₂ , 100°	R^{2}	
		\mathbf{R}^1 \mathbf{R}^2 \mathbf{R}^3 \mathbf{I}	
		H Ph Bu (21)	
		H Ph C_6H_{13} (37)	
<u>_</u>		H = Ph = Bn (14)	
		Pr Pr Bn (14)	
Dh		- Ph $ Ph$	
/	$Rh_4(CO)_{12}$, C_6H_6 , CO/H_2 (1/1, 200 atm),	(19) + (17) +	381
	60°, 6 h	онс сно	
		Ph	
		0	
		RRR	
n —	$(\mathbf{D}\mathbf{b}(\mathbf{O}\mathbf{A}_{2}) = 1$ DD \mathbf{I}_{1} DD \mathbf{I}_{2} D $\mathbf{b}_{1} = 4$ E $\mathbf{O}\mathbf{A}_{2}$		380
K——— HN—Bn	CO/H_2 (1/1 400 nsi) 90° 18-20 h		200
		l l Bn Bn	
		$\mathbf{R} = \mathbf{Me}, \mathbf{I} + \mathbf{II} + \mathbf{III} (), \mathbf{I}:\mathbf{III}:\mathbf{III} = 1:3:3$	
		R = Ph, I + II + III (), I:II:III = 70:20:5	
C ₁₂			
		$\frac{R}{1}$	202
«R	[Co(CO) ₃ (PBu ₃)] ₂ , H ₂ O, CO (100 atm),	$\mathbf{R} \mathbf{I} n-\mathbf{Bu} \qquad (18)$	382
	220°, 4 h	$= \frac{1}{0} CH=CHPn(E) (41)$	

TABLE XI. HYDROFORMYLATION OF ALKYNES (Continued)

TABLE XI. HYDROFORMYLATION OF ALKYNES (Continued)

Reactant	Conditions	Product(s) and Yield(s) (%), %ee Refs.
C ₁₄ PhPh	RhH(CO)(PPh ₃) ₃ , PPh ₃ , C ₆ H ₆ , CO/H ₂ (1/1, 400 psi), 80°, 20 h	$\begin{array}{c} Ph \\ Ph \\ CHO \end{array} \begin{array}{c} I (8) \\ 378 \\ CHO \end{array}$
	Rh ₄ (CO) ₁₂ , CO/H ₂ , 60°	I(31) + Ph + Ph + (44) = 383, 381
RPh	[Co(CO) ₃ (PBu ₃)] ₂ , H ₂ O, CO (100 atm), 220°, 4 h	$R \xrightarrow{P_h} I + \bigcap_{O} R \prod_{O} 382$
C ₁₆		R $I + II$ H (77) 2-Me (65) 50:50 4-Me (74) 52:48 4-Cl (63) 41:59
R/Ph	Rh ₄ (CO) ₁₂ , C ₆ H ₆ , CO/H ₂ (1/1, 200 atm), 60°, 6 h	$R \xrightarrow{Ph} I + R \xrightarrow{Ph} I + \frac{383}{381}$ $R \xrightarrow{Ph} R \xrightarrow{I} I \xrightarrow{II} II$
C ₁₇ /Ph	Rh ₄ (CO) ₁₂ , CO/H ₂ (1/1, 200 atm), C ₆ H ₆ ,	$\begin{array}{c} \begin{array}{c} Ph & (31) & (23) & (9) \\ \hline & 4-MeOC_{0}H_{4} & (20) & (15) & (12) \\ & 4-NCC_{0}H_{4} & (23) & (17) & (6) \end{array}$
Ph	60°, 6 h	Ph (18) Ph (18)
PPh ₂	(CO) ₄ W(μ-PPh ₂) ₂ RhH(CO)(PPh ₃), C ₆ H ₆ , CO/H ₂ (1/1, 380 psi), 80°, 22 h	CHO PPh ₂ $I(39) + starting material (61) 372$
	[Rh(OAc) ₂] ₂ , CO/H ₂ (1/1, 500 psi), C ₆ H ₆ , 100°, 22 h	I (55) + starting material (45) 372
	[Rh(OAc) ₂] ₂ , CO/H ₂ (1/1, 500 psi), C_6H_6 , 100°, 48 h	$I + PPh_2 = II = 75:25$ 372

REFERENCES

- ¹Roelen, O. Ger. Offen. 1938, 949,548.
- ²Roele, but is the same as 512.
- ³Cornils, B. In New Syntheses with Carbon Monoxide; J. Falbe, Ed.; Springer-Verlag: Berlin, 1980; pp. 1-225.
- ⁴Tkatchenko, I. In *Comprehensive Organometallic Chemistry*; G. Wilkinson, Ed.; Pergamon: Oxford, 1982; Vol. 8; pp Chapter 50.3; 101–223.
- ⁵Botteghi, C.; Ganzerla, R.; Lenarda, M.; Moretti, G. J. Mol. Catal. 1987, 40, 129.
- ⁶Pino, P.; Piacenti, F.; Bianchi, M. In *Organic Syntheses via Metal Carbonyls*; I. Wender and P. Pino, Eds.; John Wiley & Sons: New York, 1977; pp. 43-231.
- ⁷Parshall, G. W. J. Mol. Catal. 1978, 4, 243.
- ⁸Weber, H.; Dimmiling, W.; Desai, A. M. Hydrocarbon Process 1976, 55, 127.
- ⁹Pruett, R. L. Adv. Organometal. Chem. 1979, 17, 1.
- ¹⁰Kirschenbaum, I.; Inchalik, E. J. In *Encyclopedia of Chemical Technology, 3rd Ed.*; Kirk-Othmer, Ed.; Wiley: New York, 1981; Vol. 16; pp. 673.
- ¹¹Kohl, G.; Kinne, M.; Schroeder, L.; Fischer, H.; Imyanitov, N. S.; Kuvacv, B. E.; Vysotskii, M. P. Chem. Tech. (Leipzig) **1981**, 33, 629.
- ¹²Markó, L. J. Organomet. Chem. 1984, 261, 485.
- ¹³Markó, L. J. Organomet. Chem. **1988**, 357, 481.
- ¹⁴Botteghi, C.; Gladiali, S.; Bellagamba, V.; Ercoli, R.; Gamba, A. Chim. Ind. (Milan) 1980, 62, 604.
- ¹⁵Botteghi, C.; Gladiali, S.; Bellagamba, V.; Ercoli, R.; Gamba, A. Chim. Ind. (Milan) **1981**, 63, 29.
- ¹⁶Ungváry, F. Coordination Chemistry Reviews 1995, 141, 371.
- ¹⁷Ungváry, F. Coord. Chem. Rev. 1996, 147, 547.
- ¹⁸Ungváry, F. Coord. Chem. Rev. 1997, 160, 129.
- ¹⁹Ungváry, F. Coord. Chem. Rev. **1998**, 170, 245.
- ²⁰Ojima, I.; Eguchi, M.; Tzamarioudaki, M. In *Comprehensive Organometallic Chemistry II*: L. S. Hegedus, Ed.; Pergamon; London, 1995; Vol. 18; pp Chapter 2.
- ²¹Cornils, B.; Kuntz, E. G. J. Organomet. Chem. 1995, 502, 177.
- ²²Bach, H.; Gick, W.; Konkol, W.; Wiebus, E. In Int. Congr. Catal., 9th; Chem. Inst. Can., Ottawa, Ontario: 1988; pp. 254-259.
- ²³Kalck, P.; Escaffre, P.; Serein-Spirau, F.; Thorez, A.; Besson, B.; Colleuille, Y.; Perron, R. New J. Chem. 1988, 12, 687.
- ²⁴Rathke, J. W.; Klinger, R. J.; Krause, T. R. Organometallics 1991, 10, 1350.
- ²⁵Jessop, P. G.; Ikariya, T.; Noyori, R. Organometallics 1995, 14, 1510.
- ²⁶Jessop, P. G.; Ikariya, T.; Noyori, R. *Science* **1995**, 269, 1065.
- ²⁷Palo, E. Ind. Eng. Chem. Res. 1998, 37, 4203 [Palo, 1998 #1001].
- ²⁸Bach, C.-H. J. Chem. Soc., Chem. Commun. 1998, 1463.
- ²⁹Leitner, W.; Kainz, S.; Koch, D.; Wittmann, K. In Ger. Offen. Studentgesellschaft Kohle m.b.H., G.; 1998; pp DE 19,702,025.
- ³⁰Ojima, I.; Tzamarioudaki, M.; Chuang, C.; Iula, D. M.; Li, Z. In Catalysis of Organic Reac-
- *tions;* F. E. Herkes, Ed.; M. Dekker: New York, Basel, Hong Kong, 1998.
- ³¹Horváth, I.; Rábai, J. Science 1994, 266, 72.
- ³²Horváth, J. T.; Rabai, J. Eur. Pat. Appl. 1994, EP 633062 A1, Chem. Abstr. 1995, 123, 87349.
- ³³Gladiali, S.; Bayon, J. C.; Claver, C. Tetrahedron Asymmetry 1995, 6, 1453.
- ³⁴Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033.
- ³⁵Sakai, N.; Nozaki, K.; Mashima, K.; Takaya, H. Tetrahedron: Asymmetry **1992**, 3, 583.
- ³⁶Sakai, N.; Nozaki, K.; Takaya, H. J. Chem. Soc., Chem. Commun. 1994, 395.
- ³⁷Agbossou, F.; Carpentier, J.-F.; Mortreux, A. Chem. Rev. 1995, 95, 2485.
- ³⁸Babin, J. E.; Whiteker, G. T. U. S. Pat. 1994, US 5,360,938, Chem Abstr. 1994, 122, 186609.
- ³⁹Takaya, H.; Sakai, N.; Tamao, K. B.; Mano, S.; Kumobayashi, H.; Tomita, T.; Corp., G. C. C.;
- T. I. Eur. Pat. Appl. 1994, EP 614870, Chem. Abstr. 1994, 123, 198277.

- ⁴⁰Saito, T.; Matsumura, K.; Kato, Y.; Sayo, N.; Kumobayashi, H. *Eur. Pat. Appl.* **1994**, EP 614903, *Chem. Abstr.* **1995**, *122*, 239952.
- ⁴¹Matsumura, K.; Saito, T.; Sayo, N.; Kumobayashi, H.; Takaya, H. *Eur. Pat. Appl.* **1994**, EP 614902, *Chem. Abstr.* **1994**, *122*, 31704.
- ⁴²Takaya, H.; Sakai, N.; Tamao, K.; Beru, M.; Mano, S.; Kumobayashi, H.; Tomita, T. *Eur. Pat. Appl.* **1994**, EP 614901, *Chem Abstr.* **1994**, *122*, 10257.
- ⁴³Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, California, 1987, pp. 621-630.
- 44Stefani, A.; Consiglio, G.; Botteghi, C.; Pino, P. J. Am. Chem. Soc. 1973, 95, 6504.
- ⁴⁵Davidson, P. J.; Hignett, R. R.; Thomson, D. T. In *Catalysis;* C. Kemball, Ed.; The Chemical Society: London, 1977; Vol. 1; p. 369.
- ⁴⁶Casey, C. P.; Petrovich, L. M. J. Am. Chem. Soc. 1995, 117, 6007.
- ⁴⁷Lazzaroni, R.; Uccello-Barretta, G.; Scamuzzi, S.; Settambolo, R.; Caiazzo, A. Organometallics **1996**, 15, 4657.
- ⁴⁸Mattews, R. C.; Howell, D. K.; Peng, W.-J.; Train, S. G.; Treleaven, W. D.; Stanley, G. G. Angew. Chem., Int. Ed. Engl. **1996**, 35, 2243.
- ⁴⁹Peng, W.-J.; Train, S. G.; Fitzgerald, K.; Johnson, D.; Alburquerque, P.; Stanley, G. G. Bimetallic hydroformylation catalysis : In situ IR and NMR spectrometric studies; Dekker: 1995; Vol. 62.
- ⁵⁰Peng, W.-J.; Train, S. G.; Howell, D. K.; Fronczek, F. R.; Stanley, G. G. Chem. Commun. **1996**, 22, 2607.
- ⁵¹Horiuchi, T.; Shirakawa, E.; Nozaki, K.; Takaya, H. Organometallics 1997, 16, 2981.
- ⁵²Pregosin, P. S.; Sze, S. N. Helv. Chim. Acta 1978, 61, 1848.
- ⁵³Pottier, Y.; Mortreux, A.; Petit, F. J. Organomet. Chem. 1989, 370, 333.
- ⁵⁴Kollár, L.; Sándor, P.; Szalontai, G. J. Mol. Catal. 1991, 67, 191.
- ⁵⁵Buisman, G. J. H.; Martin, M. E.; Vos, E. J.; Klootwijk, A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Tetrahedron Asymmetry **1995**, 6, 719.
- ⁵⁶Buisman, G. J. H.; Vos, E. J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. **1995**, 409.
- ⁵⁷Van Leeuwen, P. W. N. M.; Buisman, G. J. H.; van Rooy, A. Recl. Trav. Chim. Pays-Bas 1995, 113, 61.
- ⁵⁸Van Rooy, A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Veldman, N.; Spek, A. L. J. Organomet. Chem. **1995**, 494, C15.
- ⁵⁹Naïli, S.; Carpentier, J.-F.; Agbossou, F.; Mortreux, A.; Nowogrocki, G.; Wignacourt, J.-P. Organometallics **1995**, 14, 401.
- ⁶⁰Kégl, T.; Kollár, L. J. Mol. Cat. A: Chem. 1997, 122, 95.
- ⁶¹van Rooy, A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Organomet. Chem. 1997, 535, 201.
- ⁶²Castellanos-Páez, A.; Castillón, S.; Claver, C. Organometallics 1998, 17, 2543.
- ⁶³Musaev, D. G.; Matsubara, T.; Mebel, A. M.; Koga, N.; Morokuma, K. Pure & Appl. Chem. 1995, 67, 257.
- ⁶⁴Matsubara, T.; Koga, N.; Ding, Y.; Musaev, D. G.; Morokuma, K. Organometallics, 1997, 16, 1065.
- ⁶⁵Schmid, R.; Hermann, W. A.; Frenking, G. Organometallics 1997, 16, 701.
- ⁶⁶Rocha, W. R.; de Almeida, W. B. Organometallics 1998, 17, 1961.
- ⁶⁷Heck, R. F.; Breslow, D. S. J. Am. Chem. Soc. 1961, 83, 4023.
- ⁶⁸van Boven, M.; Alemdaroglu, N.; Penninger, J. M. L. J. Organomet. Chem. 1975, 84, 65.
- ⁶⁹Whyman, R. J. Organomet. Chem. 1974, 66, C23.
- ⁷⁰Whyman, R. J. Organomet. Chem. **1974**, 81, 97.
- ⁷¹Vigranenko, Y.; Rybakov, V. A.; Kashina, V. V.; Tarasov, B. P. Kinet. Catal. 1996, 37, 524.
- ⁷²Mirbach, M. F. J. Organomet. Chem. 1984, 265, 205.
- ⁷³Kovács, I.; Ungaváry, F.; Markó, L. Organometallics 1986, 5, 209.
- ⁷⁴Alemdaroglu, N. H.; Penninger, J. L. M.; Oltay, E. Monatsh. Chem. 1976, 107, 1153.
- ⁷⁵van Boven, M.; Alemdaroglu, N. H.; Penninger, J. L. M. Ind. Eng. Chem., Prod. Res. Dev. 1975, 14, 259.

- ⁷⁶Ungváry, F.; Markó, L. Organometallics 1983, 2, 1608.
- ⁷⁷Hoff, C. D.; Ungváry, F.; King, R. B.; Markó, L. J. Am. Chem. Soc. 1985, 107, 666.
- ⁷⁸Taylor, P.; Orchin, M. J. Am. Chem. Soc. 1971, 93, 6504.
- ⁷⁹Bianchi, M.; Piacenti, F.; Frediani, P.; Matteoli, U. J. Organomet. Chem. 1977, 137, 361.
- ⁸⁰Bianchi, M.; Piacenti, F.; Frediani, P.; Matteoli, F. J. Organomet. Chem. 1977, 135, 387.
- ⁸¹Piacenti, F.; Bianchi, M.; Frediani, P.; Matteoli, U.; A., L. M. J. Chem. Soc., Chem. Commun. 1976, 789.
- ⁸²Piacenti, F.; Bianchi, M.; Frediani, P. Adv. Chem. Ser. 1974, 132, 283.
- ⁸³Piacenti, F.; Bianchi, M.; Frediani, P. Chim. Ind. (Milan) 1973, 55, 262.
- ⁸⁴Orchin, M.; Rupilius, W. Catal. Rev. 1972, 6, 85.
- ⁸⁵Gankin, V. Y.; Dvinin, V. A. Kinet. Katal. 1973, 14, 191; CA 1973, 78, 135274y.
- ⁸⁶Goldfarb, I. J.; Orchin, M. Advan. Catal. 1957, 9, 607.
- ⁸⁷Johnston, M. J. Chem. Soc. 1963, 4859.
- ⁸⁸Natta, G.; Ercoli, R.; Castellano, S. Chim. Ind. (Milan) 1952, 34, 503.
- ⁸⁹Natta, G.; Ercoli, R.; Castellano, S. J. Am. Chem. Soc. 1954, 76, 4049.
- ⁹⁰Stefani, A.; Consiglio, G.; Bhtteghi, C.; Pino, P. J. Am. Chem. Soc. 1977, 99, 1058.
- ⁹¹Bezard, D. A.; Consiglio, G.; Pino, P. Chimia 1974, 28, 610.
- ⁹²Pino, P.; Pucci, S.; Piacenti, F.; Dell'Amico, G. J. Chem. Soc. C 1971, 1640.
- ⁹³Slaugh, L. H.; Mullineaux, R. D.; Develop., R. BE Pat. 1962, 606,408.
- ⁹⁴Slaugh, L. H.; Mullineaux, R. D. J. Organomet. Chem. 1968, 13, 469.
- ⁹⁵Spooncer, W. W.; Jones, A. C.; Slaugh, L. H. J. Organomet. Chem. 1969, 18, 327.
- ⁹⁶Piacenti, F.; Bianchi, M.; Bendettic, M. Chim. Ind. 1967, 49, 245.
- ⁹⁷Vidal, J. L.; Walker, W. E. Inorg. Chem. 1981, 20, 249.
- ⁹⁸Evans, D.; Osborn, J. A.; Wilkinson, G. J. Chem. Soc. A 1968, 3133.
- ⁹⁹Brown, C. K.; Wilkinson, G. J. Chem. Soc. A 1970, 2753 and references cited therein.
- ¹⁰⁰Markó, L. Aspects of Homogeneous Catal. 1974, 2, 3.
- ¹⁰¹Yagupsky, G.; Brown, C. K.; Wilkinson, G. J. Chem. Soc. A 1970, 1392.
- ¹⁰²Tolman, C. A.; Faller, J. W. In *Homogeneous Catalysis with Metal Phosphine Complexes;* L. H. Pignolet, Ed.; Plenum Press: New York, 1983.
- ¹⁰³Collman, J. P.; Belmont, J. A.; Brauman, J. I. J. Am. Chem. Soc. 1983, 105, 7288.
- ¹⁰⁴Broussard, M. E.; Juma, B.; Train, S. G.; Peng, W.-J.; Laneman, S. A.; Stanley, G. G. Science **1993**, 260, 1784.
- ¹⁰⁵Süss-Fink, G. Angew. Chem., Int. Ed. Engl. **1994**, 33, 67.
- ¹⁰⁶Stefani, A.; Tatone, D. Helv. Chim. Acta 1977, 60, 518.
- ¹⁰⁷Consiglio, G.; Pino, P. Top. Curr. Chem. 1982, 105, 77.
- ¹⁰⁸Ojima, I.; Hirai, K. In Asymmetric Synthesis, Vol. 5 Chiral Catalysis; J. D. Morrison, Ed.; Academic Press: San Diego, 1985; pp. 103-146.
- ¹⁰⁹Kollár, L.; Bakos, J.; Tóth, I.; Heil, B. J. Organomet. Chem. 1988, 350, 277.
- ¹¹⁰Kollár, L.; Kégl, T.; Bakos, J. J. Organomet. Chem. 1993, 453, 155.
- ¹¹¹Consiglio, G. In *Catalytic Asymmetric Synthesis;* I. Ojima, Ed.; VCH Publishers: New York, 1993; pp. 273-302 and references cited therein.
- ¹¹²Tóth, I.; Guo, I.; Hanson, B. E. Organometallics 1993, 12, 848.
- ¹¹³Nozaki, K.; Sakai, N.; Nanno, T.; Higashijima, T.; Mano, S.; Horiuchi, T.; Takaya, H. J. Am. Chem. Soc. **1997**, 119, 4413.
- ¹¹⁴Gleich, D.; Schmid, R.; Herrmann, W., A Organometallics 1998, 17, 2141.
- ¹¹⁵Gleich, D.; Schmid, R.; Herrmann, W. A. Organometallics 1998, 17, 4828.
- ¹¹⁶Kalck, P.; Peres, Y.; Jenck, J. Adv. Organomet. Chem. 1991, 32, 121.
- ¹¹⁷Cooper, J. L. U.S. Pat. 1984, U. S. 4474995, Chem. Abstr. 1984, 102, 5699.
- ¹¹⁸Crudden, C. M.; Alper, H. J. Org. Chem. 1994, 59, 3091.
- ¹¹⁹Uson, L. R.; Oro, G. L. A.; A., C. L. M.; Pinillos, M. T.; Royo, M. M.; Pastor, M. E. Span. Pat. **1981**, ES 497900, Chem. Abstr. **1981**, 97, 55306.
- ¹²⁰Carlock, J. T. U.S. Pat. 1980, U.S. 4189448, Chem. Abstr. 1980, 92, 221633.
- ²¹Sánchez-Delgado, R. A.; Rosales, M.; A., E. M.; Oro, L. A. J. Mol. Catal. A: Chem. 1995, 96, 231.

- ¹²²Bullock, R. M.; Rapploi, B. J. J. Organomet. Chem. 1992, 429, 345.
- ¹²³Weil, T. A.; Metlin, S.; Wender, I. J. Organomet. Chem. 1973, 49, 227.
- ¹²⁴Kang, H.; Mauldin, C. H.; Cole, T.; Slegeir, W.; Cann, K.; Pettit, R. J. Am. Chem. Soc. 1977, 99, 8323.
- ¹²⁵Booth, B. L.; Goldwhite, H.; Haszeldine, R. N. J. Chem. Soc. C 1966,
- ¹²⁶Butts, S. B. U.S. Pat. 1988, U. S. 4782188, Chem. Abstr. 1988, 110, 137489.
- ¹²⁷Consiglio, G. Helv. Chim. Acta 1976, 642.
- ¹²⁸Fenton, D. M.; Olivier, K. L. Chemtech. 1972, 2, 220.
- ¹²⁹Fell, B.; Shanshool, J. J. Prakt. Chem./Chem.-Ztg. 1975, 99, 231.
- ¹³⁰Consiglio, G.; Morandini, F.; Scalone, M.; Pino, P. J. Organomet. Chem. 1985, 279, 193.
- ¹³¹Kollár, L.; Sándor, P.; Szalontai, G.; Heil, B. J. Organomet. Chem. 1990, 393, 153.
- ¹³²Devon, T. J.; Phillips, G. W.; Puckette, T. A.; Stavinoha, J. L.; Vanderbilt, J. J. U.S Pat. 1987, U.S. 4,694,109, Chem. Abstr. 1987, 108, 7890.
- ¹³³Casey, C. P.; Whiteker, G. T.; Melville, M. G.; Petrovich, L. M.; Gavney, J. A. J.; Powell, D. R. J. Am. Chem. Soc. 1992, 114, 5535.
- ¹³⁴Billig, E.; Abatjoglou, A. G.; Bryant, D. R. U. S. Pat. **1987**, U. S. 4,668,651, Chem. Abstr. **1988**, 111, 117287.
- ¹³⁵Cuny, G. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 2066.
- ¹³⁶Yamamoto, K.; Masahiro, M. Jpn. Kokai Tokkyo Koho 1995, Heisei 07082281, Chem. Abstr. 1995, 123, 111594.
- ¹³⁷Miyazawa, M.; Momose, S.; Yamamoto, K. Jpn. Kokai Tokkyo Koho **1992**, Heisei 04279541, Chem. Abstr. **1992**, 118, 233650.
- ¹³⁸Sato, K.; Kawaragi, Y.; Takai, M.; Ookoshi, T. *Eur. Pat. Appl.* **1992**, EP 518241, *Chem. Abstr.* **1992**, *118*, 191183.
- ¹³⁹Lortz, P. M.; Bertleff, W.; Roeper, M.; Koeffer, D. Eur. Pat. Appl. **1992**, EP 472071, Chem. Abstr. **1992**, 117, 34513.
- ¹⁴⁰Stobart, S. R.; Grundy, S. L.; Joslin, F. L. In U.S. Pat.; Univ. of Victoria: 1990; pp. 4950798.
- ¹⁴¹Puckette, T. A.; Devon, T. J.; Phillips, G. W.; Stavinoha, J. L. U.S. Pat. 1989, U. S. 4879416, Chem. Abstr. 1989, 112, 217269.
- ¹⁴²Puckette, T. A.; Devon, T. J. 1989, U.S. Pat., U. S. 4873213, Chem. Abstr. 1989, 112, 178082.
- ¹⁴³Stavinoha, J. L.; Phillips, G. W.; Puckette, T. A.; Devon, T. J. Eur. Pat. Appl. 1989, EP 326286, Chem. Abstr. 1989, 112, 98823.
- ¹⁴⁴Puckette, T. A. PCT Int. Appl. 1989, WO 8904315, Chem. Abstr. 1989, 111, 214704.
- ¹⁴⁵Puckette, T. A.; Devon, T. J. PCT Int. Appl. 1989, WO 8901467, Chem. Abstr. 1989, 111, 59970.
- ¹⁴⁶Billig, E.; Abatjoglou, A. G.; Bryant, D. R. U.S. Pat. CIP **1988**, U.S. 4769498, Chem. Abstr. **1988**, 111, 117287.
- ¹⁴⁷Miyazawa, C.; Mikami, H.; Tsuboi, A.; Hamano, K.; Omori, Y. Jpn. Kokai Tokkyo Koho 1988, Showa 63222139, Chem. Abstr. 1988, 111, 23092.
- ¹⁴⁸Miyazawa, C.; Mikami, H.; Hamano, K. Jpn. Kokai Tokkyo Koho 1988, Showa 63225328, *Chem. Abstr.* 1988, 110, 94516.
- ¹⁴⁹Devon, T. J.; Phillips, G. W.; Puckette, T. A.; Stavinoha, J. L., Jr.; Vanderbilt, J. J. U.S. Pat. 1988, U.S. 4774362, Chem. Abstr. 1988, 110, 78058.
- ¹⁵⁰Miyazawa, C.; Mikami, H.; Tsuboi, A.; Oomori, Y. Jpn. Kokai Tokkyo Koho 1988, Showa 63218640, Chem. Abstr. 1988, 110, 40829.
- ¹⁵¹Murata, K.; Matsuda, A.; Masuda, T. Jpn. Kokai Tokkyo Koho **1988**, Showa 63179841, Chem. Abstr. **1988**, 110, 2670.
- ¹⁵²Billig, E.; Abatjoglou, A. G.; Bryant, D. R.; Murray, R. E.; Maher, J. M. U.S. Pat. CIP 1988, U. S. 4717775, Chem. Abstr. 1988, 109, 233177.
- ¹⁵³Miyazawa, C.; Mikami, H.; TSuboi, A.; Hamano, K. Eur. Pat. Appl. **1988**, EP 272608, Chem. Abstr. **1988**, 109, 151931.
- ¹⁵⁴Abatjoglou, A. G.; Bruant, D. R. U.S. Pat. 1988, U.S. 4731486, Chem. Abstr. 1988, 109, 571042.
- ¹⁵⁵Devon, T. J.; Phillips, G. W.; Puckette, T. A.; Stavinoha, J. L., Jr.; Vanderbilt, J. J. PCT Int. Appl. 1987, WO 8707600, Chem. Abstr. 1987, 109, 8397.
- ¹⁵⁶Yoshitome, S. In Jpn. Kokai Tokkyo Koho; Idemitsu Petrochem. Co.: 1987; pp Showa 62226939.

- ¹⁵⁷Oswald, A. A.; Jermasen, T. G.; Westner, A. A.; Huang, I. D. U.S. Pat. 1987, U.S. 4687874, *Chem. Abstr.* 1987, 108, 40088.
- ¹⁵⁸Devon, T. J.; Phillips, G. W.; Puckette, T. A.; Stavinoha, J. L.; Vanderbilt, J. J. U.S. Pat. **1987**, U. S. 4694109, Chem. Abstr. **1987**, 108, 7890.
- ¹⁵⁹Hayasaka, T.; Uchiyama, T. Jpn. Kokai Tokkyo Koho 1987, Showa 62049946, Chem. Abstr. 1987, 107, 156960.
- ¹⁶⁰Billig, E.; Abatjoglou, A. G.; Bryant, D. R. Eur. Pat. Appl. **1987**, EP 214622, Chem. Abstr. **1987**, 107, 75126.
- ¹⁶¹Billig, E.; Abatjoglou, A. G.; Bryant, D. R. Eur. Pat. Appl. **1987**, EP 213639, Chem. Abstr. **1987**, 107, 7392.
- ¹⁶²Young, D. A. U.S. Pat. 1987, U.S. 4642388, Chem. Abstr. 1987, 106, 175780.
- ¹⁶³Watanabe, Y.; Mori, S.; Otatsu, Y. Jpn. Kokai Tokkyo Koho 1986, Showa 61027994, Chem. Abstr. 1986, 105, 191408.
- ¹⁶⁴Hanin, J. A. A. Eur. Pat. Appl. 1986, EP 183545, Chem. Abstr. 1986, 105, 81206.
- ¹⁶⁵Bunning, D. L.; Blessing, M. A. U.S. Pat. 1986, U.S. 4593127, Chem. Abstr. 1986, 105, 84201.
- ¹⁶⁶Van Vliet, A. Eur. Pat. Appl. 1986, EP 183547, Chem. Abstr. 1986, 105, 62722.
- ¹⁶⁷Johnson, T. H. U.S. Pat. 1986, U.S. 4584411, Chem. Abstr. 1986, 105, 45258.
- ¹⁶⁸Billig, E.; Abatjoglou, A. G.; Bryant, D. R.; Murray, R. E.; Maher, J. M. PCT Int. Appl. 1985, WO 8503702, Chem. Abstr. 1985, 105, 81142.
- ¹⁶⁹Doyle, G.; Eriksen, K. A.; Pruett, R. L. U.S. Pat. **1985**, U.S. 4551543, Chem. Abstr. **1985**, 104, 224568.
- ¹⁷⁰Lieder, B.; Schmidt, V.; Sedelies, S.; Kabfell, H. Ger. Offen. 1985, DE 3412336, Chem. Abstr. 1985, 104, 170535.
- ¹⁷¹Hsu, C. Y.; Ellis, P. E., Jr. U.S. Pat. 1985, U.S. 4542120, Chem. Abstr. 1985, 104, 148311.
- ¹⁷²Hsu, C. Y.; Ellis, P. E., Jr. U.S. Pat. 1985, U.S. 4542119, Chem. Abstr. 1985, 104, 7496.
- ¹⁷³Hsu, C. Y.; Lyons, J. E.; Ellis, P. E., Jr. U.S. Pat. **1985**, U.S. 4524142, Chem. Abstr. **1985**, 103, 195821.
- ¹⁷⁴Chang, B. H. U.S. Pat. 1985, U.S. 4506101, Chem. Abstr. 1985, 103, 123000.
- ¹⁷⁵Hsu, C. Y. U.S. Pat. **1985**, U.S. 4528278, Chem. Abstr. **1985**, 103, 106619.
- ¹⁷⁶Alexander, D. C.; Knifton, J. F. U.S. Pat. 1985, U.S. 4511740, Chem. Abstr. 1985, 103, 37097.
- ¹⁷⁷Meis, J.; Kessen, G. Ger. Offen. 1984, DE 3320648, Chem. Abstr. 1984, 103, 5891.
- ¹⁷⁸Hsu, C. Y.; Ellies, P. E., Jr. Eur. Pat. Appl. 1984, EP 125055, Chem. Abstr. 1984, 102, 78367.
- ¹⁷⁹Van Leeuwen, P. N. M.; Roobeek, C. F. U.S. Pat. **1984**, U.S. 4467116, Chem. Abstr. **1984**, 101, 191142.
- ¹⁸⁰Cornils, B.; HIbbel, J.; Kessen, G.; Konkol, W.; Lieder, B.; Wiebus, E.; Kalbfell, H.; Bach, H. Ger. Offen. **1984**, DE 3245883, Chem. Abstr. **1984**, 101, 130238.
- ¹⁸¹Oswald, A. A.; Jermansen, T. G.; Westner, A. A.; Huang, I. D. U.S. Pat. **1984**, U.S. 4450299, *Chem. Abstr.* **1984**, *101*, 111206.
- ¹⁸²Hackman, E. B.; Zeagler, L. D. Belg. Pat. 1984, BE 897966, Chem. Abstr. 1984, 101, 9090.
- ¹⁸³Wegman, R. W. U.S. Pat. 1984, U.S. 4429165, Chem. Abstr. 1984, 100, 141180.
- ¹⁸⁴Tano, K.; Sato, K.; Okoshi, T. Ger. Offen. 1984, DE 3338340, Chem. Abstr. 1984, 101, 170705.
- ¹⁸⁵Dennis, A. J.; Harrison, G. E.; Wyber, J. P. Eur. Pat. Appl. **1983**, EP 96986, Chem. Abstr. **1983**, 100, 191325.
- ¹⁸⁶Elliehausen, H.; Fischer, K.; Herr, M.; Strohmeyer, M.; Kummer, R.; Romberg, H.; Schwirten, K.; Richter, W. Ger. Offen. **1983**, DE 3220858, Chem. Abstr. **1983**, 100, 102757.
- ¹⁸⁷Callahan, K. P.; Digiacomo, P. M.; Dines, M. B. U.S. Pat. **1983**, U.S. 4386013, Chem. Abstr. **1983**, 100, 5852.
- ¹⁸⁸Jamerson, J. D.; Billig, E.; Bryant, D. R. Eur. Pat. Appl. **1983**, EP 83094, Chem. Abstr. **1983**, 99, 139329.
- ¹⁸⁹Hsu, C. Y. Eur. Pat. Appl. 1983, EP 81942, Chem. Abstr. 1983, 99, 139327.
- ¹⁹⁰Van Lecuwen, P. W. N. M.; Roobeek, C. F. Eur. Pat. Appl. **1983**, EP 82576, Chem. Abstr. **1983**, 99, 121813.
- ¹⁹¹Abatjoglou, A. G.; Billig, E. Eur. Pat. Appl. 1983, EP 73961, Chem. Abstr. 1983, 99, 53124.
- ¹⁹²Abatjoglou, A. G.; Bryant, D. R. Eur. Pat. Appl. 1983, EP 73398, Chem. Abstr. 1983, 99, 38041.

- ¹⁹³Richter, W.; Kummer, R.; Schwirten, K. Ger. Offen. 1983, DE 3126265, Chem. Abstr. 1983, 98, 179637.
- ¹⁹⁴Billig, E.; Bryant, D. R. Eur. Pat. Appl. 1983, EP 68480, Chem. Abstr. 1983, 98, 163325.
- ¹⁹⁵Unruh, J. D. Can. Pat. 1982, 1127172, Chem. Abstr. 1982, 98, 16289.
- ¹⁹⁶Billig, E.; Bryant, D. R.; Jamerson, J. D. Eur. Pat. Appl. **1982**, EP 55487, Chem. Abstr. **1982**, 98, 4675.
- ¹⁹⁷Richter, W.; Kummer, R.; Schwirten, K. Eur. Pat. Appl. 1982, EP 53688, Chem. Abstr. 1982, 97, 127009.
- ¹⁹⁸Russell, M. J. H.; Murrer, B. A. Fr. Demande 1982, FR 2489308, Chem. Abstr. 1982, 97, 55308.
- ¹⁹⁹Hohenschutz, H.; Strohmeyer, M.; Ellienhausen, H.; Fischer, K.; Kummer, R.; Herr, M.; Reutemann, W. Ger. Offen. 1982, DE 3102281, Chem. Abstr. 1982, 96, 103657.
- ²⁰⁰Wilhelmus, P.; Van Leeuwen, N. M.; Roobeek, C. F. In Brit. UK Pat.; Shell Int. Res. Maatschappij: 1981; pp GB 2068377.
- ²⁰¹Dixon, J. Brit. UK Pat. 1981, GB 2075857, Chem. Abstr. 1981, 96, 142266.
- ²⁰²Jenck, J. Fr. Demande 1981, FR 2478078, Chem. Abstr. 1981, 96, 85054.
- ²⁰³Booth, F. B. In U.S. Pat.; Celanese Corp.: 1981; pp U.S. 4267383, Chem. Abstr. 1981, 95, 114803.
- ²⁰⁴Pesa, F. A.; Haase, T. A. U.S. Pat. 1981, U.S. 4271038, Chem. Abstr. 1981, 95, 114800.
- ²⁰⁵Dawes, J. L. U.S. Pat. 1981, U.S. 4258215, Chem. Abstr. 1981, 94, 174339.
- ²⁰⁶Hackman, E. B.; Zeagler, L. D.; McLaughlin, J. S.; Peabody, C. M. Ger. Offen. 1981, DE 3022025, Chem. Abstr. 1981, 94, 139221.
- ²⁰⁷Tsunoda, Y.; Tomita, S.; Miyazawa, C. Ger. Offen. 1981, DE 3035468, Chem. Abstr. 1981, 95, 42364.
- ²⁰⁸Oswald, A. A. PCT Int. Appl. 1980, WO 8001692, Chem. Abstr. 1980, 94, 157091.
- ²⁰⁹Sakakibara, T.; Matsushima, Y.; Nagashima, Y.; Okamoto, N.; Kaneko, K.; Ishii, Y.; Wada, S. *Eur. Pat. Appl.* **1980**, EP 14796, *Chem. Abstr.* **1980**, *94*, 175261.
- ²¹⁰Tsunoda, Y.; Tomita, S.; Miyazawa, C.; Kurashiki, A. Ger. Offen. **1980**, DE 3017651, Chem. Abstr. **1980**, 94, 156318.
- ²¹⁷Huang, I. D.; Drogin, R. PCT Int. Appl. 1980, WO 8001691, Chem. Abstr. 1980, 94, 156313.
- ²¹²Shevels, T. F.; Harris, N. Eur. Pat. Appl. 1980, EP 16285, Chem. Abstr. 1980, 94, 83610.
- ²¹³Dennis, A. J.; Shevels, T. F.; Harris, N. Eur. Pat. Appl. **1980**, EP 16286, Chem. Abstr. **1980**, 94, 83609.
- ²¹⁴Hignett, R. R.; Davidson, P. J. Brit. UK Pat. 1980, GB 2028793, Chem. Abstr. 1980, 93, 167640.
- ²¹⁵Zuech, E. A. U.S. Pat. 1980, U.S. 4195042, Chem. Abstr. 1980, 93, 167591.
- ²¹⁶Davidson, P. J.; Hignett, R. R. U.S. Pat. 1980, U.S. 4200592, Chem. Abstr. 1980, 93, 113966.
- ²¹⁷Matsumoto, M.; Tamura, M. Jpn. Kokai Tokkyo Koho **1980**, Showa 55045643, Chem. Abstr., **1980**, 93, 113962.
- ²¹⁸Harris, N.; Shevels, T. F. Eur. Pat. Appl. 1980, EP 7768, Chem. Abstr. 1980, 93, 71021.
- ²¹⁹Richter, W.; Kummer, R.; Schwirten, K. Ger. Offen. 1980, DE 2840168, Chem. Abstr. 1980, 93, 71017.
- ²²⁰Devon, T. J.; Phillips, G. W.; Puckette, T. A.; L., S. J.; Vanderbilt, J. J. U.S.Pat. 1994, U.S. 5332846, Chem. Abstr. 1994, 121, 280879.
- ²²¹Devon, T. J.; Phillips, G. W.; Puckette, T. A.; Stavinoha, J. L.; Vanderbilt, J. J. Eur. Pat. Appl. 1990, EP 375573, Chem. Abstr. 1990, 114, 81009.
- ²²²Puckette, T. A.; Stavinoha, J. L.; Devon, T. J.; Phillips, G. W. Eur. Pat. Appl. 1990, EP 375576, Chem. Abstr. 1990, 113, 223484.
- ²²³Reetz, M. T.; Waldvogel, S. R. Angew. Chem., Int. Ed. Engl. 1997, 36, 865.
- ²²⁴Buhling, A.; Elgersma, J. W.; Nkrumah, S.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. 1996, 2143.
- ²²⁵Buhling, A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Elgersma, J. W.; Goubitz, K.; Fraanje, J. Organometallics **1997**, *16*, 3027.
- ²²⁶Stanley, G. G.; Peng, W. J. PCT Int. Appl. 1994, WO 9420510, Chem. Abstr. 1994, 112, 55358.
- ²²⁷Stanley, G. G.; Laneman, S. A. U.S. Pat. 1993, U.S. 5200539, Chem. Abstr. 1993, 119, 116799.
- ²²⁸Hermann, W. A.; Manetsberger, R.; Albanese, G.; Bahrmann, H.; Lappe, P.; Bergrath, K. Eur. Pat. Appl. 1995, EP 632047, Chem. Abstr. 1995, 122, 133420.

- ²²⁹Suciu, E. N.; Livingston, J. R.; Mozeleski, E. J. U.S. Pat. 1994, U.S. 5300617, Chem. Abstr. 1994, 121, 57706.
- ²³⁰Bahrmann, H.; Herrmann, W. A.; Kohlpaintner, C.; Manetsberger, R. Ger. Offen. 1993, DE 4220267, Chem. Abstr. 1993, 120, 218184.
- ²³¹Hermann, W. A.; Manetsberger, R.; Bahrmann, H.; Kohlpaintner, C.; Lappe, P. Eur. Pat. Appl.
 1993, EP 571819, Chem. Abstr. **1993**, 120, 191996.
- ²³²Papadogianakis, G.; Fell, B.; Bahrmann, H. Eur. Pat. Appl. **1992**, EP 489330, Chem. Abstr. **1992**, 117, 13185.
- ²³³Hermann, W. A.; Kulpe, J.; Konkol, W.; Bahrmann, H. Ger. Offen. 1991, DE 3942789, Chem. Abstr. 1991, 116, 47139.
- ²³⁴Abatjoglou, A. G.; Bryant, D. R. Eur. Pat. Appl. **1990**, EP 353770, Chem. Abstr. **1990**, 113, 115561.
- ²³⁵Abatjoglou, A. G.; Bryant, D. R. Eur. Pat. Appl. 1990, EP 350921, Chem. Abstr. 1990, 113, 42795.
- ²³⁶Herrmann, W. A.; Kulpe, J.; Kellner, J.; Riepl, H. In *Eur. Pat. Appl.*; Hoechst A.-G.: 1990; pp EP 372313.
- ²³⁷Bach, H.; Bahrmann, H.; Cornils, B.; Konkol, W.; Wiebus, E. Ger. Offen. 1987, DE 3616057, Chem. Abstr. 1987, 108, 152528.
- ²³⁸Cornils, B.; Konkol, W.; Bach, H.; Gick, W.; Wiebus, E.; Bahrmann, H.; Hahn, H. D. Ger. Offen. **1987**, DE 3546123, Chem. Abstr. **1987**, 107, 153922.
- ²³⁹Besson, B.; Kalck, P.; Thorez, A. Eur. Pat. Appl. 1986, EP 179004, Chem. Abstr. 1986, 106, 62508.
- ²⁴⁰Cornils, B.; Bahrmann, H.; LIpps, W.; Konkol, W. Ger. Offen. 1986, DE 3511428, Chem. Abstr. 1986, 106, 52105.
- ²⁴¹Bahrmann, H.; Bach, H.; Frohning, C. D.; Kleiner, H. J.; Lappe. P.; Peters, D.; Regnat, D.; Herrmann, W. A. J. Mol. Cat. A: Chem. 1997, 116, 49.
- ²⁴²Chen, J.; Alper, H. J. Am. Chem. Soc. 1997, 119, 893.
- ²⁴³Jin, Z.: Zheng, X.; Fell, B. J. Mol. Cat. A: Chem. 1997, 116, 55.
- ²⁴⁴Paumard, E.; Mortreux, A.; Petit, F. J. Chem. Soc., Chem. Commun. 1989, 1380.
- ²⁴⁵Mutez, S.; Paumard, E.; Mortreux, A.; Petit, F. Tetrahedron Lett. 1989, 30, 5759.
- ²⁴⁶Mortreux, A.; Petit, F.; Mutes, S.; Paumard, E. PCT Int. Appl. **1986**, WO 8605415. Chem. Abstr. **1986**, 106, 35091.
- ²⁴⁷Miyazawa, M.; Momose, S.; Yamamoto, K. Synlett 1990, 711.
- ²⁴⁸Kwok, T. J.; Wink, D. J. Organometallics 1993, 12, 1954.
- ²⁴⁹Wink, D. J.; Kwok, T. J. U.S. Pat. 1993, U.S. 5179055, Chem. Abstr. 1993, 119, 49064.
- ²⁵⁰Brown, J. M.; Cook, S. J.; Khan, R. Tetrahedron 1986, 42, 5105.
- ²⁵¹Amer, I.; Alper, H. J. Am. Chem. Soc. 1990, 112, 3674.
- ²⁵²Bahrmann, H.; Feil, B. J. Mol. Catal. 1980, 8, 329.
- ²⁵³Van Leeuwen, P. W. N. M.; Roobeek, C. F. J. Mol. Catal. 1985, 31, 345.
- ²⁵⁴Bertozzi, S.; Campigli, N.; Vitulli, G.; Lazzaroni, R.: Salvadori, P. J. Organomet. Chem. 1995, 487, 41-45.
- ²⁵⁵Nelson, G. O.; Devon, T. J.; Puckette, T. A.; Stavinoha, J. L.; Phillips, G. W.; Vanderbilt, J. J. U.S. Pat. **1988**, U.S. 4742178, Chem. Abstr. **1988**, 109, 111061.
- ²⁵⁶Van Leeuwen, P. W. N. M.; Roobeck, C. F. Eur. Pat. Appl. **1981**, EP 33554, Chem. Abstr. **1981**, 96, 6174.
- ²⁵⁷Fell, B.; Hermanns, P. Eur. Pat. Appl. 1995, EP 643031, Chem. Abstr. 1995, 122, 264902.
- ²⁵⁸Packett, D. L. In U.S. Pat.; Union Carbide Chem. & Plastics Tech. Corp.: 1994; pp. 5312996.
- ²⁵⁹Botteghi, C.; Paganelli, S. J. Organomet. Chem. 1991, 417, C41.
- ²⁶⁰Trzeciak, A. M.; Ziółkowski, J. J. J. Organomet. Chem. 1994, 479, 213.
- ²⁶¹Bakker, A. G.; Bachasingh, A. K. Eur. Pat. Appl. **1991**, EP 423874, Chem. Abstr. **1991**, 115, 70922.
- ²⁶²Tokito, Y.; Yoshimura, N. Jpn. Kokai Tokkyo Koho 1987, Showa 62030734, Chem. Abstr. 1987, 107, 96332.
- ²⁶³Matsumoto, M.; Yoshimura, N.; Tamura, M. Eur. Pat. Appl. **1983**, EP 88955, Chem. Abstr. **1983**, 100, 22329.

- ²⁶⁴Matsumoto, M.; Yoshimura, N.; Tamura, M. Eur. Pat. Appl. 1982, EP 64285, Chem. Abstr. 1982, 99, 53122.
- ²⁶⁵Chalk, A. J. J. Mol. Catal. 1988, 43, 353.
- ²⁶⁶Ishii, Y.; Miyashita, K.; Kamita, K.; Hidai, M. J. Am. Chem. Soc. 1997, 119, 6448.
- ²⁶⁷Alper, H.; Zhou, J.-Q. J. Chem. Soc., Chem. Commun. 1993, 316.
- ²⁶⁸Ojima, I.; Tzamarioudaki, M.; Eguchi, M. J. Org. Chem. 1995, 60, 7078.
- ²⁶⁹Sielcken, O. E.; Haasen, N. F. PCT Int. Appl. 1994, WO 9404482, Chem. Abstr. 1994, 120, 298086.
- ²⁷⁰Roeper, M.; Lorz, P. M.; Koeffer, D. Ger. Offen. **1993**, DE 4204808, Chem. Abstr. **1993**, 120, 133862.
- ²⁷¹Moser, H. Eur. Pat. Appl. 1993, EP 542681, Chem. Abstr. 1993, 119, 271634.
- ²⁷²Moser, H. Eur. Pat. Appl. 1993, EP 542680, Chem. Abstr. 1993, 119, 139550.
- ²⁷³Lin, J. J. U.S. Pat. 1989, U.S. 4806678, Chem. Abstr. 1989, 110, 192266.
- ²⁷⁴Lin, J. J. U.S. Pat. 1989, U.S. 4849543, Chem. Abstr. 1989, 112, 76401.
- ²⁷⁵Kummer, R.; Merger, F.; Bertleff, W.; Fischer, R. Eur. Pat. Appl. 1988, EP 295551, Chem. Abstr. 1988, 110, 232245.
- ²⁷⁶Bertleff, W.; Fischer, R.; Kummer, R.; Merger, G.; Schneider, H. W. Eur. Pat. Appl. 1988, EP 295549, Chem. Abstr. 1988, 110, 175509.
- ²⁷⁷Bertleff, W.; Maerkl, R.; Roeper, M. Eur. Pat. Appl. 1988, EP 295554, Chem. Abstr. 1988, 110, 134722.
- ²⁷⁸Kummer, R.; Fischer, R.; Vagt, U. Ger. Offen. **1988**, DE 3630613, Chem. Abstr. **1988**, 109, 73344.
- ²⁷⁹Andrade, J.; Prescher, G.; Samson, M. Ger. Offen. 1985, DE 3403427, Chem. Abstr. 1985, 104, 88120.
- ²⁸⁰Schneider, H. W.; Kummer, R.; Tagliever, V. Ger. Offen. 1984, DE 3317164, Chem. Abstr. 1984, 102, 61806.
- ²⁸¹Vietti, D. E. U.S. Pat. 1983, U.S.4376208, Chem. Abstr. 1983, 98, 215473.
- ²⁸²Garrou, P. E. U.S. Pat. 1983, U.S. 4374999, Chem. Abstr. 1983, 98, 197608.
- ²⁸³Rohrscheid, F.; W., R. Eur. Pat. Appl. 1982, EP 65294, Chem. Abstr. 1982, 98, 106870.
- ²⁸⁴Kleemann, A.; Fahnenstich, R. Fr. Demande 1982, FR 2500448, Chem. Abstr. 1982, 98, 53176.
- ²⁸⁵Kurkov, V. P. U.S. Pat. 1982, U.S. 4344896, Chem. Abstr. 1982, 97, 18731.
- ²⁸⁶Kummer, R.; Schneider, H. W. Ger. Offen. 1981, DE 2951950, Chem. Abstr. 1981, 95, 80205.
- ²⁸⁷Alper, H. 1993, WO 9314057, Chem. Abstr. 1993, 121, 38039.
- ²⁸⁸Jackson, W. R.; Perlmutter, P.; Suh, G.-H. J. Chem. Soc., Chem. Commun. 1987, 724.
- ²⁸⁹Jackson, W. R.; Perlmutter, P.; Suh, G. H.; Tasdelen, E. E. Aust. J. Chem. 1991, 44, 951.
- ²⁹⁰Jackson, W. R.; Moffat, M. R.; Perlmutter, P.; Tasdelen, E. E. Aust. J. Chem. 1992, 45, 823.
- ²⁹¹Jackson, W. R.; Perlmutter, P.; Tasdelen, E. E. J. Chem. Soc., Chem. Commun. 1990, 763.
- ²⁹²Burke, S. D.; Cobb, J. E. Tetrahedron Lett. 1986, 27, 4237.
- ²⁹³Törös, S.; Gémes-Pécsi, I.; Heil, B.; Mahó, S.; Tuba, Z. J. Chem. Soc., Chem. Commun. 1992, 858.
- ²⁹⁴Nagareda, K. 1994, Heisei 06336456, Chem. Abstr. 1994, 122, 186955.
- ²⁹⁵Omatsu, T.; Tokitoh, Y. Eur. Pat. Appl. 1994, EP 621075, Chem. Abstr. 1994, 122, 164056.
- ²⁹⁶Omatsu, T. T., Y. Eur. Pat. Appl. 1994, EP 627399, Chem. Abstr., 1994, 122, 132587.
- ²⁹⁷Oguri, M.; Noda, T. Jpn. Kokai Tokkyo Koho 1994, Heisei 06279344, Chem. Abstr. 1994, 122, 80719.
- ²⁹⁸Oguri, M.; Noda, T. 1994, Heisei 06199730, Chem. Abstr. 1994, 122, 30958.
- ²⁹⁹Noda, T.; Oguri, M.; Koga, K.; Sato, A. Jpn. Kokai Tokkyo Koho 1994, Heisei 06166653, Chem. Abstr. 1994, 121, 230334.
- ³⁰⁰Fujita, T.; Maki, K.; Marumo, K. Jpn. Kokai Tokkyo Koho **1993**, Heisei 05331156, Chem. Abstr. **1993**, 121, 108497.
- ³⁰¹Sato, A.; Oguri, M.; Koga, K.; T., N. Jpn. Kokai Kokkyo Koho **1993**, Heisei 05320087, Chem. Abstr. **1993**, 120, 216712.
- ³⁰²Pitchai, R.; Gaffney, A. M.; Nandi, M. K.; Han, Y. Z. U.S Pat. 1993,
- ³⁰³Matsumoto, M. Jpn. Kokai Tokkyo Koho 1991, Heisei 03261776, Chem. Abstr. 1991, 116, 151552.

- ³⁰⁴Matsumoto, M. Jpn. Kokai Tokkyo Koho **1991**, Heisei 03261775, Chem. Abstr. **1991**, 116, 128646.
- ³⁰⁵Suzuki, T.; Uchida, H.; Marumo, K. Jpn. kokai Tokkyo Koho **1989**, Heisei 01121234, Chem. Abstr. **1989**, 111, 173613.
- ³⁰⁶Dureanleau, R. G.; Knifton, J. F. **1987**, U.S. 4678857, Chem. Abstr. **1987**, 108, 111817.
- ³⁰⁷Yoshimura, N.; Tokitoh, Y. 1987, EP 223103, Chem. Abstr. 1987, 108, 111817.
- ³⁰⁸Tokitoh, Y.; Yoshimura, N. Eur. Pat. Appl. 1985, EP 155002, Chem. Abstr. 1985, 104, 148739.
- ³⁰⁹Lin, J. J.; Knifton, J. F. U.S. Pat. 1985, U.S. 4529808, Chem. Abstr. 1985, 104, 50782.
- ³¹⁰Lin, J. J.; Knifton, J. F. Eur. Pat. Appl. 1985, EP 150943, Chem. Abstr. 1985, 103, 215148.
- ³¹¹Matsumoto, M.; Miura, S.; Kikuchi, K.; Tamura, M.; Kojima, H.; Koga, K.; Yamashita, S. Eur. Pat. Appl. 1985, EP 129802, Chem. Abstr. 1985, 102, 184723.
- ³¹²De Munck, N. A.; Scholen, J. J. F. Eur. Pat. Appl. 1981, EP 38609, Chem. Abstr. 1981, 96, 52173.
- ³¹³Anastasiou, D.; Jackson, W. R. Aust. J. Chem. 1992, 45, 21.
- ³¹⁴Wuts, P. G. M.; Obrzut, M. L.; Thompson, P. A. Tetrahedron Lett. 1984, 25, 4051.
- ³¹⁵Doyle, M. M.; Jackson, W. R.; Perlmutter, P. Tetrahedron Lett. 1989, 30, 233.
- ³¹⁶Doyle, M. P.; Shanklin, M. S.; Zlokazov, M. V. Synlett **1994**, 615.
- ³¹⁷Kitamura, T.; Tamura, M. 1984, EP 103891, Chem. Abstr. 1981, 95, 42364.
- ³¹⁸Kitamura, T.; Matsumoto, M.; Tamura, M. Fr. Demande **1981**, FR 2477140, Chem. Abstr. **1981**, 96, 34600.
- ³¹⁹Neibecker, D.; Réau, R. New J. Chem. 1991, 15, 279.
- ³²⁰Bertleff, W.; Butz, G. Ger. Offen. 1991, DE 3938092, Chem. Abstr. 1991, 115, 70936.
- ³²¹Weber, J.; Lappe, P.; Springer, H. Eur. Pat. Appl. **1991**, EP 417597, Chem. Abstr. **1991**, 114, 228388.
- ³²²Drent, E.; Breed, A. J. M. Eur. Pat. Appl. 1989, EP 306094, Chem. Abstr. 1989, 111, 99361.
- ³²³Lin, J. J. U.S. Pat. 1989, U.S. 4849543, Chem. Abstr. 1989, 112, 76401.
- ³²⁴Bahrmann, H.; Cornils, B.; Konkol, W.; Weber, J. **1986**, DE 3431642, *Chem. Abstr.* **1986**, *105*, 114610.
- ³²⁵Alper, H.; Zhou, J.-Q. J. Org. Chem. 1992, 57, 3729.
- ³²⁶Koeffer, D.; Maerkl, R.; Bertleff, W. Eur. Pat. Appl. **1990**, EP 403909, Chem. Abstr. **1990**, 114, 184800.
- ³²⁷Matsumoto, K.; Fujikura, Y.; Nakajima, M. Jpn. Kokai Tokkyo Koho 1986, Showa 61151146, Chem. Abstr. 1986, 106, 18099.
- ³²⁸Lin, J. J. U.S. Pat. 1985, U.S. 4533756, Chem. Abstr. 1985, 104, 69283.
- ³²⁹Himmele, W.; Fritz, G.; Jansen, K. Ger. Offen. 1984, DE 3323330, Chem. Abstr. 1984, 100, 209387.
- ³³⁰Boden, R. M.; Schreiber, W. L.; Fujioka, F.; Chant, P.; Dekker, L. U.S. Pat. **1984**, U.S. 4443633, *Chem. Abstr.* **1984**, *101*, 72324.
- ³³¹Widdig, A.; Kabbe, H. J.; Braden, R.; Fiedler, P. Ger. Offen. **1984**, DE 3300005, Chem. Abstr. **1984**, 101, 230356.
- ³³²Lazzaroni, R.; Bertozzi, S.; Pocai, P.; Troiani, F.; Salvadori, P. J. Organomet. Chem. 1985, 295, 371.
- ³³³Polo, A.; Claver, C.; Castillón, S.; Rulz, A.; Bayón, J. C.; Real, J.; Mealli, C.; Masi, D. Organometallics 1992, 11, 3525.
- ³³⁴Polo, A.; Real, J.; Claver, C.; Castillón, S.; Bayon, J. C. J. Chem. Soc., Chem. Commun. **1990**, 600.
- ³³⁵Polo, A.; Fernandez, E.; Claver, C.; Castillon, S. J. Chem. Soc., Chem. Commun. 1992, 639.
- ³³⁶Ookago, J.; Ko, N. Jpn. Kokai Tokkyo Koho 1994, Heisei 06107586, Chem. Abstr. 1994, 123, 228198.
- ³³⁷Omatsu, T.; Tokito, Y. Jpn. Kokai Tokkyo Koho 1994, Heisei 06340652, Chem. Abstr. 1994, 122, 187564.
- ³³⁸Ookago, J.; Hayashi, H. Jpn. Kokai Tokkyo Koho **1994**, Heisei 06305998, Chem. Abstr. **1994**, 122, 132572.
- ³³⁹Ookago, J.; Ko, N. Jpn. Kokai Tokkyo Koho **1994**, Heisei 06234759, Chem. Abstr. **1994**, 122, 31535.

- ³⁴⁰Ookago, J.; Ko, N. Jpn. Kokai Tokkvo Koho 1994, Heisei 06107586, Chem. Abstr. 1994, 121, 134133.
- ³⁴¹Hen, P.; Kyono, S.; Arashiba, N. Jpn. Kokai Tokkyo Koho 1991, Heisei 03190836, Chem. Abstr. 1991. 115. 231699.
- ³⁴²Hen, P.; Fujita, Y.; Ono, H. Jpn. Kokai Tokkyo Koho 1989, Heisei 01203346, Chem. Abstr. 1989, 112, 98023.
- ³⁴³Ono, H.; Kasuga, T.; Kyono, S. Jpn. Kokai Tokkyo Koho 1989, Heisei 01121233, Chem. Abstr. 1989, 111, 173612.
- ³⁴⁴Ono, H.; Kasuga, T. F., Y. Jpn. Kokai Tokkyo Koho 1989, Heisei 01016737, Chem. Abstr. 1989, 111, 77502 N
- ³⁴⁵Ono, H.; Kasuga, T.; Fujita, Y. 1989, Heisei 01016736, Chem. Abstr. 1989, 111, 77501.
- ³⁴⁶Ono, H.; Kasuga, T.; Fujita, Y. Jpn. Kokai Tokkyo Koho 1989, Showa 64000045, Chem. Abstr. **1989**, 111, 77499.
- ³⁴⁷Ono, H.; Kasuga, T.; Fujita, Y. Jpn. Kokai Tokkyo Koho 1989, Heisei 01009947, Chem. Abstr. 1989, 111, 57062.
- ³⁴⁸Ono, H.; Kasuga, T.; Fujita, Y. **1989**, Showa 64003143, *Chem. Abstr.* **1989**, *111*, 38872.
- ³⁴⁹Ono, H.; Kasuga, T.; Fujita, Y. Jpn. Kokai Tokkyo Koho 1988, Showa 63316752, Chem. Abstr. 1988, 109, 54322.
- ³⁵⁰Ono, H.; Kasuga, T.; Fujita, Y. 1988, Showa 63316751, Chem. Abstr. 1988, 111, 38871.
- ³⁵¹Ono, H.; Kasuga, T.; Kiyono, S.; Fujita, Y. Eur. Pat. Appl. 1988, EP 260944, Chem. Abstr. 1988, 109, 54322.
- ³⁵²Ono, H.; Kasuga, T. Jpn. Kokai Tokkyo Koho 1987, Showa 62270541, Chem. Abstr. 1987, 108, 133858.
- ³⁵³Ono, H.; Miyama, K.; Kasuga, T. Eur. Pat. Appl. 1986, EP 183199, Chem. Abstr. 1986, 105, 62720.
- ³⁵⁴Fuchikami, T.; Ojima, I. J. Am. Chem. Soc. 1982, 104, 3527.
- ³⁵Ojima, I.; Fuchikami, T. In Fr. Demande; Sagami Chem. Res. Ctr.: 1981; pp FR 2477533.
- ³⁵⁶Ojima, I.; Kato, K.; Nakahashi, K.; Fuchikami, T.; Fujita, M. J. Org. Chem. **1989**, 54, 4511.
- ³⁵⁷Ojima, I.; Kato, K.; Okabe, M.; Fuchikami, T. J. Am. Chem. Soc. 1987, 109, 7714.
- ³⁵⁸Fuchikami, T.; Suzuki, Y. In *Jpn. Kokai Tokkyo Koho;* Sagami Chem. Res. Ctr.: 1986; pp Showa 61007228, Chem. Abstr. 1986, 105, 42330.
- ³⁵⁹Ojima, I.; Okabe, M.; Kato, K.; Kwon, H. B.; Horváth, I. T. J. Am. Chem. Soc. 1988, 110, 150. ³⁶⁰Zhou, J.-Q.; Alper, H. J. Org. Chem. 1992, 57, 3328.
- ³⁶¹Anastasiou, D.; Jackson, W. R. J. Chem. Soc., Chem. Commun. 1990, 1205.
- ³⁶²Zhang, Z.; Ojima, I. J. Organomet. Chem. **1993**, 281.
- ³⁶³Ojima, I.; Zhang, Z. J. Organomet. Chem. 1991, 417, 253.
- ³⁶⁴Anastasiou, D.; Campi, E. M.; Chaouk, H.; Jackson, W. R. Tetrahedron 1992, 48, 7467.
- ³⁶⁵Jackson, W. R.; Perlmutter, P.; Tasdelen, E. E. Tetrahedron Lett. 1990, 31, 2461.
- ³⁶⁶Sakakura, T.; Huang, X.-Y.; Tanaka, M. Bull. Chem. Soc. Jpn. 1991, 64, 1707.
- ³⁶⁷Campi, E. M.; Jackson, W. R.; Perlmutter, P.; Tasdelen, E. E. Aust. J. Chem. 1993, 46, 995.
- ³⁶⁸Somasunderam, A.; Alper, H. J. Mol. Catal. 1994, 92, 35.
- ³⁶⁹Grigg, R.; Reimer, G. J.; Wade, A. R. J. Chem. Soc., Perkin Trans. I 1983, 1929.
- ³⁷⁰Browning, A. F.; Bacon, A. D.; White, C. J. Mol. Catal. 1993, 83, L11.
- ³⁷¹Totland, K.; Alper, H. J. Org. Chem. 1993, 58, 3326.
- ³⁷²Dickson, R. S.; De Simone, T.; Campi, E. M.; Jackson, W. R. Inorg. Chim. Acta 1994, 220, 187.
- ³⁷³Botteghi, C.; Soccolini, F. Synthesis 1985, 592.
- ³⁷⁴Caccia, G.; Chelucci, G.; Botteghi, C. Synth. Commun. 1981, 11, 71.
- ³⁷⁵Takeuchi, R.; Sato, N. J. Organomet. Chem. 1990, 393, 1.
- ³⁷⁶Doyle, M. M.; Jackson, W. R.; Perlmutter, P. Aust. J. Chem. 1989, 42, 1907.
- ³⁷⁷Valli, V. L. K.; Alper, H. Chem. Mater. 1995, 7, 359.
- ³⁷⁸Campi, E. M.; Jackson, W. R. Aust. J. Chem. 1989, 42, 471.
- ³⁷⁹Oro, L. A.; Pinillos, M. T.; Royo, M.; Pastor, E. J. Chem. Res. S 1984, 206.
- ³⁸⁰Campi, E. M.; Fallon, G. D.; Jackson, W. R.; Nilsson, Y. Aust. J. Chem. 1992, 45, 1167.
- ³⁸¹Doyama, K.; Joh, T.; Shiohara, T.; Takahashi, S. Bull. Chem. Soc. Jpn. 1988, 61, 4353.

- ³⁸²Doyama, K.; Fujiwara, K.; Joh, T.; Maeshima, K.; Takahashi, S. Chem. Lett. 1988, 901.
- ³⁸³Doyama, K.; Joh, T.; Takahashi, S.; Shiohara, T. Tetrahedron Lett. 1986, 27, 4497.
- ³⁸⁴Campi, E. M.; Jackson, W. R.; Nilsson, Y. Tetrahedron Lett. 1991, 32, 1093.
- ³⁸⁵Kollár, L.; Floris, B.; Pino, P. Chimia 1986, 40, 201.
- ³⁸⁶Kollár, L.; Floris, B. J. Organomet. Chem. 1992, 441, 117.
- ³⁸⁷Doyle, M. M.; Jackson, W. R.; Perlmutter, P. Tetrahedron Lett. 1989, 30, 5357.
- ³⁸⁸Brocard, J.; Pélinski, L.; Maciejewski, L.; Naïli, S.; Bricout, H.; Mortreux, A.; Petit, F. J. Organomet. Chem. 1994, 483, C1.
- ³⁸⁹Slaugh, L. H.; Weider, P. R.; Juan, P.; Lin, J.-J. PCT Int. Appl. 1994, WO 9418149, Chem. Abstr. 1994, 122, 9490.
- ³⁹⁰Slaugh, L. H.; Arhancet, J. P. U.S. Pat. 1994, U.S. 5304686, Chem. Abstr. 1994, 121, 8677.
- ³⁹¹Briggs, J. R.; Maher, J. M.; Harrison, A. M. In Eur. Pat. Appl.; Union Carbide Chem. Plastics Co. Inc.: 1991; pp EP 455261.
- ³⁹²Briggs, J. R.; Maher, J. M.; Harrison, A. M. In U.S. Pat.; Union Carbide Tech. Corp.: 1991; pp. 5030766.
- ³⁹³Campbell, C. J.; Hinshaw, J. C. U.S. Pat. 1983, U.S. 4410744, Chem. Abstr. 1983, 100, 22324.
- ³⁹⁴Arimitsu, S.; Sasano, A. Jpn. Kokai Tokkyo Koho 1992, Heisei 04339809, Chem. Abstr. 1992, 119, 96520.
- ³⁹⁵Frances, J. M. 1990, EP 392948, Chem. Abstr. 1990, 114, 25269.
- ³⁹⁶Frances, J. M.; Metz, F. 1990, EP 358580, Chem. Abstr. 1990, 113, 133465.
- ³⁹⁷Eaton, B. E.; Kulzick, M. A.; Pretzer, W. R.; Nemo, T. E. PCT Int. Appl. 1990, WO 9005711, Chem. Abstr. 1990, 113, 173465.
- ³⁹⁸Paumard, E.; Mutez, S.; Mortreux, A.; Petit, F. **1989**, EP 335765, *Chem. Abstr.* **1989**, *112*, 181863.
- ³⁹⁹Petit, M.; Mortreux, A.; Petit, F.; Bruno, G.; Peiffer, G. Fr. Dimande **1985**, FR 2550201, Chem. Abstr. **1985**, 104, 149172.
- 400 Dessau, R. M. U.S. Pat. 1985, U.S. 4554262, Chem. Abstr. 1985, 104, 206908.
- ⁴⁰¹Botteghi, C.; Gladiali, S. G.; Marchetti, M.; Faedda, G. A. Eur. Pat. Appl. **1983**, EP 81149, Chem. Abstr. **1983**, 99, 195279.
- ⁴⁰²Tinker, H. B.; Solodar, A. J. 1981, U.S. 4268688, Chem. Abstr. 1981, 95, 114798.
- ⁴⁰³Brunner, H.; Pieronczyk, W. Ger. Offen. 1980, DE 2908358, Chem. Abstr. 1980, 94, 103556.
- ⁴⁰⁴Pittman, C. U., Jr.; Kawabata, Y.; Flowers, L. I. J. Chem. Soc., Chem. Commun. 1982, 473.
- ⁴⁰⁵Consiglio, G.; Pino, P.; Flowers, L. I.; Pittman, C. U., Jr. J. Chem. Soc., Chem. Commun. 1983, 612.
- ⁴⁰⁶Parrinello, G.; Stille, J. K. J. Am. Chem. Soc. 1987, 109, 7122.
- ⁴⁰⁷Consiglio, G.; Nefkens, S. C. A.; Borer, A. Organometallics 1991, 10, 2046.
- ⁴⁰⁸Cserépi-Szücs, S.; Bakos, J. Chem. Commun. 1997, 635.
- ⁴⁰⁹Stille, J. K.; Su, H.; Brechot, P.; Parrinello, G.; Hegedus, L. S. Organometallics 1991, 10, 1183.
- ⁴¹⁰Stille, J. K.; Parrinello, G. PCT Int. Appl. 1988, WO 8808835, Chem. Abstr. 1988, 111, 96656.
- ⁴¹¹Parrinello, G.; Deschenaux, R.; Stille, J. K. J. Org. Chem. **1986**, 51, 4189.
- ⁴¹²Parrinello, G.; Stille, J. K. Polym. Prepr. 1986, 27, 9.
- ⁴¹³Horiuchi, T.; Ohta, T.; Nozaki, K.; Takaya, H. Chem. Commun. 1996, 155.
- ⁴¹⁴Higashizima, T.; Sakai, N.; Nozaki, K.; Takaya, H. Tetrahedron Lett. 1994, 35, 2023.
- ⁴¹⁵Takaya, H.; Sakai, N.; Nozaki, K. Shokubai 1994, 36, 259.
- ⁴¹⁶Nozaki, K.; Itoi, Y.; Shibahara, F.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. J. Am. Chem. Soc. **1998**, 120, 4051.
- ⁴¹⁷Babin, J. E.; Whiteker, G. T. PCT Int. Appl. 1993, WO 9303839, Chem. Abstr. 1993, 119, 159872.
- ⁴¹⁸Nozaki, K.; Li, W.; Horiuchi, T.; Takaya, H. J. Org. Chem. 1996, 61, 7658.
- ⁴¹⁹Botteghi, C.; Paganelli, S.; Schionato, A.; Marchetti, M. Chirality 1991, 355.
- ⁴²⁰Mullen, A. In New Syntheses with Carbon Monoxide; J. Falbe, Ed.; Springer-Verlag: Berlin, 1980; pp. 275-286.
- ⁴²¹Pino, P.; Piacenti, F.; Bianchi, M. In Organic Syntheses via Metal Carbonyls, Vol. 2; I. Wender and P. Pino, Ed.; John Wiley & Sons: New York, 1977; pp. 233-296.
- 422Kehoe, L. J.; Schell, R. A. J. Org. Chem. 1970, 35, 2846.

⁴²³El Ali, B.; Alper, H. J. Mol. Catal. 1992, 77, 7.

- ⁴²⁴Tsuji, J. Organic Syntheses with Palladium Compounds; Springer-Verlag: Berlin, 1980, p. 22.
- 425Hiyama, T.; Wakasa, N.; Kusumoto, T. Synlett 1991, 569.
- 426 Takeuchi, R.; Ishii, N.; Sugiura, M.; Sato, N. J. Org. Chem. 1992, 57, 4189.
- 427 Fuchikami, T.; Ohishi, K.; Ojima, I. J. Org. Chem. 1983, 3803.
- ⁴²⁸Amer, I.; Alper, H. J. Organomet. Chem. 1990, 383, 573.
- ⁴²⁹Hayashi, T.; Tanaka, M.; Ogata, I. Tetrahedron Lett. 1978, 3925.
- ⁴³⁰Consiglio, G. Adv. Chem. Ser. 1982, 196, 371.
- 431Consiglio, G.; Pino, P. Chimia 1976, 30, 193.
- 432Commetti, G.; Chiusoli, G. P. J. Organomet. Chem. 1982, 236, C31.
- 433Oi, S.; Nomura, M.; Aiko, T.; Inoue, Y. J. Mol. Catal. 1997, 115, 289.
- ⁴³⁴Zhou, H.; Hou, J.; Chen, J.; Lu, S.; Fu, H.; Wang, H. J. Organomet. Chem. 1997, 543, 227.
- ⁴³⁵Alper, H.; Hamel, N. J. J. Am. Chem. Soc. 1990, 112, 2803.
- ⁴³⁶Alper, H.; Hamel, N. J. Chem. Soc., Chem. Commun. 1990, 135.
- ⁴³⁷Colquhoun, H. M.; Thompsion, D. J.; Twigg, M. V. Carbonylation: Direct Synthesis of Carbonyl Compounds; Plenum Press: New York, 1991, pp. 56-60.
- 438 Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761.
- 439 Kasahara, A.; Izumi, T.; Yanai, H. Chem. Ind. (London) 1983, 898.
- ⁴⁴⁰Pri-Bar, I.; Buchman, O. J. Org. Chem. **1984**, 49, 4009.
- 441 Baillargeon, V. P.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 452.
- 442 Takeuchi, R.; Tsuji, Y.; Fujita, M.; Kondo, T.; Watanabe, Y. J. Org. Chem. 1989, 54, 1831.
- 443 Matsuda, I.; Ogiso, A.; Sato, S.; Izumi, Y. J. Am. Chem. Soc. 1989, 111, 2332.
- 444Ojima, I.; Ingallina, P.; Donovan, R. J.; Clos, N. Organometallics 1991, 10, 38.
- ⁴⁴⁵Ojima, I.; Donovan, R. J.; Eguchi, M.; Shay, W. R.; Ingallina, P.; Korda, A.; Zeng, Q. Tetrahedron 1993, 49, 5431.
- ⁴⁴⁶Doyle, M. P.; Shanklin, M. S. Organometallics 1993, 12, 11.
- 447Zhou, J.-Q.; Alper, H. Organometallics 1994, 13, 1586.
- 448 Eguchi, M.; Zeng, Q.; Korda, A.; Ojima, I. Tetrahedron Lett. 1993, 34, 915.
- ⁴⁴⁹Monteil, F.; Matsuda, I.; Alper, H. J. Am. Chem. Soc. 1995, 117, 4419.
- ⁴⁵⁰Ojima, I.; Vidal, E.; Tzamarioudaki, M.; Matsuda, I. J. Am. Chem. Soc. 1995, 117, 6797.
- ⁴⁵¹Sax, N. I.; Lewis, R. J. Dangerous Properties of Industrial Materials; Van Nostrand Reinhold: New York, 1989.
- ⁴⁵²Pino, P.; Botteghi, C.; Borecki, M. M.; Mrowca, J. J.; Benson, R. E. Org. Syn. 1977, 57, 11.
- ⁴⁵³Yuasa, Y.; Watanabe, T.; Nagakura, A.; Tsuruta, H.; King, G. A. I.; Sweeny, J. G.; Iacobucci, G. A. Tetrahedron 1992, 48, 3473.
- ⁴⁵⁴Krampe, O.; Song, C.-E.; Kläui, W. Organometallics 1993, 12, 4949.
- ⁴⁵⁵Claridge, J. B.; Douthwaite, R. E.; Green, M. L. H.; Lago, R. M.; Tsang, S. C.; York, A. P. E. J. Mol. Catal. **1994**, 89, 113.
- ⁴⁵⁶Khan, M. M. T.; Rao, N. S.; Halligudi, S. B. J. Mol. Catal. 1990, 63, 1.
- ⁴⁵⁷Süss-Fink, G. Adv. Chem. Ser. 1992, 230, 419.
- ⁴⁵⁸Süss-Fink, G.; Schmidt, G. F. J. Mol. Catal. 1987, 42, 361.
- ⁴⁵⁹Fukuoka, A.; Ichikawa, M.; Hriljac, J. A.; Shriver, D. F. Inorg. Chem. 1987, 26, 3643.
- ⁴⁶⁰Fukuoka, A.; Matsuzaka, H.; Hidai, M.; Ichikawa, M. Chem. Lett. 1987, 941.
- ⁴⁶¹Mirbach, M. J.; Mirbach, M. F.; Saus, A.; Topalsavoglou, N.; Phu, T. N. J. Am. Chem. Soc. 1981, 103, 7594.
- ⁴⁶²Mirbach, M. J.; Mirbach, M. F.; Saus, A.; Topalsavoglou, N.; Phu, T. N. J. Am. Chem. Soc. 1981, 103, 7590.
- ⁴⁶³Rode, E.; Davis, M. E.; Hanson, B. E. J. Chem. Soc., Chem. Commun. 1985, 1477.
- ⁴⁶⁴Rode, E. J.; Davis, M. E.; Hanson, B. E. J. Catal. 1985, 96, 574.
- ⁴⁶⁵Rode, E. J.; Davis, M. E.; Hanson, B. E. J. Catal. 1985, 96, 563.
- ⁴⁶⁶Herrmann, W. A.; Kohlpaintner, C. W.; Bahrmann, H.; Konkol, w. J. Mol. Catal. 1992, 73, 191.
- ⁴⁶⁷Guo, Y.; Akgerman, A. Ind. Eng. Chem. Res. 1997, 36, 4581.
- ⁴⁶⁸van Rooy, A.; de Bruijn, J. N. H.; Roobeek, K. F.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Organomet. Chem. **1996**, 507, 69.

⁴⁶⁹Mitsudo, T.; Suzuki, N.; Kondo, T.; Watanabe, Y. J. Mol. Cat. A: Chem. 1996, 109, 219.

- ⁴⁷⁰Herrmann, W. A.; Elison, M.; Fischer, J.; Koecher, C. In Eur. Pat. Appl.; 1996; pp EP 719,753.
- ⁴⁷¹Frémy, G.; Monflier, E.; Carpentier, J.-F.; Castanet, Y.; Mortreux, A. J. Cat. 1996, 162, 339.
- ⁴⁷²Koto, T.; Watabe, Y.; Kondo, T.; Suzuki, N. Jpn. Kokai Tokkyo Koho 1996, JP 08,245,476, Chem. Abstr. 1997, 126, 7696.
- ⁴⁷³Sato, K.; Itagaki, H. Jpn. Kokai Tokkyo Koho **1997**, JP 09 87,292, Chem. Abstr. **1997**, 127, 17813.
- ⁴⁷⁴Sato, K.; Itagaki, H. Jpn. Kokai Tokkyo Koho 1997, JP 09 77,713, Chem. Abstr. 1997, 127, 17395.
 ⁴⁷⁵Ogino, Y.; Urata T.; Itagaki H.; Takahashi E.; Wada Y.; Tanaka Y. Jpn. Kokai Tokkyo Koho 1998, JP 10 279,587, Chem. Abstr. 1998, 129, 343151.
- ⁴⁷⁶Sato, K.; Takahashi, E.; Tanihara, Y.; Wada, Y. Jpn. Kokai Tokkyo Koho 1996, JP 08,259,578, Chem. Abstr., 1997, 126, 31486.
- ⁴⁷⁷Kinoshita, K.; Odaka, K. Jpn. Kokai Tokkyo Koho **1996**, JP 08,295,683, Chem. Abstr. **1997**, 126, 74736.
- ⁴⁷⁸Ancillotti, F.; Lami, M.; Marchionna, M. J. Mol. Catal. 1990, 58, 331.
- ⁴⁷⁹Hendriksen, D. E.; Oswald, A. A.; Ansell, G. B.; Leta, S.; Kastrup, R. V. Organometallics **1989**, 8, 1153.
- 480 Ancillotti, F.; Lami, M.; Marchionna, M. J. Mol. Catal. 1991, 66, 37.
- ⁴⁸¹Ancillotti, F.; Lami, M.; Marchionna, M. J. Mol. Catal. **1990**, 58, 345.
- ⁴⁸²Ancillotti, F.; Lami, M.; Marchionna, M. J. Mol. Catal. 1990, 63, 15.
- ⁴⁸³Consiglio, G.; Morandini, F.; Haelg, P.; Pino, P. J. Mol. Catal. 1990, 60, 363.
- ⁴⁸⁴Haelg, P.; Consiglio, G.; Pino, P. Helv. Chim. Acta 1981, 64, 1865.
- ⁴⁸⁵Sato, K.; Kawaragi, J.; Tanihara, Y. Jpn. Kokai Koho 1995, JP 07,278,040, Chem. Abstr. 1996, 124, 231851.
- ⁴⁸⁶Hart, F. A.; Owen, D. W. Inorg. Chim. Acta 1985, 103, L1.
- ⁴⁸⁷Bianchi, M.; Menchi, G.; Frediani, P.; Matteoli, U.; Piacenti, F. J. Organomet. Chem. 1983, 247, 89.
- ⁴⁸⁸De-An, C.; Pittman, C. U., Jr. J. Mol. Catal. 1983, 21, 405.
- ⁴⁸⁹Pittman, C. U., Jr.; Wilemon, G. M.; Wilson, W. D.; Ryan, R. C. Angew. Chem., Int. Ed. Engl. 1980, 19, 478.
- ⁴⁹⁰Pittman, C. U., Jr.; Hirao, A. J. Org. Chem. 1978, 43, 640.
- ⁴⁹¹Major, A.; Horváth, I. T.; Pino, P. J. Mol. Catal. 1988, 45, 275.
- ⁴⁹²Muller, G.; Sainz, D.; Sales, J. J. Mol. Catal. **1990**, 63, 173.
- ⁴⁹³Jenner, G. Tetrahedron Lett. 1991, 32, 505.
- ⁴⁹⁴Kim, B.; Kodomari, M.; Regen, S. L. J. Org. Chem. 1984, 49, 3233.
- ⁴⁹⁵Chauvin, Y.; Olivier, H.; Mussmann, L. In Eur. Pat. Appl.; 1997; pp EP 776,880.
- ⁴⁹⁶Bogdanovic, S.; Bahrmann, H.; Frohning, C.-D.; Wiebus, E. PCT. Int. Appl. **1998**, PCT Int. Appl. WO 98 30,527, Chem. Abstr. **1998**, 129, 137610.
- ⁴⁹⁷Ceriotti, A.; Garlaschelli, L.; Longoni, G.; Malatesta, M. C.; Strumolo, D.; Fumagalli, A.; Martinengo, S. J. Mol. Catal. 1984, 24, 323.
- ⁴⁹⁸Ding, M.; Stille, J. K. Macromolecules 1983, 16, 839.
- ⁴⁹⁹Hayashi, T.; Gu, Z. H.; Sakakura, T.; Tanaka, M. J. Organomet. Chem. **1988**, 352, 373.
- ⁵⁰⁰Alami, M. K.; Dahan, F.; Mathieu, R. J. Chem. Soc., Dalton Trans. 1987, 1983.
- ⁵⁰¹Richmond, M. G. J. Mol. Catal. 1989, 54, 199.
- ⁵⁰²Hayashi, T.; Kawabata, Y.; Isoyama, T.; Ogata, I. Bull. Chem. Soc. Jpn. 1981, 54, 3438.
- ⁵⁰³Pittman, J. C. U.; Honnick, W.; Absi-Halabi, M.; Richmond, M. G.; Bender, R.; Braunstein, P. J. Mol. Catal. 1985, 32, 177.
- ⁵⁰⁴Richmond, M. G.; Absi-Halbi, M.; Pittmen, J. C. U. J. Mol. Catal. 1984, 22, 367.
- ⁵⁰⁵Kawabata, Y.; Hayashi, T.; Ogata, I. J. Chem. Soc., Chem. Commun. 1979, 462.
- ⁵⁰⁶Pittman, C. U., Jr.; Wilemon, G. M. J. Org. Chem. 1981, 46, 1901.
- ⁵⁰⁷Hayashi, T.; Tanaka, M.; Ogata, I. J. Mol. Catal. 1979, 6, 1.
- ⁵⁰⁸Laine, R. M. J. Am. Chem. Soc. 1978, 100, 6451.
- ⁵⁰⁹Chang, B. H.; Grubbs, R. H.; Brubaker, C. H., Jr. J. Organomet. Chem. 1979, 172, 81.
- ⁵¹⁰Alvila, L.; Pakkanen, T. A.; Krause, O. J. Mol. Catal. 1993, 84, 145.
- ⁵¹¹Chen, W.; Xu, Y.; Liao, S. J. Mol. Catal. 1994, 88, 277.

- ⁵¹²Chen, W.; Xu, Y.; Liao, S. J. Mol. Catal. A, 1998, 129, 153.
- ⁵¹³Choukroun, R.; Gervais, D.; Rofao, C. Polyhedron **1989**, *8*, 1760.
- ⁵¹⁴Neibecker, D.; Réau, R. Angew. Chem., Int. Ed. Engl. 1989, 28, 500.
- ⁵¹⁵Kalck, P. Polyhedron **1988**, 7, 2441.
- ⁵¹⁶Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Fujiwara, Y.; Jintoku, T.; Taniguchi, H. J. Chem. Soc., Chem. Commun. 1988, 299.
- ⁵¹⁷Claver, C.; Ruiz, A.; Masdeu, A. M.; Ruiz, N. Inorg. Chim. Acta 1990, 175, 77.
- ⁵¹⁸Lockemeyer, J. R.; Rheingold, A. L.; Bulkowski, J. E. Organometallics 1993, 12, 256.
- ⁵¹⁹Adedapo, A.; Benyunes, S. A.; Chaloner, P. A.; Claver, C.; Hitchcock, P. B.; Ruiz, A.; Ruiz, N. J. Organomet. Chem. 1993, 443, 241.
- ⁵²⁰Casey, C. P.; Whiteker, G. T.; Melville, M. G.; Petrovich, L. M.; Gavney, J. J. A.; Powell, D. R. J. Am. Chem. Soc. 1992, 114, 10680.
- ⁵²¹Sánchez-Delgado, R. A.; Rosales, M.; Andtiollo, A. Inorg. Chem. 1991, 30, 1170.
- ⁵²²Siedle, A. R.; Gleason, W. B.; Newmark, R. A.; Skarjune, R. P.; Lyon, P. A.; Markell, C. G.; Hodgson, K. O.; Roe, A. L. *Inorg. Chem.* **1990**, 29, 1667.
- ⁵²³Bach, I.; J., C.-H. D. J. Chem. Soc. Chem. Commun. 1998, 1463.
- ⁵²⁴Moszer, M.; Trzeciak, A. M.; Ziólkowski, J. J. J. Mol. Catal. A, 1998, 130, 241.
- ⁵²⁵Poelsma, S. N.; Maitlis, P. M. J. Organomet. Chem. 1993, 451, C15.
- ⁵²⁶Salvini, A.; Frediani, P.; Rovai, D.; Bianchi, M.; Piacenti, F. J. Mol. Catal. 1994, 89, 77.
- ⁵²⁷Wang, Y.-P.; Zhang, S.-M.; Zhang, A.-M.; Wu, N.; Luo, Y.-Z.; Fu, H.-X. J. Organomet. Chem. 1986, 307, 65.
- ⁵²⁸Kalck, P.; Peres, Y.; Queau, R.; Molinier, J.; Escaffre, P.; de Oliveira, E. L.; Peyrille, B. J. Organomet. Chem. 1992, 426, C16.
- ⁵²⁹Davis, R.; Epton, J. W.; Southern, T. G. J. Mol. Catal. 1992, 77, 159.
- ⁵³⁰Kalck, P.; Frances, J.-M.; Pfister, P.-M.; Southern, T. G.; Thorez, A. J. Chem. Soc., Chem. Commun. 1983, 510.
- ⁵³¹Escaffre, P.; Thorez, A.; Kalck, P.; Besson, B.; Perron, R.; Colleuille, Y. J. Organomet. Chem. 1986, 302, C17.
- ⁵³²Markiewicz, M. K.; Baird, M. C. Inorg. Chim. Acta 1986, 113, 95.
- ⁵³³Choukroun, R.; Iraqi, A.; Gervais, D. J. Organomet. Chem. **1986**, 311, C60.
- ⁵³⁴Davis, R. J.; Rossin, J. A.; Davis, M. E. J. Catal. 1986, 98, 477.
- ⁵³⁵Trzeciak, A. M.; Ziólkowski, J. J. J. Mol. Catal. 1986, 34, 213.
- ⁵³⁶Hidai, M.; Fukuoka, A.; Koyasu, Y.; Uchida, Y. J. Mol. Catal. 1986, 35, 29.
- ⁵³⁷Dubois, R. A.; Garrou, P. E.; Lavin, K. D.; Allcock, H. R. Organometallics 1986, 5, 460.
- ⁵³⁸Khan, M. M. T.; Halligudi, S. B.; Abdi, S. H. R. J. Mol. Catal. 1988, 48, 313.
- ⁵³⁹Siedle, A. R.; Newmark, R. A.; Howells, R. D. Inorg. Chem. 1988, 27, 2473.
- ⁵⁴⁰Gelmini, L.; Stephan, D. W. Organometallics 1988, 7, 849.
- ⁵⁴¹Kalck, P.; Randrianalimanana, C.; Ridmy, M.; Thorez, A.; Dieck, H. T.; Ehlers, J. New J. Chem. **1988**, 12, 679.
- ⁵⁴²Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Frediani, P.; Ramirez, J. A. Organometallics 1990, 9, 226.
- ⁵⁴³Claver, C.; Kalck, P.; Ridmy, M.; Thorez, A.; Oro, L. A.; Pinillos, M. T.; Apreda, M. C.; Cano, F. H.; Foces-Foces, C. J. Chem. Soc., Dalton Trans. 1988, 1523.
- ⁵⁴⁴Trzeciak, A. M.; Ziółkowski, J. J. J. Mol. Catal. 1988, 48, 319.
- 545 Cavinato, G.; Toniolo, L. J. Organomet. Chem. 1983, 241, 275.
- ⁵⁴⁶Scrivanti, A.; Cavinato, G.; Toniolo, L.; Botteghi, C. J. Organomet. Chem. 1985, 286, 115.
- ⁵⁴⁷Scrivanti, A.; Paganelli, S.; Matteoli, U.; Botteghi, C. J. Organomet. Chem. 1990, 385, 439.
- ⁵⁴⁸Bardi, R.; Piazzesi, A. M.; Del Pra, A.; Cavinato, G.; Toniolo, L. J. Organomet. Chem. 1982, 234, 107.
- ⁵⁴⁹Claver, C.; Maseu, A. M.; Ruiz, N.; Foces-Foces, C.; Cano, F. H.; Apreda, M. C.; Oro, L. A.; Garcia-Alejandre, J.; Torrens, H. J. Organomet. Chem. **1990**, 398, 177.
- ⁵⁵⁰Trzeciak, A. M. J. Organomet. Chem. 1990, 390, 105.
- ⁵⁵¹MacDougall, J. K.; Cole-Hamilton, D. J. J. Chem. Soc., Chem. Commun. 1990, 165.
- ⁵⁵²MacDougall, J. K.; Cole-Hamilton, D. J. Polyhedron 1990, 9, 1235.

- ⁵⁵³Khan, M. M. T.; Rao, N. S.; Halligudi, S., B. J. Mol. Catal. 1990, 63, 137.
- ⁵⁵⁴Kalck, P. Pure Appl. Chem. 1989, 61, 967.
- 555 Bahrmann, H.; Bach, H. Phosphorus Sulfur 1987, 30, 611.
- ⁵⁵⁶Escaffre, P.; Thorez, A.; Kalck, P. New J. Chem. 1987, 11, 601.
- ⁵⁵⁷Escaffre, P.; Thorez, A.; Kalck, P. J. Chem. Soc., Chem. Commun. 1987, 146.
- ⁵⁵⁸Deshpande, R. M.; Divekar, S. S.; Bhanage, B. M.; Chaudhari, R. V. J. Mol. Catal. **1992**, 77, L13.
- ⁵⁵⁹Deshpande, R. M.; Divekar, S. S.; Gholap, R. V.; Chaudhari, R. V. J. Mol. Catal. **1991**, 67, 333.
- ⁵⁶⁰Hanson, B. E.; Davis, M. E. J. Chem. Educ. 1987, 64, 928.
- ⁵⁶¹Choukroun, R.; Gervais, D.; Kalck, P.; Senocq, F. J. Organomet. Chem. 1987, 335, C9.
- ⁵⁶²Taylor, D. F.; Hanson, B. E.; Davis, M. E. Inorg. Chim. Acta 1987, 128, 55.
- ⁵⁶³Claver, C.; Kalck, P.; Oro, L. A.; Pinillos, M. T.; Tejel, C. J. Mol. Catal. 1987, 43, 1.
- ⁵⁶⁴Kalck, P.; Thorez, A.; Pinillos, M. T.; Oro, L. A. J. Mol. Catal. 1985, 31, 311.
- ⁵⁶⁵Bayón, J. C.; Real, J.; Claver, C.; Polo, A.; Ruiz, A. J. Chem. Soc., Chem. Commun. 1989, 1056.
- ⁵⁶⁶He, B.-L.; Sun, J.-T.; Li, H.; Sang, J.-J. J. Macromol. Sci., Chem. 1989, A26, 417.
- ⁵⁶⁷Bayón, J. C.; Esteban, P.; Real, J.; Claver, C.; Ruiz, A. J. Chem. Soc., Dalton Trans. 1989, 1579.
- ⁵⁶⁸Neibecker, D.; Réau, R. J. Mol. Catal. 1989, 57, 153.
- ⁵⁶⁹Neibecker, D.; Réau, R. J. Mol. Catal. 1989, 53, 219.
- ⁵⁷⁰Kwaskowska-Chec, E.; Trzeciak, A. M. Transition Met. Chem. 1991, 16, 212.
- ⁵⁷¹Mori, S.; Tatsumi, S.; Yasuda, M.; Kudo, K.; Sugita, N. Bull. Chem. Soc. Jpn. 1991, 64, 3017.
- ⁵⁷²Guo, I.; Hanson, B. E.; Toth, I.; Davis, M. E. J. Mol. Catal. 1991, 70, 363.
- ⁵⁷³Trzeciak, A. M.; Ziólkowski, J. J.; Choukroun, R. J. Organomet. Chem. 1991, 420, 353.
- ⁵⁷⁴Withers, H. P., Jr.; Seyferth, D. Inorg. Chem. 1983, 22, 2931.
- ⁵⁷⁵Sekiya, A.; Stille, J. K. J. Am. Chem. Soc. 1981, 103, 5096.
- ⁵⁷⁶Janecko, H.; Trzeciak, A. M.; Ziólkowski, J. J. J. Mol. Catal. 1984, 26, 355.
- ⁵⁷⁷Okano, T.; Kobayashi, T.; Konishi, H.; Kiji, J. Bull. Chem. Soc. Jpn. 1981, 54, 3799.
- ⁵⁷⁸Smith, R. T.; Ungar, R. K.; Sanderson, L. J.; Baird, M. C. Organometallics 1983, 2, 1138.
- ⁵⁷⁹Franks, S.; Hartley, F. R. J. Mol. Catal. 1981, 12, 121.
- ⁵⁸⁰Clark, H. C.; Davies, J. A. J. Organomet. Chem. 1981, 213, 503.
- ⁵⁸¹Kurtev, K.; Ribola, D.; Jones, R. A.; Cole-Hamilton, D. J.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1980, 55.
- ⁵⁸²Hughes, O. R.; Unruh, J. D. J. Mol. Catal. 1981, 12, 71.
- ⁵⁸³Crabtree, R. H.; Felkin, H. J. Mol. Catal. 1979, 5, 75.
- ⁵⁸⁴Farrell, M. O.; Van Dyke, C. H.; Boucher, L. J.; Metlin, S. J. J. Organomet. Chem. 1979, 172, 367.
- ⁵⁸⁵Alvila, L.; Pakkanen, T. A.; Pakkanen, T. T.; Krause, O. J. Mol. Catal. 1992, 73, 325.
- ⁵⁸⁶Mantovani, E.; Palladino, N.; Zanobi, A. J. Mol. Catal. 1978, 3, 285.
- ⁵⁸⁷Mieczynska, E.; Trzeciak, A. M.; Ziółkowski, J. J. J. Mol. Catal. 1992, 73, 1.
- ⁵⁸⁸Alvila, L.; Pakkanen, T. A.; Pakkanen, T. T.; Krause, O. J. Mol. Catal. 1992, 71, 281.
- ⁵⁸⁹Corain, B.; Basato, M.; Zecca, M.; Braca, G.; Galletti, A. M. R.; Lora, S.; Palma, G.; Guglielminotti, E. J. Mol. Catal. 1992, 73, 23.
- ⁵⁹⁰Guo, I.; Hanson, B. E.; Tóth, I.; Davis, M. E. J. Organomet. Chem. 1991, 403, 221.
- ⁵⁹¹Suarez, T.; Fontal, B. J. Mol. Catal. 1985, 32, 191.
- ⁵⁹²Pradat, C.; Riess, J. G.; Bondoux, D.; Mentzen, B. F.; Tkatchenko, I.; Houalla, D. J. Am. Chem. Soc. 1979, 101, 2234.
- ⁵⁹³Okano, T.; Kobayashi, T.; Konishi, H.; Kiji, J. Tetrahedron Lett. 1982, 23, 4967.
- ⁵⁹⁴Costa, M.; Dias, F. S.; Ciusoli, G. P.; Gazzola, G. L. J. Organomet. Chem. 1995, 488, 47.
- ⁵⁹⁵Aaliti, A.; Masdeu, A. M.; Ruiz, A.; Claver, C. J. Organomet. Chem. 1995, 489, 101.
- ⁵⁹⁶Trzeciak, A. M.; Glowiak, T.; Grzybek, R.; Ziólkowski, J. J. J. Chem. Soc., Dalton Trans. 1997, 1831.
- ⁵⁹⁷Rosi, L.; Bini, A.; Frediani, P.; Bianchi, M.; Salvini, A. J. Mol. Cat. A: Chem. 1996, 112, 367.
- ⁵⁹⁸Lelièvre, S.; Mercier, F.; Mathey, F. J. Org. Chem. 1996, 61, 3531.
- ⁵⁹⁹Ritter, U.; Winkhofer, N.; Schmidt, H.-G.; Roesky, H. W. Angew. Chem., Int. Ed. Engl. 1996, 35, 524.

- ⁶⁰⁰Ritter, U.; Winkhofer, N.; Murugavel, R.; Voigt, A.; Stalke, D.; Roesky, H. W. J. Am. Chem. Soc. 1996, 118, 8580.
- ⁶⁰¹Tóth, I.; Guo, I.; Hanson, B. E. J. Mol. Catal. A: Chem. 1997, 116, 217.
- ⁶⁰²Trzeciak, A. M.; Ziótkowski, J. J.; Choukroun, R. J. Organomet. Chem. 1996, 525, 145.
- ⁶⁰³Andrade, J.; García, J. J.; Torrens, H.; del Río, F.; Claver, C.; Ruiz, N. Inorg. Chim. Acta 1997, 255, 389.
- ⁶⁰⁴Unruh, J. D.; Segmuller, B. E.; Chapa, G. R.; Pryor, K. E. U.S. Patent **1996**, US 5,567,856, *Chem. Abstr.* **1996**, *125*, 328099.
- 605 Andersen, J.-A. M.; Currie, A. W. S. Chem. Commun. 1996, 1543.
- ⁶⁰⁶Bianchini, C.; Frediani, P.; Sernau, V. Organometallics 1995, 14, 5458.
- ⁶⁰⁷Fellmann, J. D.; Garrou, P. E.; Withers, H. P.; Seyferth, D.; Traficante, D. D. Organometallics **1983**, 2, 818.
- 608 Trzeciak, A. M.; Ziólkowski, J. J.; Choukroun, R. J. Mol. Cat. A: Chem. 1996, 110, 135.
- ⁶⁰⁹Burke, P. M.; Gelling, O. J.; Oevering, H.; Toth, I. PCT Int. Appl. **1997**, WO 97 08,124, Chem. Abstr. **1997**, 126, 263849.
- ⁶¹⁰Monflier, E.; Tilloy, S.; Fremy, G.; Castanet, Y.; Mortreux, A. Tetrahedron Lett. 1995, 36, 9481.
- ⁶¹¹Stefani, A.; Tatone, D.; Pino, P. Helv. Chim. Acta 1979, 62, 1098.
- ⁶¹²van den Beuken, E. K.; de Lange, W. G. J.; van Leeuwen, P. W. N. M.; Veldman, N.; Spek, A. L.; Feringa, B. L. J. Chem. Soc., Dalton Trans. 1996, 3561.
- ⁶¹³Schumann, H.; Hemling, H.; Ravindar, V.; Badrieh, Y.; Blum, J. J. Organomet. Chem. 1994, 469, 213.
- ⁶¹⁴Van Leeuwen, P. W. N. M.; Roobeek, C. F. J. Organomet. Chem. 1983, 258, 343.
- ⁶¹⁵Eisen, M.; Bernstein, T.; Blum, J.; Schumann, H. J. Mol. Catal. 1987, 43, 199.
- 616Gladiali, S.; Pinna, L.; Arena, C. G.; Rotondo, E.; Faraone, F. J. Mol. Catal. 1991, 66, 183.
- ⁶¹⁷Berkovich, E.; Jacobson, A.; Blum, J.; Schumann, H.; Schäfers, M.; Hemling, H. J. Organomet. Chem. **1992**, 436, 95.
- ⁶¹⁸Eisen, M.; Blum, J.; Schumann, H.; Jurgis, S. J. Mol. Catal. 1985, 31, 317.
- ⁶¹⁹Rosas, N.; Márquez, C.; Hernández, H.; Gómez, R. J. Mol. Catal. 1988, 48, 59.
- ⁶²⁰Ceriotti, A.; Garlaschelli, L.; Longoni, G.; Malatesta, M. C.; Strumolo, D.; Fumagalli, A.; Martinengo, S. J. Mol. Catal. 1984, 24, 309.
- ⁶²¹Hidai, M.; Fuluoka, A.; Koyasu, Y.; Uchida, Y. J. Chem. Soc., Chem. Commun. 1984, 516.
- ⁶²²Hidai, M.; Matsuzaka, H. Polyhedron 1988, 7, 2369.
- ⁶²³Banerjee, T. K.; Saha, C. R. Indian J. Chem., Sect. A 1980, 19A, 898.
- ⁶²⁴Pergola, R. D.; Garlaschelli, L.; Martinengo, S.; Repossi, A. J. Mol. Cat. A: Chem. 1997, 115, 265.
- ⁶²⁵Botteghi, C.; Paganelli, S.; Perosa, A.; Lazzaroni, R.; Uccello-Barretta, G. J. Organomet. Chem. 1993, 447, 153.
- 626 Ishii, Y.; Sato, M.; Matsuzaka, H.; Hidai, M. J. Mol. Catal. 1989, 54, L13.
- ⁶²⁷Van Leeuwen, P. W. N. M.; Roobeek, C. F.; Wife, R. L.; Frijns, J. H. G. J. Chem. Soc., Chem. Commun. **1986**, 31.
- 628 Van Leeuwen, P. W. N. M.; Roobeek, C. F. New J. Chem. 1990, 14, 487.
- ⁶²⁹Van Leeuwen, P. W. N. M.; Roobeek, C. F.; Frijns, J. H. G. Organometallics 1990, 9, 1211.
- ⁶³⁰Van Leeuwen, P. W. N. M.; Roobeek, C. F. Adv. Chem. Ser. 1992, 230, 367.
- ⁶³¹Terreros, P.; Pastor, E.; Fierro, J. L. G. J. Mol. Catal. 1989, 53, 359.
- ⁶³²Bayón, J. C.; Esteban, P.; Real, J.; Claver, C.; Polo, A.; Ruiz, A.; Castillón, S. J. Organomet. Chem. 1991, 403, 393.
- 633Cullen, W. R.; James, B. R.; Strukul, G. Can. J. Chem. 1978, 56, 1965.
- ⁶³⁴Oro, L. A.; Heras, J. V.; Ostoja-Starzewski, K.-H. A.; Pregosin, P. S.; Manrique, A.; Royo, M. Transition Met. Chem. 1981, 6, 1.
- 635 Uson, R.; Oro, L. A.; Pinillos, M. T.; Royo, M.; Pastor, E. J. Mol. Catal. 1982, 14, 375.
- 636 Regen, S. L.; Kodomari, M. J. Chem. Soc., Chem. Commun. 1987, 1428.
- ⁶³⁷Oro, L. A.; Manrique, A.; Royo, M. Transition Met. Chem. 1978, 3, 383.
- ⁶³⁸Consiglio, G. Organometallics 1988, 7, 778.
- ⁶³⁹Wink, D. J.; Kwok, T. J.; Yee, A. Inorg. Chem. 1990, 29, 5006.

- ⁶⁴⁰Settambolo, R.; Pucci, S.; Bertozzi, S.; Lazzaroni, R. J. Organometal. Chem. 1995, 489, C50.
- ⁶⁴¹Neibecker, D.; Réau, R.; Lecolier, S. J. Org. Chem. 1989, 54, 5208.
- ⁶⁴²Bergounhou, C.; Neibecker, D.; Réau, R. J. Chem. Soc., Chem. Commun. 1988, 1370.
- ⁶⁴³Abu-Gnim, C.; Amer, I. J. Mol. Catal. 1993, 85, L275.
- ⁶⁴⁴Collin, J.; Jossart, C.; Balavoine, G. Organometallics 1986, 5, 203.
- ⁶⁴⁵Graziani, R.; Cavinato, G.; Casellato, U.; Toniolo, L. J. Organomet. Chem. 1988, 353, 125.
- ⁶⁴⁶Botteghi, C.; Paganelli, S.; Matteoli, U.; Scrivanti, A.; Ciorcaro, R.; Venanzi, L. M. Helv. Chim. Acta **1990**, 73, 284.
- ⁶⁴⁷Kalck, P.; Serein-Spirau, F. New J. Chem. 1989, 13, 515.
- ⁶⁴⁸Pittman, C. U., Jr.; Lin, C.-C. J. Org. Chem. 1978, 43, 4928.
- ⁶⁴⁹Botteghi, C.; Branca, M.; Marchetti, M.; Saba, A. J. Organomet. Chem. 1978, 161, 197.
- ⁶⁵⁰Abu-Gnim, C.; Amer, I. J. Chem. Soc., Chem. Commun. 1994, 115.
- ⁶⁵¹Lazzaroni, R.; Raffaelli, A.; Settambolo, R.; Bertozzi, S.; Vitulli, G. J. Mol. Catal. 1989, 50, 1.
- ⁶²Drommi, D.; Nicoli, F.; Arena, C. G.; Bruno, G. Inorg. Chim. Acta 1994, 221, 109.
- ⁶⁵³Claver, C.; Ruiz, N.; Lahuerta, P.; Peris, E. Inorg. Chim. Acta 1995, 233, 161.
- ⁶⁵⁴Loeber, C.; Wieser, C.; Matt, D.; De Cian, A.; Fischer, J.; Toupet, L. Bull. Soc. Chim. Fr. 1995, 132, 166.
- ⁶⁵⁵Hong, L.; Ruckenstein, E. J. Catal. 1993, 143, 52.
- ⁶⁵⁶Jongsma, T.; van Aert, H.; Fossen, M.; Challa, G.; van Leeuwen, P. W. N. M. J. Mol. Catal. 1993, 83, 37.
- 657 Jongsma, T.; Fossen, M.; Challa, G.; van Leeuwen, P. W. N. M. J. Mol. Catal. 1993, 83, 17.
- ⁶⁵⁸Bourque, S. C.; Maltais, F.; Xiao, W.-J.; Tardif, O.; Alper, H.; Araya, P.; Manzer, L. E. J. Am. Chem. Soc., **1999**, 121, 3033.
- 659 Breit, B.; Winde, R.; Harms, K. J. Chem. Soc., Perkin Trans. J 1997, 2681.
- ⁶⁶⁰van Rooy, A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J.; Veldman, N.; Spek, A. L. Organometallics **1996**, 15, 835.
- ⁶⁶¹Forniés-Cámer, J.; Aaliti, A.; Ruiz, N.; Masdeu-Bultó, A. M.; Claver, C.; Cardin, C. J. J. Organomet. Chem. 1997, 530, 199.
- ⁶⁶²van Rooy, A.; Burgers, D.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Recl. Trav. Chim. Pays-Bas 1996, 115, 492.
- ⁶⁶³Fernández, E.; Castillón, S. Tetrahedron Lett. 1994, 35, 2361.
- ⁶⁶⁴Breit, B. Chem. Commun. 1996, 2071.
- 665 Laï, R.; Ucciani, E. J. Mol. Catal. 1978, 4, 401.
- 666 Hayashi, T.; Tanaka, M.; Ogata, I. J. Mol. Catal. 1981, 13, 323.
- 667 Chan, A. S. C.; Pai, C.-C.; Yang, T. K.; Chen, S.-M. J. Chem. Soc., Chem. Commun. 1995, 2031.
- ⁶⁶⁸Son, S. U.; Han, J. W.; Chung, Y. K. J. Mol. Catal. A 1998, 135, 35.
- ⁶⁶⁹Kalck, P.; de Oliverira, E. L.; Queau, R.; Peyrille, B.; Molinier, J. J. Organomet. Chem. 1992, 433, C4.
- ⁶⁷⁰Hanson, B. E.; Ding, H.; Kohlpainter, C. W. Catal. Today 1998, 42, 421.
- ⁶⁷¹Bartik, T.; Bunn, B. B.; Bartik, B.; Hanson, B. E. Inorg. Chem. 1994, 33, 164.
- ⁶⁷²Bartik, T.; Bartik, B.; Hanson, B. E. J. Mol. Catal. 1994, 88, 43.
- ⁶⁷³Gao, H.; Angelici, R. J. Organometallics, 1998, 17, 3063.
- ⁶⁷⁴Buhling, A.; Kamer, P. C. J.; Leeuwen, P. W. N. M. J. Mol. Catal. A: Chemical 1995, 98, 69.
- ⁶⁷⁵Walther, B.; Böttcher, H.-C.; Scheer, M.; Fischer, G.; Fenske, D.; Süss-Fink, G. J. Organomet. Chem. 1992, 307.
- ⁶⁷⁶Knifton, J. F. J. Mol. Catal. 1988, 47, 99.
- ⁶⁷⁷Monteil, F.; Queau, R.; Kalck, P. J. Organomet. Chem. 1994, 480, 177.
- ⁶⁷⁸Ding, H.; Hanson, B. E.; Bartik, T.; Bartik, B. Organometallics 1994, 13, 3761.
- ⁶⁷⁹Jenck, J.; Kalck, P.; Pinelli, E.; Siani, M.; Thorez, A. J. Chem. Soc., Chem. Commun. 1988, 1428.
- ⁶⁸⁰Kalck, P.; Siani, M.; Jenck, J.; Peyrille, B.; Peres, Y. J. Mol. Catal. 1991, 67, 19.
- ⁶⁸¹Beletskaya, I. P.; Magomedov, G. K.-I.; Voskoboinikov, A. Z. J. Organomet. Chem. 1990, 385, 289.
- ⁶⁸²Mirbach, M. J.; Topalsavoglu, N.; Phu, T. N.; Mirbach, M. F.; Saus, A. Angew. Chem., Int. Ed. Engl. 1981, 20, 381.

- ⁶⁸³Van Rooy, A.; Orij, E. N.; Kamer, P. C. J.; van den Aardweg, F.; van Leeuwen, P. W. N. M. J. Chem. Soc., Chem. Commun. **1991**, 1096.
- 684 Pruett, R. L.; Smith, J. A. J. Org. Chem. 1969, 34, 327.
- ⁶⁸⁵Omatsu, T.; Onishi, T. Jpn. Kokai Tokkyo Koho **1998**, JP 10 226,662, Chem. Abstr. **1998**, 129, 202682.
- ⁶⁸⁶Verdet, L.; Stille, J. K. Organometallics 1982, 1, 380.
- ⁶⁸⁷Matsumoto, M.; Tamura, M. J. Mol. Catal. 1982, 16, 209.
- 688 Saus, A.; Phu, T. N.; Mirbach, M. J.; Mirbach, M. F. J. Mol. Catal. 1983, 18, 117.
- ⁶⁸⁹Reetz, M. T.; Waldvogel, S. R.; Goddard, R. Tetrahedron Lett. 1997, 38, 5967.
- ⁶⁹⁰Kainz, S.; Koch, D.; Baumann, W.; Leitner, W. Angew. Chem., Int. Ed. Engl. 1997, 36, 1628.
- ⁶⁹¹Ding, H.; Kang, J.; Hanson, B. E.; Kohlpaintner, C. W. J. Mol. Catal. A: Chem 1997, 124, 21.
- 692 Reetz, M. T.; Lohmer, G.; Schwickardi, R. Angew. Chem., Int. Ed. Eng. 1997, 36, 1526-
- ⁶⁹³Palo, D. R.; C., E. Ind. Eng. Chem. Res. 1998, 37, 4203.
- ⁶⁹⁴Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Organometallics, 1995, 14, 3081.
- ⁶⁹⁵Sedo, Y.; Itagaki, H.; Nakajima, I.; Sato, T. Jpn. Kokai Tokkyo Koho 1998, JP 10 130,190, Chem. Abstr. 1998, 129,15906.
- ⁶⁹⁶Seto, Y.; Nakashima, I.; Sato, T. Jpn. Kokai Tokkyo Koho 1997, JP 10 298,122, Chem. Abstr. 1998, 129, 330467.
- 697 Trzeciak, A. M.; Ziólkowski, J. J. J. Organomet. Chem. 1994, 464, 107.
- 698 Himmele, W.; Aquila, W. Chem. Abstr. 1972, 77, 34198.
- ⁶⁹⁹Siegel, H.; Himmele, W. Angew. Chem., Int. Ed. Engl. 1980, 19, 178.
- ⁷⁰⁰Divekar, S. S.; Bhanage, B. M.; Deshpande, R. M.; Gholap, R. V.; Chaudhari, R. V. J. Mol. Catal. **1994**, 91, L1.
- ⁷⁰¹Monflier, E.; Fremy, G.; Castanet, Y.; Mortreux, A. Angew. Chem., Int. Ed. Engl. **1995**, 34, 2269.
- ⁷⁰²dos Santos, E. N.; Pittman, C. U. J.; Toghiani, H. J. Mol. Catal. 1993, 83, 51.
- ⁷⁰³Ciprés, I.; Kalck, P.; Park, D.-C.; Serein-Spirau, F. J. Mol. Catal. 1991, 66, 399.
- ⁷⁰⁴Himmele, W.; Siegel, H. Tetrahedron Lett. 1976, 907.
- ⁷⁰⁵Tang, S. C.; Kim, L. J. Mol. Catal. 1982, 14, 231.
- ⁷⁰⁶Azzaroni, F.; Biscarini, P.; Bordoni, S.; Longoni, G.; Venturini, E. J. Organomet. Chem. 1996, 508, 59.
- ⁷⁰⁷Sirol, S.; Klack, P. New J. Chem. **1997**, 21, 1129.
- ⁷⁰⁸Lazzaroni, R.; Pucci, S.; Bertozzi, S.; Pini, D. J. Organomet. Chem. 1983, 247, C56.
- ⁷⁰⁹Raffaelli, A.; Rosini, C.; Dini, M.; Salvadori, P. Synthesis 1988, 893.
- ⁷¹⁰Himmele, W.; Aquila, W. Ger. Offen. 1972, 2,064,279, Chem. Abstr. 1972, 77, 114126.
- ⁷¹¹Carlock, J. T. Tetrahedron 1984, 40, 185.
- ⁷¹²Matsumoto, M.; Tamura, M. J. Mol. Catal. 1983, 19, 365.
- ⁷¹³Bogdanovic, S.; C-D., F.; H., B.; M., B.; Haber S.; H-J., K. PCT Int. Appl. **1998**, WO 98 04,346, Chem. Abstr. **1998**, 128, 168979.
- ⁷¹⁴Basoli, C.; Botteghi, C.; Cabras, M. A.; Chelucci, G.; Marchetti, M. J. Organomet. Chem. 1995, 488, C20.
- ⁷¹⁵Botteghi, C.; Cazzolato, L.; Marchetti, M.; Paganelli, S. J. Org. Chem. 1995, 60, 6612.
- ⁷¹⁶Nalesnik, T. E.; Orchin, M. J. Organomet. Chem. 1981, 222, C5.
- ⁷¹⁷Briggs, J. R.; Packett, D. L.; Bryant, D. R.; Phillips, A. G.; Schreck, D. J.; Olson, K. D.; Tjaden, E. B.; Guram, A. S.; Eisenschmidt, T. C.; Bragaham, E. S. PCT Int. Appl. 1996, WO 97 40,001, Chem. Abstr. 1998, 128, 14353.
- ⁷¹⁸Ohgomori, Y.; Suzuki, N.; Sumitani, N. J. Mol. Catal. A., 1998, 133, 289.
- ⁷¹⁹Maher, J. M.; Tjaden, E. B.; Briggs, J. R.; Guram, A. S. **1998**, EP 872,483, Chem. Abstr. **1998**, 129, 317915.
- ⁷²⁰Salvadori, P.; Vitulli, G.; Raffaelli, A.; Lazzaroni, R. J. Organomet. Chem. 1983, 258, 351.
- ⁷²¹Falk, B.; Fell, B. J. Mol. Catal. 1983, 18, 127.
- ⁷²²Falk, B.; Fell, B.; Meltzow, W. J. Mol. Catal. 1985, 31, 93.
- ⁷²³Aquila, W.; Himmele, W.; Hoffmann, W. Chem. Abstr. 1972, 77, 19184.

- ⁷²⁴Saito, T.; Matsumura, K.; Miura, T.; Kumobayashi, H.; Yoshida, A. Eur. Pat. Appl. 1997, EP 755,937, Chem. Abstr. 1997, 126, 186205u.
- ⁷²⁵Garlaschelli, L.; Marchionna, M.; Iapalucci, M. C.; Longoni, G. J. Mol. Catal. 1991, 68, 7.
- ⁷²⁶Eilbracht, P.; Acker, M.; Hädrich, I. Chem. Ber. 1988, 121, 519.
- ⁷²⁷Skoda-Földes, R.; Kollár, L.; Heil, B.; Gálik, G.; Tuba, Z.; Arcadi, A. Tetrahedron: Asymmetry 1991, 2, 633.
- ⁷²⁸Chen, J.; Ajjou, A. N.; Chanthateyanonth, R.; Alper, H. Macromolecules 1997, 30, 2897.
- ⁷²⁹Pittman, C. U., Jr.; Honnick, W. D. J. Org. Chem. 1980, 45, 2132.
- ⁷³⁰Bhatt, K. N.; Halligudi, S. B. J. Mol. Catal. 1994, 91, 187.
- ⁷³¹Lin, J. J.; Larkin, J. M.; Knifton, J. F. New J. Chem. 1988, 12, 669.
- ⁷³²Fujita, T.; Maki, K.; Marumo, K. US Patent 1997, US 5,693,832, Chem. Abstr. 1998, 128, 621418.
- ⁷³³Khan, M. M. T.; Halligudi, S. B.; Abdi, S. H. R. J. Mol. Catal. 1988, 45, 215.
- ⁷³⁴Khan, M. M. T.; Halligudi, S. B.; Abdi, S. H. R. J. Mol. Catal. 1988, 48, 7.
- ⁷³⁵Kuraray Co., L., Japan Jpn. Kokai Tokkyo Koho 1997, JP 09,176,076,Chem. Abstr. 1997, 127, 95021.
- ⁷³⁶Botteghi, C.; Consiglio, G.; Ceccarelli, G.; Stefani, A. J. Org. Chem. 1972, 37, 1835.
- ⁷³⁷Omatsu, T.; Onishi, T.; Tokitoh, Y. Eur. Pat. Appl. 1996, EP 747,373, Chem. Abstr. 1997, 126, 74739.
- ⁷³⁸Omatsu, T.; Mayahara, K.; Onishi, T. Jpn. Kokai Tokkyo Koho **1997**, JP 10 273,465, Chem. Abstr., **1998**, 129, 260140.
- ⁷³⁹Trzeciak, A. M.; Wolszczak, E.; Ziólkowski, J. J. New J. Chem. 1996, 20, 365.
- ⁷⁴⁰Himmele, W.; Hoffmann, W.; Pasedach, H.; Aquila, W. Chem. Abstr. 1971, 75, 63130.
- ⁷⁴¹Nahum, L. S. J. Org. Chem. 1968, 33, 3601.
- ⁷⁴²Doi, T.; Komatsu, H.; Yamamoto, K. Tetrahedron Lett. 1996, 37, 6877.
- ⁷⁴³Breit, B. Liebigs Ann./Recueil **1997**, 1997, 1841.
- ⁷⁴⁴Kitsos-Rzychon, B.; Eilbaracht, P. Tetrahedron 1997, 54, 10721.
- ⁷⁴⁵Takahashi, T.; Machida, K.; Nagashima, K.; Ebata, S.; Doi, T. Chem. Lett. 1997, 1291.
- ⁷⁴⁶Arhancet, J. P.; Davis, M. E.; Merola, J. S.; Hanson, B. E. J. Catal. 1990, 121, 327.
- ⁷⁴⁷Arhancet, J. P.; Davis, M. E.; Merola, J. S.; Hanson, B. E. Nature 1989, 339, 454.
- ⁷⁴⁸Wuts, P. G. M.; Ritter, A. R. J. Org. Chem. 1989, 54, 5180.
- ⁷⁴⁹Omatsu, T.; Tokito, Y. Jpn. Kokai Tokkyo Koho **1995**, JP 07,267,890,Chem. Abstr. **1996**, 124, 116665.
- ⁷⁵⁰Omatsu, T.; Tokito, Y. Jpn. Kokai Tokkyo Koho **1995**, JP 07,267,891, Chem. Abstr. **1996**, 124, 116666.
- ⁷⁵¹Trzeciak, A. M.; Ziółkowski, J. J. J. Mol. Catal. 1987, 43, 15.
- ⁷⁵²Lee, B.; Alper, H. J. Mol. Cat. A: Chem. 1996, 111, 17.
- ⁷⁵³Himmele, W.; Aquila, W. Ger. Offen. 1971, 1,945,479, Chem. Abstr. 1971, 74, 111589.
- ⁷⁵⁴Schuster, L.; Paust, J.; Siegel, H. Chem. Abstr. 1977, 86, 71885.
- ⁷⁵⁵Murata, K.; Matsuda, A. Bull. Chem. Soc. Jpn. 1980, 53, 214.
- ⁷⁵⁶Lee, C. W.; Alper, H. J. Org. Chem. 1995, 60, 499.
- ⁷⁵⁷Frémy, G.; Castanet, Y.; Grzybek, R.; Monflier, E.; Mortreux, A.; Trzeciak, A. M.; Ziolkowski, J. J. J. Organomet. Chem. 1995, 505, 11.
- ⁷⁵⁸Yamashita, H.; Roan, B. L.; Sakakura, T.; Tanaka, M. J. Mol. Catal. 1993, 81, 255.
- ⁷⁵⁹Tanaka, M.; Hayashi, T.; Ogata, I. Bull. Chem. Soc. Jpn. 1977, 50, 2351.
- ⁷⁶⁰Prókai-Tátrai, K.; Torös, S.; Heil, B. J. Organomet. Chem. **1987**, 332, 331.
- ⁷⁶¹Pittman, C. U., Jr.; Honnick, W. D.; Yang, J. J. J. Org. Chem. 1980, 45, 684.
- ⁷⁶²Consiglio, G.; Kollár, L.; Kölliker, R. J. Organomet. Chem. 1990, 396, 375.
- ⁷⁶³Moretti, G.; Botteghi, C.; Toniolo, L. J. Mol. Catal. 1987, 39, 177.
- ⁷⁶⁴Fell, B.; Schobben, C.; Papadogianakis, G. J. Mol. Cat. A. Chem. 1995, 101, 179.
- ⁷⁶⁵Breikss, A. I.; Burke, P. M.; Garner, J. M.; Tam, W. 1996, US 5,710,344, Chem. Abstr. 1998, 128, 127605.
- ⁷⁶⁶Meessen, P.; Vogt, D.; Keim, W. J. Organomet. Chem. 1998, 551, 165.

⁷⁶⁷Kollár, L.; Consiglio, G.; Pino, P. Chimia 1986, 40, 428.

- ⁷⁶⁸Omatsu, T.; Kitayama, M.; Onishi, T. Eur. Pat. Appl. 1997, EP 867,427, Chem. Abstr. 1998, 129, 260593.
- ⁷⁶⁹Botteghi, C.; Paganelli, S. J. Organomet. Chem. 1993, 451, C18.
- ⁷⁷⁰Hong, L.; Ruckenstein, E. J. Chem. Soc., Chem. Commun. 1993, 1486.
- ⁷⁷¹Nalesnik, T. E.; Fish, J. G.; Horgan, S. W.; Orchin, M. J. Org. Chem. 1981, 46, 1987.
- ⁷⁷²Orchin, M. Acc. Chem. Res. 1981, 14, 259.
- ⁷⁷³Pryde, E. H. J. Am. Oil Chem. Soc. 1984, 61, 419.
- ⁷⁷⁴Frankel, E. N.; Metlin, S.; Rohwedder, W. K.; Wender, I. J. Am. Oil Chem. Soc. 1969, 46, 133.
- ⁷⁷⁵Frankel, E. N.; Pryde, E. H. J. Am. Oil Chem. Soc. 1977, 54, 873A.
- ⁷⁷⁶Drauz, V. K.; Kleemann, A.; Samson, M. Chem. Ztg. 1984, 108, 391.
- ⁷⁷⁷Cumbo, C. C.; Bhatia, K. K. Chem. Abstr. 1976, 84, 121185.
- ⁷⁷⁸Maeda, I.; Yoshida, R. Bull. Soc. Chem. Jpn. **1968**, 41, 2969.
- ⁷⁷⁹Botteghi, C.; Lardicci, L.; Menicagli, R. J. Org. Chem. 1973, 38, 2361.
- ⁷⁸⁰Bhatia, K. K.; Cumbo, C. C. **1976**, 2,523,838, Chem. Abstr. **1976**, 84, 150189.
- ⁷⁸¹Cumbo, C. C.; Bhatia, K. K. U.S. Pat. 1977, 4,024,197, Chem. Abstr. 1977, 87, 52753.
- ⁷⁸²Ichikawa, S.; Fujita, A.; Sumya, N.; Ookago, J. Jpn. Kokai Tokkyo Koho 1995, JP 07,324,083, Chem. Abstr. 1996, 124, 261057.
- ⁷⁸³Peterson, M. L. U.S. Pat. 1979, US 4,137,240, Chem. Abstr. 1979, 90, 137264.
- ⁷⁸⁴Gao, H.; Ohgomori, Y. J. Mol. Catal. A: Chemical 1995, 96, 25.
- ⁷⁸⁵Leighton, J. L.; O'Neil, D. N. J. Am. Chem. Soc. 1997, 119, 11118.
- ⁷⁸⁶Sarraf, S. T.; Leighton, J. L. Tetrhedron Lett. 1998, 39, 6423.
- ⁷⁸⁷Himmele, W.; Siegel, H.; Aquila, W.; Froehlich, H. Chem. Abstr. 1974, 81, 120222.
- ⁷⁸⁸Kalck, P.; Park, D. C.; Serein, F.; Thorez, A. J. Mol. Catal. 1986, 36, 349.
- ⁷⁸⁹Kaldor, S. W.; Fritz, J. E.; Ward, J. A. Tetrahedron Lett. 1997, 38, 1509.
- ⁷⁹⁰Pardhasaradhi, M.; Snehalatha Nair, C. K.; Srinagesh Kumar, P.; Srinivas, K. Tetrahedron Lett. 1998, 39, 7411.
- ⁷⁹¹Himmele, W.; Siegel, H.; Aquila, W. Chem. Abstr. 1974, 80, 14740.
- ⁷⁹²Botteghi, C.; Caccia, G.; Chelucci, G.; Soccolini, F. J. Org. Chem. 1984, 49, 4290.
- ⁷⁹³Fernández, E.; Ruiz, A.; Claver, C.; Castillón, S. Organometallics 1998, 17, 2857.
- ⁷⁹⁴Botteghi, C. Gazz. Chem. Ital. 1975, 105, 233.
- ⁷⁹⁵Breit, B.; Zahn, S. K. Tetrahedron Lett. 1998, 39, 1901.
- ⁷⁹⁶Botteghi, C.; Del Ponte, G.; Marchetti, M.; Paganelli, S. J. Mol. Catal. 1994, 93, 1.
- ⁷⁹⁷Ono, Y.; Sato, S.; Takesada, M.; Wakamatsu, H. J. Chem. Soc., Chem. Commun. **1970**, 1255.
- ⁷⁹⁸Lassila, K. R. U. S. Pat. **1997**, US 5,760, 275, Chem. Abstr. **1998**, 129, 29368.
- ⁷⁹⁹Ojima, I.; Korda, A.; Shay, W. R. J. Org. Chem. **1991**, 56, 2024.
- 800 Ojima, I.; Korda, A. Tetrahedron Lett. 1989, 30, 6283.
- ⁸⁰¹Becker, Y.; Eisenstadt, A.; Stille, J. K. J. Org. Chem. 1980, 45, 2145.
- ⁸⁰²Ojima, I.; Zhang, Z. J. Org. Chem. 1988, 53, 4422.
- ⁸⁰³Kollár, L.; Consiglio, G.; Pino, P. J. Organomet. Chem. 1990, 386, 389.
- ⁸⁰⁴Settambolo, R.; Caiazzo, A.; Lazzaroni, R. J. Organomet. Chem. 1996, 506, 337.
- ⁸⁰⁵Settambolo, R.; Caiazzo, A.; Lazzaroni, R. Synth. Commun. 1997, 27, 4111.
- 806 Kollár, L.; Heil, B.; Sándor, P. J. Organomet. Chem. 1989, 379, 191.
- ⁸⁰⁷Prókai-Tátrai, K.; Torös, S.; Heil, B. J. Organomet. Chem. 1986, 315, 231.
- ⁸⁰⁸Banach, D.; Evans, G. O., II; McIntyre, D. G.; Predmore, T.; Richmond, M. G.; Supple, J. H.; Stewart, R. P., Jr. J. Mol. Catal. 1985, 31, 15.
- ⁸⁰⁹Bergmann, D. J.; Campi, E. M.; Jackson, W. R.; McCubbin, Q. J.; Patti, A. F. Tetrahedron Lett. 1997, 38, 43158.
- ⁸¹⁰Bergmann, D. J.; Campi, E. M.; Jackson, W. R.; Q., M. J.; F., P. A. Tetrahedron 1997, 53, 17449.
- ⁸¹¹Jegorov, A.; Trnka, T.; Turecek, F.; Hanus, V. Catal. Lett. 1993, 18, 261.
- ⁸¹²Botteghi, C.; Marchetti, M.; Paganelli, S.; Sechi, B. J. Mol. Catal. A: Chem. 1997, 118, 173.
- ⁸¹³Ucciani, E.; Bonfand, A. J. Chem. Soc., Chem. Commun. 1981, 82.
- ⁸¹⁴Garst, M. E.; Lukton, D. J. Org. Chem. 1981, 46, 44338.

- ⁸¹⁵Ojima, I.; Iula, D. M.; Tzamarioudaki, M. Tetrahedron Lett. 1998, 39, 4599.
- ⁸¹⁶Anastasiou, D.; Campi, E. M.; Chaouk, H.; Jackson, W. R.; McCubbin, Q. J. Tetrahedron Lett. 1992, 33, 2211.
- ⁸¹⁷Kollár, L.; Sándor, P. J. Organomet. Chem. 1993, 445, 257.
- ⁸¹⁸Dong, Y.; Busacca, C. A. J. Org. Chem. 1997, 62, 6464.
- ⁸¹⁹Campi, E. M.; Habsuda, J.; Jackson, W. R.; Jonasson, C. A. M.; McCubbin, Q. J. Aust. J. Chem. **1995**, 48, 2023.
- ⁸²⁰Menchi, G.; Paganelli, G.; Matteoli, U.; Scrivanti, A.; Botteghi, C. J. Organomet. Chem. 1993, 450, 229.
- ⁸²¹Anastasiou, D.; Chaouk, H.; Jackson, W. R. Tetrahedron Lett. 1991, 32, 2499.
- 822 Campi, E. M.; Jackson, W. R.; McCubbin, Q. J.; Trnacek, A. E. Aust. J. Chem. 1994, 47, 1061.
- ⁸²³Campi, E. M.; Jackson, W. R.; Trnacek, A. E. Aust. J. Chem. 1997, 50, 1031.
- ⁸²⁴Campi, E. M.; Jackson, W. R.; Trnacek, A. E. Aust. J. Chem. 1997, 50, 807.
- ⁸²⁵Delogu, G.; Faedda, G.; Gladiali, S. J. Organomet. Chem. 1984, 268, 167.
- ⁸²⁶Botteghi, C.; Chelucci, G.; Del Ponte, G.; Marchetti, M.; Paganelli, S. J. Org. Chem. 1994, 59, 7125.
- ⁸²⁷Cuny, G. D.; Buchwald, S. L. Synlett 1997, 519.
- ⁸²⁸Wilson, R. M.; Schnapp, K. A.; Merwin, R. K.; Ranganathan, R.; Moats, D. L.; Conrad, T. T. J. Org. Chem. 1986, 51, 4028.
- ⁸²⁹Busacca, C. A.; Dong, Y. Tetrahedron Lett. 1996, 37, 3947.
- ⁸³⁰Coutinho, K. J.; Dickson, R. S.; Fallon, G. D.; Jackson, W. R.; De Simone, T.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1997, 3193.
- ⁸³¹Breit, B. Angew. Chem., Int. Ed. Engl. 1996, 2835.
- ⁸³²Breit, B. Chem. Commun. 1997, 591.
- ⁸³³Burke, S. D.; Cobb, J. E.; Takeuchi, K. J. Org. Chem. 1990, 55, 2138.
- ⁸³⁴Tatone, D.; Dich, T. C.; Nacco, R.; Botteghi, C. J. Org. Chem. 1975, 40, 2987.
- ⁸³⁵Burke, S. D.; Cobb, J. E.; Takeuchi, K. J. Org. Chem. 1985, 50, 3420.
- ⁸³⁶Nozaki, K.; Li, W.; Horiuchi, T.; Takaya, H. Tetrahedron Lett. 1997, 38, 4611.
- ⁸³⁷Nanno, T.; Sakai, N.; Nozaki, K.; Takaya, H. Tetrahedron: Asymm. 1995, 6, 2583.
- ⁸³⁸Thomson, R. J.; Jackson, W. R.; Haarburger, D.; Klabunovsky, E. I.; Pavlov, V. A. Aust. J. Chem. 1987, 40, 1083.
- ⁸³⁹Bailey, N. A.; Jassal, V. S.; Vefghi, R.; White, C. J. Chem. Soc., Dalton Trans. 1987, 2815.
- ⁸⁴⁰Watanabe, Y.; Mitsudo, T.; Yasunori, Y.; Kikuchi, J.; Takegami, Y. Bull. Chem. Soc. Jpn. 1979, 52, 2735.
- ⁸⁴¹Jackson, W. R.; Lovel, C. G. Aust. J. Chem. 1982, 35, 2069.
- ⁸⁴²Hobbs, C. F.; Knowles, W. S. J. Org. Chem. 1981, 46, 4422.
- ⁸⁴³RajanBabu, T. V.; Ayers, T. A. Tetrahedron Lett. 1994, 35, 4295.
- ⁸⁴⁴Arena, C. G.; Nicoli, F.; Drommi, D.; Bruno, G.; Faraone, F. J. Chem. Soc., Chem. Commun. 1994, 2251.
- ⁸⁴⁵Yamamoto, K.; Momose, S.; Funahashi, M.; Ebata, S.; Ohmura, H.; Komatsu, H.; Miyazawa, M. Chem. Lett. 1994, 189.
- ⁸⁴⁶Stanley, G. G. In *Catalysis of Organic Reactions*; M. G. Scaros and M. L. Prunier, Ed.; Marcel Dekker: New York, 1995; p. 363.
- ⁸⁴⁷Stanley, G. G. Adv. Catal. Processes 1997, 2, 221.
- ⁸⁴⁸Grazia, C.; Nicolo, F.; Drommi, D.; Bruno, G.; Faraone, F. J. Chem. Soc., Chem. Commun. 1994, 2251.
- ⁸⁴⁹Horiuchi, T.; Ohta, T.; Shirakawa, E.; Nozaki, K.; Takaya, H. J. Org. Chem. 1997, 62, 4285.
- ⁸⁵⁰Consiglio, G.; Rama, F. J. Mol. Catal. 1991, 66, 1.
- ⁸⁵¹Gladiali, S.; Faedda, G.; Marchetti, M.; Botteghi, C. J. Organomet. Chem. 1983, 244, 289.
- ⁸⁵²Kawabata, Y.; Suzuki, T. M.; Ogata, I. Chem. Lett. 1978, 361.
- ⁸⁵³Fritschel, S. J.; Ackerman, J. J. H.; Keyser, T.; Stille, J. K. J. Org. Chem. 1979, 44, 3152.
- ⁸⁵⁴Hayashi, T.; Tanaka, M.; Ikeda, Y.; Ogata, I. Bull. Chem. Soc. Jpn. 1979, 52, 2605.

855 Botteghi, C.; Salomon, C. Tetrahedron Lett. 1974, 4285.

- ⁸⁵⁶Botteghi, C.; Branca, M.; Saba, A. J. Organomet. Chem. 1980, 184, C17.
- ⁸⁵⁷Horiuchi, T.; Ohta, T.; Shirakawa, E.; Nozaki, K.; Takaya, H. Tetrahedron 1997, 53, 7795.
- ⁸⁵⁸Kless, A.; Holz, J.; Heller, D.; Kadyrov, R.; Selke, R.; Fischer, C.; Börner, A. Tetrahedron: Asymm. 1996, 7, 33.
- ⁸⁵⁹Kollár, L.; Consiglio, G.; Pino, P. J. Organomet. Chem. 1987, 330, 305.
- ⁸⁶⁰Gladiali, S.; Pinna, L. Tetrahedron. Asymmetry 1990, 1, 693.
- ⁸⁶¹Gladiali, S.; Pinna, L. Tetrahedron: Asymmetry 1991, 2, 623.
- ⁸⁶²Paganelli, S.; Matteoli, U.; Scrivanti, A. J. Organomet. Chem. 1990, 397, 119.
- ⁸⁶³Nozaki, K.; Nanno, T.; Takaya, H. J. Organomet. Chem. **1997**, 527, 103.
- ⁸⁶⁴Horiuchi, T.; Shirakawa, E.; Nozaki, K.; Takaya, H. Organometallics 1997, 16, 2981.
- ⁸⁶⁵Masdeu-Bultó, A. M.; Orejón, A.; Castellanos, A.; Castillón, S.; Claver, C. Tetrahedron: Asymm. 1996, 7, 1829.
- ⁸⁶⁶Kainz, S.; Leitner, W. Catal. Lett. 1998, 55, 223.
- ⁸⁶⁷Gladiali, S.; Dore, A.; Fabbri, D.; Lucchi, O. D.; Manassero, M. Tetrahedron: Asymmetry 1994, 5, 511.
- ⁸⁶⁸Buisman, G. J. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Tetrahedron: Asymmetry 1993, 4, 1625.
- ⁸⁶⁹Brown, J. M.; Cook, S. J.; Kent, A. G. Tetrahedron 1986, 42, 5097.
- ⁸⁷⁰Claver, C.; Castillón, S.; Ruiz, N.; Delogu, G.; Fabbri, D.; Gladiali, S. J. Chem. Soc., Chem. Commun. 1993, 1833.
- ⁸⁷¹Stille, J. K.; Parrinello, G. J. Mol. Catal. 1983, 21, 203.
- ⁸⁷²Consiglio, G.; Nefkens, S. C. A. Tetrahedron: Asymmetry 1990, 1, 417.
- ⁸⁷³Bandini, A. L.; Banditelli, G.; Cesarotti, E.; Minghetti, G.; Bovio, B. Inorg. Chem. 1992, 31, 391.
- ⁸⁷⁴Kollár, L.; Bakos, J.; Tóth, I.; Heil, B. J. Organomet. Chem. 1989, 370, 257.
- ⁸⁷⁵Mutez, S.; Mortreux, A.; Petit, F. Tetrahedron Lett. 1988, 29, 1911.
- ⁸⁷⁶Schurig, V. J. Mol. Catal. 1979, 6, 75.
- ⁸⁷⁷Tamao, K.; Itoi, Y. Jpn. Kokai Tokkyo Koho **1998**, JP 10 251,283, Chem. Abstr. **1998**, 129, 316694.
- ⁸⁷⁸Gladiali, S.; Dore, A.; Fabbri, D. Tetrahedron Asymmetry 1994, 5, 1143.
- ⁸⁷⁹Masdeu, A. M.; Orejón, A.; Ruiz, A.; Castillón, S.; Claver, C. J. Mol. Catal. **1994**, 94, 149.
- ⁸⁸⁰Orejón, A.; Masdeu-Bultó, A. M.; Echarri, R.; Diéguez, M.; Forniés-Cámer, J.; Claver, C.; Cardin, C. J. J. Organomet. Chem. **1998**, 559, 23.
- ⁸⁸¹Castellanos-Páez, A.; Castillón, S.; Claver, C. J. Organomet. Chem. 1997, 539, 1.
- ⁸⁸²Scrivanti, A.; Beghetto, V.; Bastianini, A.; Matteoli, U.; Menchi, G. Organometallics **1996**, 15, 4687.
- ⁸⁸³Buisman, G. J. H.; van der Veen, L. A.; Klootwijk, A.; de Lang, W. G. J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Vogt, D. Organometallics 1997, 16, 2929.
- ⁸⁸⁴MacFarland, D. K.; Landis, C. R. Organometallics 1996, 15, 483.
- ⁸⁸⁵Tóth, I.; Elsevier, C. J.; de Vries, J. G.; Bakos, J.; Smeets, W. J. J.; Spek, A. L. J. Organomet. Chem. **1997**, 540, 15.
- ⁸⁸⁶Kimmich, B. F. M.; Landis, C. R.; Powell, D. R. Organometallics 1996, 15, 4141.
- ⁸⁸⁷Jedlicka, B.; Weissensteiner, W.; Kégl, T.; Kollár, L. J. Organomet. Chem. 1998, 563, 37.
- ⁸⁸⁸Gilbertson, S. R. **1996**,
- ⁸⁸⁹Chelucci, G.; Cabras, M. A.; Botteghi, C.; Basoli, C.; Marchetti, M. Tetrahedron: Asymmetry **1996**, 7, 885.
- ⁸⁹⁰Eckl, R. W.; Priermeier, T.; Herrmann, W. A. J. Organomet. Chem. 1997, 532, 243.
- ⁸⁹¹Gladiali, S.; Fabbri, D.; Kollár, L. J. Organomet. Chem. 1995, 491, 91.
- ⁸⁹²Moasser, B.; Gladfelter, W. L. Inorg. Chim. Acta 1996, 242, 125.
- ⁸⁹³Chelucci, G.; Marchetti, M.; Sechi, B. J. Mol. Cat. A: Chem. 1997, 122, 111.
- ⁸⁹⁴Kollár, L.; Wada, T.; Lautens, M. Tetrahedron: Asymmetry 1992, 3, 1011.
- ⁸⁹⁵Consiglio, G.; Roncetti, L. Chirality 1991, 3, 341.
 ⁸⁹⁶Kollár, L.; Bakos, J.; Heil, B.; Sándor, P.; Szalontai, G. J. Organomet. Chem. 1990, 385, 147.
- ⁸⁹⁷Kollár, L.; Bódi, G. Chirality 1995, 7, 121.
- ⁸⁹⁸Kollár, L.; Farkas, E.; B tiu, J. J. Mol. Cat. A: Chem. 1997, 115, 283.
- ⁸⁹⁹Kollár, L.; Skoda-Földes, R.; Mahó, S.; Tuba, Z. J. Organomet. Chem. 1993, 453, 159.
- ⁹⁰⁰Takahashi, T.; Ebata, S.; Yamada, H. Synlett. **1998**, *4*, 381.
- ⁹⁰¹Hidai, M. Jpn. Kokkai Tokkyo Koho 1998, JP 10 218,828, Chem. Abstr. 1998, 129, 230451.
 ⁹⁰²Bärfacker, L.; Hollmann, C.; Eilbracht, P. Tetrahedron 1998, 54, 4493.

CHAPTER 2

THE VILSMEIER REACTION OF NON-AROMATIC COMPOUNDS

GURNOS JONES

Department of Chemistry, University of Keele, Keele, England.

STEPHEN P. STANFORTH

Department of Chemical and Life Sciences, University of Northumbria at Newcastle, Newcastle-upon-Tyne, England

CONTENTS

				PAGE
INTRODUCTION				. 356
SCOPE AND LIMITATIONS				. 357
Alkenes, Dienes, and Polyenes.				. 357
Alkenes with Heteroatom Substituents				. 362
Enamines and Enamides				. 362
Enol Ethers and Enol Thioethers: Acetals and Ketals as F	Precursors of	Enol I	Ethers	. 367
Alkynes				. 373
Aldehydes and Ketones				. 373
Imines, Hydrazones, Semicarbazones, and Oximes				. 384
Carboxylic Acids, Anhydrides, and Acid Chlorides				. 386
Esters and Lactones				. 389
Amides and Lactams				. 390
Imides				. 394
Nitriles				. 395
Methyl and Methylene Groups Activated by Adjacent Arom	atic and			
Heteroaromatic Rings				. 398
COMPARISON WITH OTHER METHODS				. 402
EXPERIMENTAL CONDITIONS				. 402
Experimental Procedures			•	. 403
4-Methoxy- α -(4-methoxyphenyl)cinnamaldehyde (Formyla	tion of an Al	cohol a	as a	
Precursor of an Alkene)				. 403
α -(n-Propyl)-3,4-methylenedioxycinnamaldehyde (A) or 1-	Dimethylami	no-		
5,6-methylenedioxy-2-(n-propyl)indene (B) (Reaction with	th a Styrene)		•	. 403

Organic Reactions, Vol. 56, Edited by Larry E. Overman et al. ISBN 0-471-39568-4 © 2000 Organic Reactions, Inc. Published by John Wiley & Sons, Inc.

ORGANIC REACTIONS

	Methyl 3-Amino-2-thioformylcrotonate (Thioformylation of an Enamine) .		404
	2,4-Diphenyl-3-formyl-4H-chromene (Formylation of an Unsaturated Ether) .		404
	2-Chlorocyclohex-1-ene-1-carboxaldehyde (Reaction with a Cyclic Ketone)		405
	3-Dimethylamino-2-(4-methylphenyl)prop-2-en-1-dimethyliminium Perchlorate		
	(Diformylation of 4-Methylphenylacetic Acid; Isolation as Dimethyliminium		
	Perchlorate) .		405
	2-Chloro-7-methoxyquinoline-3-carboxaldehyde (Formylation of an Amide with		
	Cyclization to a Quinoline)		405
	2-(6-Purinyl)malonaldehyde (Diformylation of a Reactive Methyl Group)		406
	4-Oxo-4H-1-benzopyran-3-carboxaldehyde (Use of Pyrophosphoryl Chloride)		406
	2-Bromocyclohex-1-ene-1-carboxaldehyde (Use of PBr3 to Produce a 2-Bromoena	.1)	407
Т	ABULAR SURVEY		407
	Table I. Alkenes,		408
	Table II. Dienes, Trienes, and Tetraenes with Carbon Substituents		426
	Table III. Alkenes with Nitrogen Substituents		439
	Table IV. Dienes, Trienes, and Tetraenes with Nitrogen Substituents		456
	Table V. Alkenes with Oxygen Substituents		461
	Table VI. Dienes with Oxygen Substituents		468
	Table VII. Alkenes, Dienes, and Trienes with Sulfur Substituents		476
	Table VIII. Acetals, Ketals, and their Thio Analogs		478
	Table IX. Alkynes	•	491
	Table X. Aldehydes <th.< th=""><td></td><td>493</td></th.<>		493
	Table XI. Ketones .		495
	Table XII. Imines, Hydrazones, Semicarbazones, and Oximes		551
	Table XIII. Carboxylic Acids, Anhydrides, and Acid Chlorides		561
	Table XIV. Esters and Lactones 		575
	Table XV. Amides and Lactams		577
	Table XVI. Imides .		598
	Table XVII. Nitriles . <t< td=""><td></td><td>600</td></t<>		600
	Table XVIIIA. Methyl and Methylene Groups Activated by a Fully Conjugated		
	Monocyclic Ring		613
	Table XVIIIB. Methyl and Methylene Groups Activated by a Fully Conjugated		
	Polycyclic Ring		629
R	EFERENCES		645

INTRODUCTION

In a previous chapter¹ we described the reactions of the Vilsmeier-Haack reagent with conjugated cyclic systems. In this chapter we extend the discussion to reactions between the Vilsmeier-Haack reagent (subsequently referred to as the Vilsmeier reagent for brevity) and any other compounds in which a carboncarbon bond is formed. The discussion thus excludes reactions in which the Vilsmeier reagent acts as a chlorinating agent (for example in the preparation of acid chlorides), or in which it forms carbon-oxygen or carbon-nitrogen bonds, unless these are accompanied by formation of a carbon-carbon bond. For a discussion of the nature of the reagent and of the mechanism of the reaction, the earlier chapter should be consulted. There are also a number of reviews that deal at length with mechanisms of reactions involving the Vilsmeier reagent, notably those by Jutz² and Marson,³ and hence this chapter will concentrate on applications, with brief mention of mechanisms when necessary. Smaller reviews of the Vilsmeier reaction have been published by Balbi^{3a} and Seybold.^{3b} The Vilsmeier reagent is regarded as the cation 1 where X is chlorine or dichlorophosphonyl. Wizinger pointed out⁴ that alkenes could react with the Vilsmeier reagent, but his only examples were styrenes (Eq. 1) where the intermediate carbocation has considerable stability.

Hydrolysis gives the cinnamaldehyde. In principle, any alkene which is not too sterically hindered can undergo this reaction, but the Vilsmeier reagent has low reactivity as an electrophile, and in practice activation is often necessary. The addition depends on the HOMO of the alkene, and anything increasing the HOMO energy will aid reaction, as for example further conjugation (dienes, trienes, etc.) or the presence of an electron-donating substituent. Hence aldehydes and ketones are active in their enol forms, and enol ethers and enamines are good substrates. Indeed, all additions covered by this chapter can be regarded as alkene additions, even those on active methyl groups attached to electron-deficient rings. As with any reaction involving carbocation intermediates, rearrangements are possible; the initial products are sometimes enamines, and this can give rise to polysubstitution. In the section which follows the substrates are grouped into eleven major subsections; references to reviews of particular relevance will be found in the appropriate subsection.

SCOPE AND LIMITATIONS

Alkenes, Dienes, and Polyenes

Simple aliphatic alkenes are normally unreactive unless one end of the double bond has two alkyl substituents, as in methylenecyclohexane $(2)^5$ (Eq. 2), or the

more powerful stabilization of a conjugated aryl group (Eq. 1). The methylene group in compound 2 is still relatively unreactive, and the initial product, by

ORGANIC REACTIONS

elimination of a proton, can form a more reactive substrate **3** so that further substitution takes place. Further reaction reaches an extreme in methylenebornane⁵ and isobutene⁶ which give, respectively, products with three and five aminomethylene substituents by successive shifts and secondary reactions. Camphene (**4**),^{7,5} where double bond migration cannot occur, reacts normally (Eq. 3).

The short lifetime of the intermediate carbocation is indicated by the formation of formyl derivatives from vinylcyclopropane (5)⁸ with no evidence of the opening of the cyclopropane ring that would normally be expected on formation of a carbocationic site α to the cyclopropane ring. The same paper illustrates an example of double bond migration prior to formylation: the major product from Vilsmeier reaction of the vinylcyclopropane 6 is the same as that from isomer 5 (Eq. 4); conversely, increasing the size of the substituent β to the cyclopropane ring can cause formylation of the thermodynamically unfavored isomer, as shown for compound 7 (Eq. 5).⁸

An indication of the relative activity of the aromatic ring vs. the alkene can be obtained from substituted stilbenes. Stilbene itself does not react, but 4-dimethyl-aminostilbene (8) forms aldehyde 9 (Eq. 6);⁹ at higher temperature or when a

large excess of Vilsmeier reagent is used, substitution also occurs on position 3 of the ring, giving compound 10. These results are compared with Hückel calculations which show the reactivity as $3 = 5 > \alpha > 4$.¹⁰

Styrenes react with the Vilsmeier reagent to give cinnamaldehydes, often in excellent yields. In some cases, when the benzene ring is electron rich, the product at higher temperatures may be an indene, such as compound 11,¹¹ formed by cyclization of the intermediate cation (Eq. 7). Polymerization of styrenes (and

dienes or polyenes) under electrophilic attack can be prevented by using a precursor alcohol, such as compound **12**, and relying on the known dehydrating ability of the Vilsmeier reagent to generate the alkene in situ (Eq. 8).¹²

Simple aliphatic dienes do not react satisfactorily to give dienals. A series of allylic alcohols has been treated with the Vilsmeier reagent to give benzene-1,3-dicarboxaldehydes, such as compound **13**, presumably via the diene and disubstitution of the terminal methyl group (Eq. 9).¹³ Successful preparation of

 ω -arylpentadienals 15¹⁴ or the dimethyliminium precursors such as 14¹⁵ has been reported (Eq. 10), starting generally from an allylic alcohol, although there is one report of the use of diarylbutadienes such as 16 to give hydroxyfulvenecarbox-aldehydes (Eq. 11).¹⁶

(Eq. 10)

Formylation of dienes is much more successful when the double bonds are constrained in a ring, as with the bicyclic compound 17 (Eq. 12)⁸ or steroid 18 (Eq. 13).¹⁷ In the latter case, higher reaction temperature results in elimination of

acetic acid to give a 16,17-dehydro derivative. Cyclopentadienes give dimethylaminofulvenes, with further mono- or disubstitution, as illustrated by the preparation of compound **19** (Eq. 14).¹⁸ Two examples of the high yields which can be

obtained with acyclic dienes are those from alcohol **20** (Eq. 15)¹⁹ and the camphane derivatives **21** and **22** (Eq. 16).²⁰ All have terminal methylene groups and are hindered at the other terminus.

A range of acyclic trienes reacts at the end of the conjugated system (Eq. 17).^{16,21} The reaction with alcohol **23** illustrates the problems arising from double bond

migration (only product I is obtained at 100° ; Eq. 18).¹⁹ Single products are obtained in good yields from steroidal trienes of type **24** (Eq. 19).²² Cycloheptatrienes²³ and the iron tricarbonyl derivative **25**²⁴ (Eq. 20) are formylated under normal conditions.

Two examples of tetraenes reacting with Vilsmeier reagents are the acyclic example derived from alcohol **26** (Eq. 21)¹⁵ and the sesquiterpene **27** (Eq. 22).²⁵ In general, there seems to be no rule that predicts the stereochemistry engendered in the double bond which carries the formyl group for acyclic compounds.

Alkenes with Heteroatom Substituents

Enamines and Enamides. The electron-donating nitrogen atom in enamines and to a lesser extent in enamides makes for considerable reactivity toward the Vilsmeier reagent. Simple enamines **28** provide a route to methinium salts (Eq. 23), and hence simple malonaldehydes.²⁶ It is necessary to be wary of the reactivity of the intermediate; the malonaldehyde synthon which is formed from a styrylenamine can be converted into a heterocycle, as in the formation of isoxazoles **29**, pyrazoles **30**, and pyrimidines **31** (Eq. 24).²⁷

(Eq. 24)

Simple enamines of cyclic ketones were among the earliest examples to be studied, and allow the synthesis of cyclic β -ketoaldehydes (Eq. 25).²⁸ An example of

reaction from an iminium salt **32** leads by bond migration to a pentamethinium salt (Eq. 26).²⁹ An enamine can still react even when there is an electron-withdrawing group at the β position (Eq.27).³⁰ This equation shows the production of thioaldehydes.

Cyclization can occur as is seen in the production of quinolines **33** (Eq. 28).³¹ An enamine with a strongly electron-withdrawing substituent can still be converted into a polycarbonyl compound, as shown in the synthesis of compounds **34** and **35** (Eq. 29).^{32,33}

(Eq. 29)

With dienamines which are constrained in a ring as in the steroids 36 simple diformylation occurs (Eq. 30).^{34,35} The benzfulvene 37 and similar fulvenes may react as dienamines, or may, in their extreme resonance forms be considered

aromatic (Eq. 31).³⁶ From the iminium salt **38**, a monoformylated derivative is obtained, which is converted in good yield into pyridine-3-carboxaldehyde by treatment with ammonium chloride (Eq. 32).³⁷ A notable contrast is provided by the methyl derivatives of compound **38**; the first, **39**, gives N_N -dimethylaniline-2,4-dicarboxaldehyde (Eq. 33)³⁸ whereas the second, **40**, reacts with three moles of Vilsmeier reagent to give the polyiminium salt **41** and hence the naphthyridine **42** (Eq. 34).³⁹ In both cases the active methyl group becomes doubly substituted. With increasing numbers of conjugated double bonds in acyclic systems,

the complexity of products increases. By isolating the primary product as the diperchlorate, the masked tetraaldehyde **43** is obtained from 1,4-bis(dimethyl-amino)-1,3-butadiene in quite high yield (Eq. 35).⁴⁰

Enamides are excellent substrates for Vilsmeier reactions, possibly because of their lower reactivity. The acyclic carbamate **44** gives the acrylaldehyde in high yield, but stereochemical integrity is lost (Eq. 36).⁴¹ As in many Vilsmeier reac-

$$\begin{array}{cccc}
n - Bu & Et & DMF, POCl_3 & n - Bu & Et \\
MeO_2C & MeO_2C & CHO \\
44 & Z \text{ and } E (91\%) \end{array} (Eq. 36)$$

tions, a suitably placed neighboring group can react with the initial adduct to give a new ring; 2-pyridones **45** have thus been prepared (Eq. 37).⁴² With an alcohol

46 as starting material, dehydration by the reagent and subsequent Vilsmeier reaction gives an unsaturated aldehyde in excellent yield (Eq. 38).⁴³ A range of 3-formyl-1,4-dihydropyridines, such as compound 47, can be obtained from a cyclic enamide (Eq. 39).^{41,44} As noted for enamines, dienes constrained in a ring provide uncomplicated reactions, as in the formation of the pyridine-3-carboxaldehydes produced from carbamate 48 (Eq. 40).^{44,45}

367

Enol Ethers and Enol Thioethers: Acetals and Ketals as Precursors of Enol Ethers. Reactivity of enol ethers is considerably lower than that of enamines so that product mixtures are less complex. Acetals or ketals react with the Vilsmeier reagent to generate enol ethers which can subsequently undergo formylation, although ambiguity is possible if the preliminary elimination is not regiospecific. The simplest vinyl ethers react to give malonaldehydes, or more usually their dimethylamino derivatives such as 49 (Eq. 41),^{46,47} although the anils 50 can be isolated after treatment with aniline (Eq. 42).⁴⁶ By adding *N*-ethyl-4-methylquinolinium iodide, compound 51 is isolated as its perchlorate (Eq. 43).⁴⁸

ORGANIC REACTIONS

Reaction with derivatives of 1,1-dialkoxyalkenes such as compound **52** gives α -formyl esters in reasonable yield (Eq. 44).⁴⁹ Cyclic vinyl ethers and enol ethers give generally cleaner reactions with good yields. Examples of the former are the dihydropyrans **53** (Eq. 45)⁵⁰ and of the latter the morphine derivative **54**

(Eq. 46)⁵¹ and the steroid **55** (Eq. 47).⁵² With additional unconjugated cyclic unsaturation, as in compound **56**, the products can be benzenedi- or tricarboxalde-hydes although the yields are only fair (Eq. 48).⁵³

369

There are a few alkoxy⁵⁴ or trimethylsilyloxy⁵⁵ butadienes which react with the Vilsmeier reagent to give formylated products in moderate yields (Eqs. 49 and 50). In the latter case the products are isolated as aniline derivatives **57**.

Some simple cyclic diene ethers such as the benzopyran derivative **58** (Eq. 51)⁵⁶ and hexahydronaphthalene **59** (Eq. 52)⁵⁷ react normally; the majority of cyclic dienes used as substrates are steroids. The example given (**60**; Eq. 53)⁵⁸ is one of the few with a recorded yield, but it and other examples in Table VI show that a wide range of substituents can be tolerated.

In a number of cases the intermediate dimethylammonium salt has been reduced in situ by lithium borohydride to give a dimethylaminomethyl derivative (Eq. 53).⁵⁹ There is a report of the isolation of chloroformyl derivatives when an enol acetate was used.⁶⁰

There are a few examples of Vilsmeier reactions on vinyl sulfides, and yields can be good, as with the acyclic example 61 (Eq. 54)⁶¹ or the exocyclic olefin 62

PhS
$$SPh$$
 PhNMeCHO, POCl₃ OHC SPh
PhS $61, Z \text{ or } E$ $PhNMeCHO, POCl_3$ OHC SPh
PhS $(Eq. 54)$

(Eq. 55).⁶² The vinyl thioethers shown in Eq. 55a demonstrate the use of deuterated DMF to produce deuteroaldehydes.^{62a} Reaction of 1,4-dithiine **63** gives a thiophene (Eq. 56).^{62b}

There is now general agreement that Vilsmeier reactions with acetals, ketals, and the corresponding thio derivatives proceed by loss of a molecule of alcohol or thiol to give the reactive unsaturated ether or thioether; with cyclic ketals the alcohol remains tethered, and may be chlorinated. The acetals and ketals are often more readily available than the unsaturated ethers, and yields of products are similar. A wide range of aliphatic and alicyclic acetals and ketals has been formylated; the reaction can tolerate bulky groups at either end of the double bond, as is shown for compound **64** (Eq. 57).^{63, 64} Products are isolated as iminium salts

$$\begin{array}{c|c} EtO\\ EtO\\ \hline \\ Bu-t \\ \hline \\ 64 \end{array} \qquad \begin{array}{c} DMF, COCl_2 \\ EtO\\ \hline \\ EtO\\ \hline \\ CHO \end{array} \qquad \begin{array}{c} t-Bu \\ (82\%) \\ EtO\\ \hline \\ CHO \end{array} \qquad (Eq. 57)$$

if dimethylamine is added during workup (Eq. 58)⁶⁵ or as dianils if an arylamine hydrochloride is added.⁶⁶ Reaction with 2-alkyl-1,3-dioxolanes such as **65** causes ring opening (Eq. 59).⁶⁷ Oxathiolanes react similarly, but 1,3-dithiolanes give products such as **66**, which must be formed by recyclization in a Michael fashion (Eq. 60).⁶⁷

A large number of polymethinium salts of type 67 have been prepared from acetals in 26 to 84% yields (Eq. 61).⁴⁸ Compound 51 can also be prepared in this

way (Eq. 43). Aldehydes with extended unsaturated chains can be obtained in two ways. In the first a polyether **68** is treated with the Vilsmeier reagent (Eq. 62)⁶⁸ and in the second, unsaturated acetals **69** or **70** are used (Eq. 63)⁶⁹ producing aldehydes up to nonatetraenedial.

(Eq. 62)

Interesting secondary products are pyridine, obtained in 55% yield after ammonium acetate is added to the Vilsmeier product from 1,1,3-triethoxybutane,^{37,70} and the cyclopentene **71** (Eq. 64).⁷¹

Many examples use steroids as substrates. The simple 3-ketal **72** shows the generally preferred substitution in position 2 (Eq. 65).⁷² The diene **73** illustrates the successful use of a Vilsmeier reagent in the presence of a second reactive group (a methyl ketone; Eq. 66).⁷³ Steroid **74** with an exocyclic ketal shows that cyclization can occur to a suitable adjacent substituent (Eq. 67).³⁵

(Eq. 67)

Alkynes

There are not many Vilsmeier reactions reported for alkynes. Ethoxyacetylene gives the malonaldehyde derivative **75** (Eq. 68),⁷⁴ and arylalkynes give chlorocinnamaldehydes such as **76** (Eq. 69).⁷⁵ The use of the unusual reagent Ph_3P -Br₂ with

EtO
$$\longrightarrow$$
 $DMF, COCl_2$ Me_2N $\xrightarrow{+}NMe_2Cl^-$ (66%) (Eq. 68)
75
4-MeC₆H₄ \longrightarrow N -methylmorpholine,
POCl_3 4 -MeC₆H₄ $\xrightarrow{-}CHO$ (70%) (Eq. 69)

DMF gives a bromocinnamaldehyde.⁷⁶ From a number of 1-buten-3-ynes such as **77** a range of pentadienal derivatives can be prepared (Eq. 70)⁷⁷ and again Ph_3P -Br₂ gives a 3-bromo derivative; addition of iodine and triphenylphosphine to the reaction mixture gives the 3-iodo derivative. The methoxy group in the product can be replaced using ethyl sulfide, phenyl sulfide, or dimethylamine.

Aldehydes and Ketones

The reactions between carbonyl compounds and Vilsmeier reagents have been thoroughly reviewed.³ It seems generally accepted that the enols are involved, with initial attack occurring on the double bond, and a final displacement of a derivative of the enolic hydroxy group by chloride or other halide (Eq. 71). There are few examples of reactions with aldehydes; one of the simple reactions is shown by butanal (Eq. 72).^{78,79} Conjugated aldehydes can give chloroiminium salts, but these are commonly treated with an amine (dimethylamine⁸⁰ or an aromatic amine⁶⁸) to give more easily handled products such as compound **78**

(Eq. 73). The use of an ether as the precursor to a conjugated aldehyde substrate is shown by the reaction of 2-methoxycyclohexanecarboxaldehyde (**79**; Eq. 74).⁸¹

With acyclic and alicyclic ketones regiochemical complications can arise from alternative modes of enolization. With acyclic compounds there is the additional complication of geometrical isomers. Direction of enolization is usually in accord with thermodynamic stability; thus butan-2-one gives (*E*)-**80** and (*Z*)-**81** forms of 3-chloro-2-methyl-2-butenal (Eq. 75).⁸² Chain branching at the α or β carbon

(Eq. 75)

can inhibit attack on the more stable enol such that ketones **82** (Eq. 76)^{68,83} and **83** (Eq. 77)⁸⁴ are formylated on the methyl group rather than on the methine or methylene groups, while **84**, with a tertiary α -carbon, shows a high E:Z ratio (Eq. 78).⁸⁵ The first of these three examples involves diformylation.

The expected direction of enolization is shown by β -ketoesters, such as methyl acetoacetate (Eq. 79)⁸² and the benzyl ketone **85** (Eq. 80).⁸² Z: *E* ratios have been recorded in detail by several groups.^{82,86,87}

Vilsmeier reactions on 1,3-diketones, 1,4-diketones, and conjugated enones give cyclic products as shown by the reactions of compounds **86** (Eq. 81),⁸⁸ **87** (Eq. 82),⁸⁹ and **88** (Eq. 83).³⁸ The reaction of the Vilsmeier reagent with α , β -epoxy ketones also gives benzaldehydes or 1,3-phthalaldehydes (Eq. 83a);

cyclohexenone epoxides also give simple benzaldeydes.^{89a} The reaction of γ -ketoesters such as compound **89** is normal (Eq. 84).⁹⁰

 $n-Bu \xrightarrow{O}_{R=Bu} CO_2Et \xrightarrow{DMF, POCl_3} n-Bu \xrightarrow{Cl}_{CO_2Et} CO_2Et (53\%) (Eq. 84)$

A large number of reactions have been reported between Vilsmeier reagents and acetophenones, their vinylogs, and polycyclic and heterocyclic analogs. Acetophenone itself illustrates the production of β -halocinnamaldehydes **90**,⁹¹⁻⁹³ although higher yields can be obtained if the dimethylamino intermediates are isolated and subsequently hydrolyzed (Eq. 85).⁷¹ There is normal reaction with ω -azidoacetophenones such as **91** and the Vilsmeier reagent at room temperature giving chloroenals, but at higher temperatures loss of nitrogen occurs, producing oxazoles (Eq. 85a).^{93a,93b} In the latter reaction, the ω ,4-bromoacetophenone can be used in a one-pot reaction where sodium azide in DMF is added first, then the phosphoryl chloride. A route to quinolines has been found from 2-azidoacetophe-

nones and homologs. In the example shown azidoketone **91a** reacts to give a mixture of a 2-dimethylamino-4-chloroquinoline and the 3-formyl derivative (Eq. 85b).^{93c,93d} Other 2-amino groups are obtained from other Vilsmeier amides. An α -methyl substituent (as in propiophenones) has little inhibitory effect on yield.⁹⁴

In view of the ability of the Vilsmeier reagent to attack aromatic rings, especially those activated by electron-donating groups, it is instructive to note the formation in high yield of the cinnamaldehydes **92** when *meta*-, or *para*-methoxyacetophenones (Eq. 86),⁹⁵ or even *para*-dimethylaminoacetophenone are used.³³ Similarly, an acetylpyrazole,⁹⁶ 3-acetylindole (**93**, Eq. 87),⁹⁷ and acetylferrocene (**94**, Eq. 88)⁹⁸ react to give chloroenals without nuclear substitution.

By contrast, pyrroles are sufficiently reactive that formylation normally proceeds both on nucleus and side chain. An unusual result is shown in the reaction of compound **95** (Eq. 89).⁹⁹

With a suitably reactive ortho substituent, cyclization can follow Vilsmeier reaction to give chromones. From 2-hydroxyacetophenones **96** the products are 3-formylchromones (Eq. 90), $^{100-102}$ and from the propiophenone **97** a 3-methylchromone is formed (Eq. 91). 103 The reaction is equally successful with

the three isomeric *o*-hydroxyacetylnaphthalenes.^{100, 104} A variant uses the BF₃ complex of *o*-hydroxyacetophenones.¹⁰⁵ There are numerous examples of this modification in the patent literature.¹⁰⁶⁻¹¹² In the example shown (Eq. 92), the

(Eq. 92)

normal product **98** is accompanied by a second, **99**, derived from an alternative cyclization.¹⁰⁵ An adjacent fluorine atom has also been reported to be involved in the cyclization during Vilsmeier reaction of pentafluoroacetophenone (**100**); here the intermediate malonaldehyde derivative was isolated and subsequently cyclized (Eq. 93).^{112a} A synthesis of quinolines makes use of an adjacent amine or

acetylamine to give a 4-chloroquinoline-3-carboxaldehyde (Eq. 93a).^{112b,112c} Acetylation of the starting material improves the yields, but some 4-chloroquinoline is also formed, and this becomes the major product when the ketone side chain is extended.

It is possible to formylate α -diazoketones, albeit in usually poor yield, by keeping the reaction mixture between -10° and room temperature; one of the better yields is shown in Eq. 93b.^{112d}

Alicyclic ketones, even cyclobutanone,⁷¹ react well with Vilsmeier reagents without the ambiguity of stereochemistry observed in acyclic examples. Thus cyclohexanone **101** gives a chloroenal¹¹³ as does *N*-benzoylpiperidone (**102**; Eq. 94).¹¹⁴ The products may be converted into the synthetically useful ketal

103.¹¹⁵ In a number of cases^{116,117} the crude chloroenal has been converted into a pyrimidine **104** (Eq. 95).¹¹⁶ With a higher ratio of Vilsmeier reagent to substrate, reaction occurs twice via intermediates of type **105** to give compounds of type **106** (Eq. 96).¹¹⁸ Earlier workers⁷¹ had reported a dimethylamino derivative, but the later authors could not repeat this.

The introduction of substituents into the ring of cyclic ketones produces problems of regiochemistry. A number of methylcycloalkanones have been used in Vilsmeier reactions, and there is a tendency for the double bonds to be formed preferentially away from the substituent if it is in the β position to the carbonyl group, as shown for a number of cycloalkanones (Eq. 97).¹¹⁹ The effect is negligible if the substituent is further away. Introduction of additional unsaturation

gives varying results in steroid systems such as the enone 107 (Eq. 98),¹²⁰ whereas from simple cyclohexenones benzene derivatives such as compound 108 are formed (Eq. 99).¹²¹ Cyclohexane-1,3-dione has been reported to give benzene derivative 109,¹²² as well as non-benzenoid derivatives 110¹²² and 111^{123,124} (Eq. 100).

Cyclic ketones with a fused aromatic ring usually form chloroenals without side reaction, as in the case of compounds $112^{125,126}$ and heteroatom-substituted analogs such as compounds 113 (Eq. 101);^{127,128} 2-indanone gives the iminium compound 114 (Eq. 102).³⁶

A number of examples involving cyclic ketones with fused heteroaromatic rings are reported. Among the few that react normally are the heterocycles **115** $(Eq. 103)^{129}$ and the pyridine derivative **116** (Eq. 104),¹³⁰ where monofunctional-

(Eq. 104)

ization is reported. When the fused heterocycle is π -excessive, formylation can occur on the heterocyclic ring as in the dihydroindole **117** (Eq. 105).¹³¹ While the pyrazole **118** gives a normal product (Eq. 106), the closely related compound **119** gives an abnormal reaction;¹³² other compounds are reported to react normally.¹³³

Anthrone 120 (R = H) reacts like an enone giving an anthracene derivative,¹³⁴ but 1,8-dihydroxyanthrone 120 (R = OH), with the unusual combination of

benzoyl chloride and DMF, gives a mixture of methylene derivatives (Eq. 107).^{134a} Other Vilsmeier reagents using phosphoryl chloride give only aminomethylene derivatives.^{134b} The reaction of indane-1,3-dione with the vinylogous aza-Vilsmeier reagent gives compound **121** (Eq. 108).¹³⁵

Imines, Hydrazones, Semicarbazones, and Oximes

In most of the examples of this type the C = N bond provides activation for an adjacent methyl or methylene group; three products can be obtained from the cyclic imine **122**. The least substituted product **123** is only obtained at low temperatures; at higher temperatures products **124** and **125** are obtained, the proportion of the latter increasing as the POCl₃ proportion is raised (Eq. 109).^{136,137} From

hydrazones and semicarbazones cyclization of the first-formed product gives a pyrazole. Thus the phenylhydrazone 126,¹³⁸ or semicarbazone 127,¹³⁹ give pyrazoles 128 and 129, in the latter case with loss of the amide group (Eq. 110), often

in excellent yields, presumably via a malonaldehyde derivative. *N*,*N*-Disubstituted hydrazones without methylene groups adjacent to the imine bond are mainly formylated to give compounds 130^{140} but have also been reported to give isomeric ketones 131 such as (Eq. 111).^{141,140}

Cyclization to give pyridazinones is observed when the hydrazones 132 and 133 are treated with the Vilsmeier reagent (Eq. 112).¹⁴² Methyl substituents on a

number of dihydropyrazoles are converted into malonaldehyde derivatives 134 (Eq. 113).^{143,144} Chlorination at C5 also occurs if the oxo derivative is used. The

unusual cyclization of hydrazone **135** gives the quaternary salt **136** in high yield (Eq. 114).¹³⁸ There is an example where an oxime has survived the normal Beckman rearrangement, or, in the case of aldoximes, dehydration to give cyanides. From the steroid **136a** the unsaturated aldehyde **136b** is obtained at 0°, with more normal formation of a 2-chloropyridine via the Beckman rearrangement product at 65° (Eq. 114a).^{144a}

(Eq. 114a)

Carboxylic Acids, Anhydrides, and Acid Chlorides

The reaction of derivatives of acetic acid (or its salts) with the Vilsmeier reagent is widely used to prepare malonaldehydes or their derivatives. The simple haloacetic acids **137** (or their salts) give fluoro-¹⁴⁵ or chloromalonaldehyde derivatives^{74,146} or chloro- or bromotriformylmethane derivatives (Eq. 115).^{74,146}

This reaction has been exploited using arylacetic acids; yields are excellent when the products are isolated as dimethylamino derivatives as shown for compound **138** (Eq. 116).¹⁴⁷ Malonic acids such as **139** are thus converted into derivatives of malonaldehyde in moderate yields (Eq. 117)¹⁴⁸. Cyanoacetyl chloride gives deriva-

tives of acrylonitrile¹⁴⁵ or acrylic acid.⁷⁴ Reactions with *N*-substituted glycines produce derivatives of aminomalonaldehyde, as shown for compound **140** (Eq. 118).¹⁴⁹

The only notable side reactions are the formation of substituted indoles, benzofurans, and benzthiophenes from diacids (Eq. 118a),^{149a} the isoquinoline **141**

(Eq. 118a)

from 2-carboxyphenylacetic acid (Eq. 119)¹⁵⁰ (some of the benzpyranedione **142** may also be formed), the indenone **143** from 1,2-bis(carboxymethyl)benzene (Eq. 120),³⁶ and the lactones **144** and **145** from 2-hydroxyphenylacetic acid (Eq. 121).¹⁵¹

Acyclic dienoic acids and cyclohexa-2,5-dienecarboxylic acids give a variety of benzaldehydes. An example of the former class is acid **146** (Eq. 122)¹⁵² and of the latter, acid **147** (Eq.123).¹⁵³ A few examples exist of the preparation of malon-

389

aldehyde derivatives from acid chlorides;¹⁵⁴ it should be noted that the Vilsmeier reagent is often used as a mild reagent to prepare acid chlorides at low temperatures. The anhydride **148** reacts in a manner similar to lactams to give compound **149** in low yield (Eq. 124).¹⁵⁵

Esters and Lactones

Almost all examples of Vilsmeier reactions on esters use activated acetic esters bearing a second electron-withdrawing group, as in diethyl malonate **150** and ethyl cyanoacetate **151** (Eq. 125),¹⁵⁶ or an electron-deficient heterocyclic ring as

in quinoline-2-acetate **152**,¹⁵⁷ but the electron-rich 2-indolylacetate **153** has also been reported¹⁵⁸ to react in good yield (Eq. 125). One lactone has been converted into a dichloro enal **154** (Eq. 126).¹⁵⁹ The most remarkable reaction gives a formyl derivative **155** from ethyl diazoacetate, although some decomposition occurs (Eq. 127).¹⁶⁰

ORGANIC REACTIONS

Amides and Lactams

Lactams that may be regarded as tautomers of hydroxyheteroaromatics were included in the chapter in volume 49.¹ Simple amides react with the Vilsmeier reagent like other carbonyl compounds to form mono- or diformyl derivatives, but such simple cases are rare; an example is provided by the synthesis of compound **156** (Eq. 128).⁷⁴ An amide with an α hydrogen can function both as Vilsmeier re-

$$Me_2N \xrightarrow{O} \underbrace{1. DMF, COCl_2}_{2. NaClO_4} \xrightarrow{Cl} ClO_4^- (Eq. 128)$$

agent precursor and as substrate with phosgene to give compounds such as 157 (Eq. 129).¹⁶¹ The modified Vilsmeier conditions, using formamide and phospho-

ryl chloride, can be used to form pyrimidine **158** from dimethylacetamide, although yields of such reactions are usually lower than that shown (Eq. 130).¹⁶²

From acetanilides or *N*-acetylaminothiophenes a range of fused pyridines can be formed. Variants shown are compounds **159** (Eq. 131),¹⁶³ **160** and **161** (Eq. 132),^{164,165} **162** (Eq. 133),^{166,167} and **163** (Eq. 134).¹⁶⁸ Compounds of type **162** (Eq. 133) can also be obtained from an acetophenone oxime via an initial Beckmann rearrangement.¹⁶⁹ 2,5-Dimethyl-3-acetamidothiophene gives thieno[3,4-*b*]pyridines.^{164,165} Acetamidopyrazoles have also been used in reactions analogous to that shown in (Eq. 132).¹⁷⁰

(Eq. 134)

When the alkyl chain is extended¹⁷¹ or is an arylacetyl group,¹⁷² a 3-alkyl- or 3-aryl-2-chloroquinoline **164** is the product (Eq. 135). With 3-substituted

anilides there is the possibility for formation of two isomeric products, but in the cases recorded the products are always 7-substituted quinolines. The oximes of 4-arylbut-3-en-2-ones, which are vinylogs of acetophenones, give 2-chloro-5-arylpyridine-3-carboxaldehydes under Vilsmeier conditions.^{144a} Only one example of the use of phosphoryl bromide with acetanilides is recorded, giving the

391

2,5-dibromoquinoline **165** in poor yield (Eq. 136).¹⁷¹ Cyclohexenes such as compound **166** give 2-pyridones in poor to moderate yields (Eq. 137).¹⁶⁸ Cycliza-

tion has been reported to occur to an adjacent carboxy group to produce an azepinedione,¹⁷³ where the aromatic ring can be benzene, pyridine, or thiophene, but a later report of this reaction shows that the products are benzo[d]oxazinones such as **167** (Eq. 138).^{173a,174}

(Eq. 138)

N-Acylureas or thioureas such as **167a** react with elimination of the urea and formation of malonaldehyde derivatives, isolated as perchlorates (Eq. 138a).^{174a} *N*-Acetylurea does not react.

(Eq. 138a)

As mentioned earlier, lactams that are potentially aromatic by tautomerism are dealt with elsewhere.¹ Simple lactams normally react to give compounds such

as 168^{175} although a quantitative yield of chloroaldehyde 169 is reported in one case (Eq. 139).¹⁷⁶ A few examples of reactions with azasteroids are reported, as exemplified by compound 170 (Eq. 140),¹⁷⁷ although yields are generally poor.

Monocyclic lactams containing other heteroatoms, such as compound 171, give chloroenals (Eq. 141).^{178,179} There are numerous examples of Vilsmeier reactions with lactams fused to benzene rings; representative products are $172^{178,179}$ and 173^{180} (Eq. 142), 174 (Eq. 143),¹⁸¹ 175 (Eq. 144),¹⁸² and 176 (Eq. 145).¹⁸¹

(Eq. 143)

(Eq. 144)

(Eq. 145)

Imides

Vilsmeier reagents react with N-substituted succinimides to give pyrroles 177 (Eq. 146).¹⁸³ Glutarimides can give monoformyl derivatives 178 or diformyl

derivatives **179** (Eq. 147).^{184,185} In the latter case, yields are higher when the dimethylaminomethyl compounds **180** are isolated.¹⁸⁶ The α, α -disubstituted glutarimide **181** gives a pyridine when treated with the Vilsmeier reagent at high temperature (Eq.148).¹⁸⁷ Monoformylation of an isoquinolinedione proceeds in high yield with DMF to give compound **182**; an anilinomethylene derivative **183** is obtained when the Vilsmeier reagent from formanilide is used (Eq. 149).¹⁸⁸

Nitriles

Acetonitrile gives the cyanomalonaldehyde derivative **184** (Eq. 150).¹⁴⁵ Malononitrile provides an example of a Vilsmeier reaction at both nitrogen and

carbon to give the iminium salt **185** (Eq. 151), which with ammonia gives pyrimidine **186** (Eq. 152);¹⁸⁹ aniline or *N*-methylaniline convert the intermediate into the 4-phenylamino- and the 4-[phenyl(methyl)amino]pyrimidines. Cyanoacetyl

395

chloride¹⁴⁵ and ethyl cyanoacetate¹⁹⁰ form the corresponding dimethylaminomethylene derivatives **187** and **188** by condensation with the activated methylene group (Eq. 153). Cyanoacetamides, depending on the pattern of substitution, can react with phosphoryl chloride to give pyridines such as **189** (Eq. 154) or **190** (Eq. 155)¹⁹¹ or 4,6-dichloropyrimidines **191**¹⁹² alone (Eq. 156) or, as with

192, mixed with 6-chloro-4-pyrimidinones 193 (Eq. 157).¹⁹³ In these reactions, the cyanoacetamides act as precursors and substrates for the Vilsmeier reaction.

Aryl- and heteroarylacetonitriles give compounds of type **194** (Eq. 158).¹⁵⁷ When the aryl group is π -excessive (azulene or heteroaryl) and vinamidinium

salts 195 are used, cyclization to the aromatic ring producing benzannulated compounds such as 196 (Eq. 159) can occur.¹⁹⁴ A similar reaction with *N*-unsubstituted pyrrole 197 gives an indolizine 198, whereas the azavinamidinium sa't 199 gives an azaindolizine (Eq. 160).¹⁹⁴

(Eq. 160)

2-Cyanomethylthiopyrimidines react with the Vilsmeier reagent giving thiazolopyrimidinopyrimidines **200** and **201** if the substituent at position 4 in the pyrimidine is methyl or trifluoromethyl; if the substituent is hydrogen a bicyclic product is formed (Eq. 161).¹⁹⁵

In α,β -unsaturated nitriles, reaction can occur at a vinylogous methylene group, as in example **202**, to give a 2-chloro-3-cyanopyridine (Eq. 162).¹⁹⁶ Yields are poor, but are much better with the vinylogous cyanoacetates such as compound **203**.¹⁹⁷ Aminopyrimidines **204** can be obtained from arylcyanocarbonyl compounds, using formamide and phosphoryl chloride (Eq. 163).¹⁹⁸ Yields, when quoted, are very poor.

Methyl and Methylene Groups Activated by Adjacent Aromatic and Heteroaromatic Rings

In most of the examples in this section, the aromatic ring is π -deficient or positively charged. The products are mono- or diformylated, and are often isolated as the aminomethylene derivatives. A typical reaction is that of 4-methylpyridazine (**205**; Eq. 164).¹⁹⁹ Other neutral monocyclic activating rings

are isoxazole,²⁰⁰ 1,3,5-triazine,^{201,202} pyrimidine (2-²⁰³ or 4-substituted²⁰⁴), pyrazine,²⁰⁵ pyridine (4-substituted),²⁰⁶ and benzene.²⁰⁷ Bicyclic neutral activating rings are 1,2-dithiolo-[1,5-*b*]dithiole,²⁰⁸ imidazo[4,5-*e*]pyrimidines,²⁰⁹ benzimidazoles,²¹⁰ benzoxazole,²¹¹ benzthiazole,²¹² benzisothiazoles,²¹² benzselenazoles,²¹¹ pyrrolo[2,3-*a*]pyrimidine,²⁰⁹ indole,²¹³ azulene,²¹⁴ benzpyrimidinone,²¹⁵ benzpyrazinethione,²¹⁶ quinoline (2- and 4-substituted),²¹¹ benzpyranone,²¹⁷ and naphthalene.²¹⁸ Charged monocyclic rings which activate methyl groups are exemplified by the pyrylium salt **206** (Eq. 165).²¹⁹ Other activating rings are dithiolium,²²⁰

pyrimidinium,²²¹ oxazinium,²²² and cycloheptatrienylium.²²³ Bicyclic charged ring systems used are thiazolo[3,2-*a*]pyrimidinium,²²⁴ benzoxazolium,²¹¹ benzthiazolium,²²⁵ benzselenazolium,²¹¹ benzpyrimidinium,²¹⁵ quinolinium (2- and 4-substituted),²¹¹ benzpyrylium,²¹⁹ benzthiopyrylium,²¹⁹ and a naphthopyrylium.²¹⁹

Some comment on benzene activation may be useful. Several activating groups are required, which may be on the benzene nucleus as shown in example 207 (Eq. 166),²⁰⁷ or on the side chain, as in compound 208 (Eq. 167).²¹⁸ Naphthalenes

behave similarly, as shown by compound **209** (Eq. 168).²¹⁸ Azulenes require no additional activation for substituents on the seven-membered ring, as shown by the reaction of compound **210** (Eq. 169);²²⁶ formylation also occurs on the electronrich five-membered ring.

It is surprising to see reaction in a methylindole **211**; the product is also unusual (Eq. 170).²¹³ Many products are described for the reaction between

N-methyl-1,2,3,4-tetrahydrocarbazole and the Vilsmeier reagent, with formylation on saturated and aromatic rings, dehydrogenation, and even introduction of a carbonyl group.²²⁷

Secondary products are obtained when adjacent active sites or groups are present, such as the tricyclic compound **212**, which is formed when the Vilsmeier reagent from dimethylthioformamide reacts with a dithiolium salt (Eq. 171).²²⁰ Reaction at the pyrimidinyl methyl group in compound **213** results in formation of a pyrrolopyrimidinecarboxaldehyde (Eq. 172),²²⁸ and a similar reaction is seen with pyrazine **214** (Eq. 173).²²⁹ Vilsmeier reaction of tetrahydroisoquinoline **215** gives a mixture of three products, two arising from cyclization (Eq. 174).²³⁰ Cy-

(Eq. 174)

clization to a more remote amino group is observed in the reaction of salt **216** (Eq. 175).²²⁴ It should be noted that since the primary products are malonaldehyde derivatives, the addition of a suitable reagent can be used to generate a new

five-membered aromatic ring as shown by the synthesis of compounds **217** to **219** (Eq. 176).²⁰⁹ Cyclization to an adjacent carboxy group gives a pyridinone **220** (Eq. 177)²³¹

401

COMPARISON WITH OTHER METHODS

Because of the wide variation in reactions between the Vilsmeier reagent and these different non-aromatic substrates, ranging from the production of β -chloroenals via malonaldehydes to quinolines and chromans, the usual comparison with other methods cannot be made. Each separate class of product would require its own set of comparisons, and this would tax the patience of authors, editors, and readers.

EXPERIMENTAL CONDITIONS

By far the most common experimental procedure for the Vilsmeier reaction involves DMF, usually in excess and acting as the solvent, and $POCl_3$ (Note; the formation of the reagent is exothermic and cooling in ice water is necessary). The coreagent is added and the reaction often proceeds at room temperature. In the Tables, the temperature of reaction is specified only when the products vary with variation in the temperature. Solvents (usually chlorinated hydrocarbons) are occasionally used. It is possible to prepare the solid Vilsmeier salt and use this in the reaction, but there is usually no obvious advantage. Acid chlorides other than POCl₃ have been used, notably oxalyl chloride and carbonyl chloride (phosgene); the latter seems to offer little advantage, particularly in view of its toxicity. It would be interesting to see more use of pyrophosphoryl chloride (an example is given in Procedures), which has been claimed to offer enhanced activity in the formylation of aromatic systems.¹ Bromide can be introduced into Vilsmeier products by using POBr₃ although PBr₃ is said to be as efficient.⁹² The most commonly used amide after DMF is N-methylformanilide, which was used in Vilsmeier's first experiments. The most common workup procedure is with an aqueous base (sodium acetate, sodium or potassium hydroxide), but in many cases better yields are obtained if the intermediate iminium salt is isolated (perchlorate or hexafluorophosphate) and hydrolyzed in a subsequent step.

EXPERIMENTAL PROCEDURES

4-Methoxy- α -(4-methoxyphenyl)cinnamaldehyde (Formylation of an Alcohol as a Precursor of an Alkene).²³² To a solution of deoxydihydroanisoin (2.6 g, 10.1 mmol) in DMF (20 mL) was added POCl₃ (9 g, 58.63 mmol) dropwise with stirring and the reaction mixture was heated at 100° for 14 hours. The iminium complex was decomposed with sodium acetate (27 g) in water (70 mL) and the product was extracted with ether (3 × 30 mL). Removal of the solvent afforded the aldehyde (2.65 g, 98%), which was recrystallized from benzenehexane: mp 120°; IR (Nujol) 2850, 1675 cm⁻¹; UV(EtOH) 233 (log ε = 4.25), 323 (4.27) nm; ¹H NMR (CDCl₃) δ 3.73 (s, 3 H), 3.80 (s, 3 H), 6.63–7.23 (m, 9 H), and 9.63 (s, 1 H). Anal. Calcd. for C₁₇H₁₆O₃: C, 76.0; H, 6.0. Found: C, 75.9; H, 6.2.

 α -(*n*-Propyl)-3,4-methylenedioxycinnamaldehyde(A) or 1-Dimethylamino-5,6-methylenedioxy-2-(*n*-propyl)indene (B) (Reaction with a Styrene).¹¹ a) To a mixture of POCl₃ (3.85 g, 0.025 mol) and DMF (7.3 g, 0.061 mol) was added at 20°, α -(*n*-propyl)-3,4-methylenedioxystyrene (4.75 g, 0.03 mol), and the mixture was heated to 55°, maintained at this temperature during the exothermic reaction, and then heated at 75–80° for 1 hour. The reaction mixture was poured into aqueous sodium acetate and heated at 70–75° for 1 hour. The cooled mixture was extracted with ether, the organic extracts were dried, and then concentrated. The cinnamaldehyde (A) was obtained (2.6 g, 48%): bp 115–117° (0.1 mm); Anal. Calcd. for C₁₃H₁₄O₃: C, 71.55; H, 6.42. Found: C, 71.24; H, 6.35.

b) To a cooled (ice bath), round bottom flask containing DMF (45 g, 0.61 mol) was added dropwise with stirring POCl₃ (18.4 g, 0.12 mol). The mixture was stirred in an ice bath for 15–20 minutes and the α -(*n*-propyl)-3,4-methylene-dioxystyrene (19.1 g, 0.10 mol) was added dropwise. After the addition, the reaction mixture was immediately heated on a steam bath for 3 hours. The resulting black mixture was poured into 400 mL of ice-H₂O and unreacted olefin was removed by extraction with two 175 mL portions of Et₂O. The aqueous layer was made basic by the addition of 10% aqueous NaOH solution and extracted with three 150 mL portions of Et₂O. The combined ether extracts were dried over anhydrous MgSO₄ and concentrated under reduced pressure. The aminoindene (B)

was distilled, bp $125-127.5^{\circ}$ (0.25 mm), converted into the stable HCl salt, then recrystallized (19.98 g, 71%): mp (from EtOH-Et₂O) 177-178°; ¹H NMR (CDCl₃) δ 4.82 (1 H), 6.01 (2 H), 6.61 (1 H), 6.77 (1 H), 7.50 (1 H) among others.

Methyl 3-Amino-2-thioformylcrotonate (Thioformylation of an Enamine).³⁰ A solution of POCl₃ (0.5 mL, 5.5 mmol) in DMF (1.5 mL) was added dropwise during 10 minutes to a stirred solution of methyl 3-aminocrotonate (0.575 g, 5 mmol) in THF (10 mL) with the temperature maintained at 0°. The resulting mixture was stirred for a further 1 hour at room temperature and then for 4 hours at 30°; it was then allowed to stand overnight in a refrigerator. Addition of ether in portions at 0° precipitated a highly hygroscopic yellowish white to yellow solid from which ether was removed by decantation. The remaining solid was washed several times with ether until the ether layer became clear. The solid was then dissolved in dichloromethane (250 mL) in a separating funnel (1 L) and to the solution was added aqueous sodium hydrogen sulfide (2 M; 25 mL). The mixture was shaken vigorously, separated, and the water layer extracted with further dichloromethane (30 mL). The combined organic extracts were washed six times with water, dried (MgSO₄), and concentrated to give orange crystals. The thioformyl derivative was crystallized from benzene-hexane, mp 110.5-111° (0.66g, 83%): IR(KBr) 3300, 1643, 1442, 1361, 1279, 1248, and 1030 cm⁻¹; UV (EtOH) 216 (log $\varepsilon = 4.17$), 256 (4.09), and 354.5 nm (4.32); ¹H NMR (CDCl₃) δ 13.94 and 6.83 (1 H, each br s, NH₂), 10.97 (1 H, s, CHS), 3.79 (3 H, s, OCH₃), and 2.58 (3 H, s, CH₃). Anal. Calcd. for C₆H₉NO₂S: C, 45.3; H, 5.7; N, 8.8; S, 20.1. Found: C, 45.5; H, 5.9; N, 8.9; S, 20.0.

2,4-Diphenyl-3-formyl-4*H*-chromene (Formylation of an Unsaturated Ether).²³³ To a solution of 2,4-diphenyl-4*H*-chromene (2.84 g, 0.01 mol) in 10 mL of anhydrous DMF was added POCl₃ (1.1 mL). The mixture was kept on a boiling water bath for 3 hours and then added to 150 mL of a 5% aqueous solution of sodium hydroxide. The separated reaction product was extracted with ether. The organic layer was dried with sodium sulfate, and the solvent was distilled on a water bath. The residue was crystallized from propyl alcohol (10 mL) to give the title product, mp 144–145° (2.93 g, 94%). IR (Nujol) 1665, 1620, 1600, 1590, 1220 cm⁻¹. ¹H NMR (CDCl₃) δ 5.10 (s, 1 H), 6.82–7.73 (m, 14 H), 9.48 (s, 1 H). Anal. Calcd. for C₂₂H₁₆O₂: C, 84.59; H, 5.16. Found: C, 84.78; H, 5.26.

2-Chlorocyclohex-1-ene-1-carboxaldehyde (Formylation of a Cyclic Ketone). A detailed procedure for this reaction is described in *Organic Syntheses.*¹¹³ The yield of the chlorocyclohexenecarboxaldehyde was 53-74%.

3-Dimethylamino-2-(4-methylphenyl)prop-2-en-1-dimethyliminium Perchlorate (Diformylation of 4-Methylphenylacetic Acid; Isolation as Dimethyliminium Perchlorate).²³⁴ POCl₃ (27 mL, 0.3 mol) was dropped slowly into DMF (36.5 g, 0.5 mol) with cooling and stirring. The solution was cooled to -10° and 4-methylphenylacetic acid (15 g, 0.1 mol) was added in small portions. The syrupy slurry was stirred for 1 hour at room temperature, and then 2 hours at 60° and finally 5 hours at 80°. After removing excess solvent under vacuum on a water bath, the dark brown syrup was decomposed cautiously with cooling in a beaker with water (20 mL), cooled to -10° , and 30 mL of 70% perchloric acid and 400 mL of ether were added. After cooling in solid CO₂ the precipitate was quickly collected by filtration and washed with ether. The iminium perchlorate was crystallized from methanol/ether, mp 164° (28.8 g, 91%).

2-Chloro-7-methoxyquinoline-3-carboxaldehyde (Formylation of an Amide with Cyclization to a Quinoline).¹⁶⁶ DMF (9.13 g, 9.6 mL, 0.125 mol) was cooled to 0° in a flask fitted with a drying tube and POCl₃ (53.7 g, 32.2 mL, 0.35 mol) was added dropwise with stirring. To this solution was added 3-methoxyacetanilide (8.25 g, 0.05 mol) and after 5 minutes the solution was heated under reflux for 4 hours. The reaction mixture was poured into ice-water (300 mL) and stirred for 30 minutes at $0-10^{\circ}$. The aldehyde was filtered off, washed well with water, and recrystallized from ethyl acetate, mp 197–198° (9.85 g, 89%). Anal. Calcd. for $C_{11}H_8CINO_2$: C, 59.6; H, 3.6; N, 6.3. Found: C, 59.9; H, 3.6; N, 6.2.

2-(6-Purinyl)malonaldehyde (Diformylation of a Reactive Methyl **Group**).²⁰⁹ DMF (30 mL) was cooled to 0° and POCl₃ (50 mL) was slowly added with stirring. 6-Methylpurine (13.4 g, 0.1 mol) was added slowly at 5° with stirring to this previously prepared reagent. The mixture was maintained at 5° for 15 minutes with continuous stirring, then at 25° (1 hour). The mixture was then heated slowly to 120° (oil bath) and kept at this temperature for 1 hour. The thick syrup that resulted was cooled to 60° and poured onto crushed ice with vigorous stirring. Solid sodium carbonate was added to adjust the pH to 3 and the volume brought up to 500 mL by addition of cold water. This solution (50 mL, equivalent to 0.01 mol of 6-methylpurine) was cooled to 5° and sodium hydroxide (2 g) was added slowly with stirring. Charcoal was added, the solution was filtered, and the filtrate was acidified with glacial acetic acid to pH 5. The crystalline precipitate was collected, washed with water, and dried, to yield the title product as thin needles (1.55 g, 82%), mp 330° (dec.). The malonaldehyde could be further purified by repeated treatment with alkali followed by glacial acetic acid precipitation, mp 330° (dec.). IR 1667 cm⁻¹; ¹H NMR (CF₃CO₂H) δ 9.7 (s, 2 H), 9.48 (s, 1 H), 9.25 (s, 1 H). Anal. Calcd. for C₈H₆N₄O₂: C, 50.5; H, 3.2; N, 29.5. Found: C, 50.4; H, 3.3; N, 29.3.

4-Oxo-4H-1-benzopyran-3-carboxaldehyde (Use of Pyrophosphoryl Chloride).¹⁰¹ To a stirred solution of *o*-hydroxyacetophenone (25 g, 0.184 mol) in 80 mL of DMF, 80 mL of $(Cl_2PO)_2O$ was added dropwise at -20° during about 10 minutes. The mixture was stirred at room temperature for 13 hours, and decomposed by ice-water. The resulting precipitate was collected by filtration, washed with H₂O and then EtOH, and recrystallized from acetone to afford the benzopyrancarboxaldehyde (19.6 g, 61%) as colorless crystals, mp 152–153° (lit. 152°). From the ethanol washings a small amount (430 mg) of *trans-*1-(2-hydroxybenzoyl)-2-(4-oxo-4H-1-benzopyran-3-yl)ethylene, mp 177–179° (from acetone) was isolated.

2-Bromocyclohex-1-ene-1-carboxaldehyde (Use of PBr₃ to Produce a 2-Bromoenal).⁹² A solution of DMF (10.97 g, 0.15 mol) in anhydrous CHCl₃ (40 mL) was cooled with ice and stirred while distilled PBr₃ (34.0 g, 0.125 mol) was added dropwise. After a while the white crystalline adduct precipitated. Then a solution of cyclohexanone (4.2 g, 0.05 mol) in CHCl₃ (20 mL) was added to the reaction mixture with stirring. The mixture was stirred at 20° (12 hours), then the CHCl₃ was evaporated in vacuo and the oily residue was decomposed with ice (ca 100 g) taking care that the mixture did not warm up excessively. The cold mixture was then neutralized with solid sodium hydrogen carbonate and left standing to reach room temperature. The product was then extracted with ether, the extract washed well with water and with a saturated solution of K_2CO_3 to a negative reaction with FeCl₃, and dried over anhydrous MgSO₄. Ether was removed by distillation through a Widmer column (30 cm in length), and the product was isolated by vacuum distillation b.p. $51^{\circ}/0.7$ mm, $(4.73 \text{ g}, 54^{\circ})$: IR (CCl₄) 3343, 2740, 1683, 1620, 1386 cm⁻¹; UV (cyclohexane) 262 nm (log $\varepsilon = 4.023$); UV (EtOH) 260 nm (log $\varepsilon = 3.961$).

TABULAR SURVEY

We have attempted to cover thoroughly the literature until the end of 1998. Only carbon-carbon bond formation reactions are included in the Tables. Where a reaction has been reported by different workers, the yield in the Table corresponds to that reported in the first reference.

Some oximes appear in Table XV when they clearly undergo Beckmann rearrangement prior to formylation; non-rearranged oximes appear in Table XII.

Table XVIII has been subdivided according to the number of component rings, with monocyclic systems first (XVIIIA), and polycyclic systems second (XVIIIB). Within each ring classification, rings are arranged by size, and within each group by the increasing number of component carbon atoms.

Compounds with multiple functionality, for example ketoesters, are listed in only one Table. Such compounds are assigned to the Table which best appears to reflect their chemistry, but readers are advised to search both Tables in such cases.

List of Abbreviations

DMF	N,N-dimethylformamide
MFA	N-methylformanilide
DMA	N, N-dimethylacetamide
TMS	trimethylsilyl
Ts	tosyl; <i>p</i> -toluenesulfonyl

407

Substrate	Conditions	Product(s) and Yield(s) (%) Refs.
		+
<u> </u>	1. DMF, (COCI) ₂ 2. NaClO ₄	$Me_{2}N + NMe_{2} + 3CIO_{4}^{-} (73) = 235, 6$ $Me_{2}N + NMe_{2} + NMe_{2} + NMe_{2} + NMe_{3} + NMe_{$
	1. DMF, COCl ₂ 2. NaClO ₄ 3. NH4Cl	CHO (49) 235
I		
$ \searrow \overset{\mathbf{R}^1}{\underset{\mathbf{R}^2}{\mathbf{R}^2}} $	DMF, POCl3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Ph H Ph H (92)
r-Bu	<i>N</i> -Formylmorpholine, POCl ₃	^{<i>t</i>-Bu} (80) 236
\bigcirc	<i>N</i> -formylmorpholine, POCl ₃	CHO (35) 236
	1. DMF, (COCI) ₂ 2. NaClO ₄	$Me_2N \qquad \qquad$
À	1. DMF, POCl ₃ 2. HClO ₄	$CIO_4^- (85) 236$
$ \begin{array}{c} \downarrow \\ \downarrow \\ R^1 \end{array} R^2 $	DMF, POCl ₃	OHC CHO OHC CHO $+$ CHO $+$ CHO $+$ CHO $+$ CHO $+$ CHO R^1 237
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Substrate	Conditions	Product(s) and Yiel	d(s) (%)	Refs.
8				
t-Bu	<i>N</i> -formylmorpholine, POCl ₃	<i>t-Bu</i> CHO (57) + 1	-Bu (28)	236
t-Bu	<i>N</i> -formylmorpholine, POCl ₃	r-Bu CHO (57) +	-Bu (28)	236
Ph	DMF, POCl ₃	Ph CHO (38-42)		238, 11
	DMF, BCl ₃	" (70)		239
	DMF, $Ph_3P \cdot Br_2$	" (42)		76
	MFA, POCl ₃	" (48)		240,
		~		241
	1. DMF, POCl ₃	Ph (42)		242
	2. NH ₂ OH			
-C9				
\frown		$\mathbf{R}^1 \mathbf{R}^2$		
	DMF, POCl ₃	н н	(15)	8
\mathbf{K}		R ¹ R ² Me H	()	
- crea		Н Ме	(85)	
R		P Ar	R	
) 	MFA, POCl ₃	Ph Ph	Cl (39)	243
Ar		Ar CHO 4-BrC ₆ H ₄	Cl (41)	243
		4-MeOC ₆ H ₄	Cl (67)	243
		$4-\text{MeC}_6\text{H}_4$	H (46)	238
		$4-MeOC_6H_4$	Н (70)	241,
Ar OH	1. DMF, POCl ₃ 2. H ₂ NOH	Ar CN Ar Ph $4-MeC_6H_4$	(30) (45)	242
		4-MeOC ₆ H ₄	(46)	
	1. DMF. POCla	$Ar = \sqrt{NMe_2 ClO_4} = \frac{Ar}{Ar}$		15
	2. HClO ₄	Ph	(52)	
		4-N 4-N	$IeOC_6H_4$ (76) $IeSC_6H_4$ (60)	
	DMF, POCl ₃	Ar CHO Ar $4-MeOC_6H_4$	(93)	14
C ₉		1		245
	DMF, POCl ₃	рь (74)		245, 238
/		111 -		2.70
	1. DMF, $COCl_2$	" (75)		235,6
	2. NaCiO4 3. Hydrolysis	(10)		
	5. 1190101900	1		
	1. DMF, $COCl_2$			6
	2. CIO ₄ ⁻	$n \sim NMe_2 CO_4$		
		+		
		+		775 K
	1. DMF, $(COCl)_2$	Me ₂ N	D ₄ - (98)	235,6
	2. NaClO ₄	 Ph		
	1. DMF, COCl ₂	Ph		,
	2. NaClO ₄	CHO ()		6,235
	211.404			

	TABLE I. ALKEN	VES (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	[Me ₂ N=CHCl]*Cl ⁻ (1 eq), rt	СНО (20)	36
	[Mc ₂ N=CHCl] ⁺ Cl [−] (3 cq), 90°	CHO CHO CHO (55) OH	36
	1. [Me₂N=CHCl]⁺Cl⁻ (5 eq), 80° 2. HClO₄	$ \begin{array}{c} \stackrel{+}{\underset{NMe_{2}}{\overset{+}{\underset{NMe_{2}}{\underset{NMe_{2}}{\overset{+}{\underset{NMe_{2}}{\underset{NME_{2}}{\underset{NMe_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{NHE_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{\underset{NME_{2}}{NHE_{2}}{\underset{NME_{2}}{NH$	36
R^3 R^2 R^1	DMF, POCl ₃	$\begin{array}{c} R^{4} & R^{2} & R^{3} & R^{4} \\ \hline R^{3} & & \\ R^{2} & & \\ R^{1} & & \\ R^{1} & & \\ R^{1} & & \\ \end{array} \begin{array}{c} R^{1} & R^{2} & R^{3} & R^{4} \\ \hline H & H & H & H & (41) \\ H & H & Me & H & (58) \\ H & H & benzo & (82) \\ benzo & H & H & (62) \end{array}$	246
	DMF, POCl3	CHO (30)	8
	DMF, POCl ₃	(70)	8
	1. DMF, POCl ₃ 2. NaClO ₄	(69) CHX X = CH=NMe ₂ ⁺ ClO ₄ ⁻ I	5,7
	DMF, POCl ₃	I (56-74) X = CHO	20, 5, 7
	DMF, POCI ₃	(41)	7
	1. DMF, POCl ₃ (1 eq) 2. NaOH, H ₂ O	(1) + (40) + (37) $(H0) + (H0)$) 247
	1. DMF, POCl ₃ (10 eq) 2. NaOH, H ₂ O	(35) (35) CHO	247
Me ₂ N-	MFA, POCl ₃	Me ₂ N-CHO ()	241

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$C_{10}-C_{12}$	pl			
0.			O CHO O K	
	R^2	DMF, POCl ₃	$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
0- 🌾			I I I NMe_2	
			$\mathbf{R}^1 \mathbf{R}^2 \text{Temp} \mathbf{I} \mathbf{II}$	
			H Me — (27) (0)	238
			H Me 100° (23) (47)	11
			H Me $75-80^{\circ}$ (48) (0) Me H $-$ (70) (0)	11 245
			$\begin{array}{cccc} H & (10) & (0) \\ H & n-\Pr & 100^{\circ} & (0) & (71) \end{array}$	11
			H <i>n</i> -Pr 75-80° (48) (0)	11
		MFA, POCl ₃	Me H — (46) (0)	245
2			$\mathbf{A}_{\mathbf{r}}$ $\mathbf{p}_{\mathbf{l}}^{1}$ $\mathbf{p}_{\mathbf{r}}^{2}$	
Ar R ²		DMF, POCl ₃	$\begin{array}{ccccccc} R^{1} & \underline{Ar} & \underline{K} & \underline{K} \\ \hline & 4-\text{MeC}_{6}\text{H}_{4} & \text{Me H} & (62) \end{array}$	238
\mathbf{R}^{i}			Ar $4-MeOC_6H_4$ H Me (54-68)	238
			\dot{R}^2 4-MeOC ₆ H ₄ Me H (62)	245
211			$4-i-\Pr C_6H_4 \qquad Me H \qquad (34)$	238
~ \/			\searrow	
\sim		DMF. POCl ₃	(81)	8
			CHO	
\sim		DMF. POCl2		8
r				
		1 DMF (COCI)	$^+$ NMe ₂ ClO ₄ ⁻ (45)	E
\square		2. NaClO ₄		5
-			NMe ₂	
			+ NMea	
		1. DMF, POCl ₃	$2ClO_4^{-} (30)$	5
		2. NaClO ₄		
			ЙМе ₂ +	
			СНО	
		1. DMF, POCl ₃		5
		2. NH ₄ Cl	└ŢŢŢ [™] N	
			MeNHC, CHO	
		DMF, POCl ₃	CHO (18)	123
	011			125
~	Он 		A A CHO	
		_		248
MeO	\checkmark		MeO	
C ₁₁ -C ₁₄				
			R	
MeO、	R		$MeO_{\sim} \qquad \qquad$	
T T	<u>_~</u>	DMF, POCl ₃ , 100°	\mathbf{K} \mathbf{K} \mathbf{K} \mathbf{Et} (62)	11
$\sim \prime \prime$				

	TABLE I. ALKENES	(Continued)	et(a) and Viold(a) (0()	Pofe
Substrate	Conditions	Produ	((s) and Tield(s) (%)	Keis.
\mathbf{R}^3		\mathbb{R}^3 \mathcal{L} \mathcal{L}	$\frac{\mathbf{R}^{1} \mathbf{R}^{2} \mathbf{R}^{3} \mathbf{R}^{4}}{\mathbf{H} \mathbf{OCH} \mathbf{OM}_{2} (22)}$	240
	MFA, POCl ₃		$-OCH_2O- OCH_2O- (52)$	249 249
R ²		R ²	OMe $-OCH_2O-$ OMe (55)	249
$\dot{\mathbf{R}}^{1}$		R^1	H OMe OMe OMe (58)	249,
				250
			OMe OMe $-OCH_2O$ (37)	249
			$-OCH_2O-$ Ome Ome (49) OFt OFt $-OCH_2O-$ (32)	249
C ₁₂ OMe		OMe		2.0
0,		0 CHO		
	DMF, POCl ₃ , <50°		(56)	249
0				
ОМе		OMe		
		Оме		
	DMF, POCl ₃ , 100°		(29)	249
		0		
		OMe NMe ₂		
OMe		OMe		
MeO		MeOCHO)	
Ĩ Ĵ ź	DMF, POCl ₃ , <50°	I J F	(46)	249
0		0		
<u>_0</u>		_¢		
OMe		OMe		
MeO		MeO	(10)	240
	DMF, POCI ₃ , 100°		(10)	249
		$0 \downarrow 0 NMe_2$		
- 0				
UMe MeO			Baccont Bl B2	
Meo	Reagent, POCl ₃	Meo	$(-) \frac{\text{Reagent}}{\text{PbN(Me)CDO}} D H$	250
MeO			$PhN(CD_3)CHO H D$	
011			· -·	
		OHC.		
	DMF, POCl ₃		(64)	251
Meo		MeO V V		
OMe OH		OMa		
		COR		
		(92	2-95)	252,
				253
ÓMe		OMe		
		I, K = H		
OMe I				
	DME POCL			2530
	DMF, POCI3	$\mathbf{I}, \ \mathbf{K} = \mathbf{H} $ (90)		20 3 8
 OMe	Ph2NCOMe, POCl3, CHCl3, boil	I , $R = Me$ (10)		254
C ₁₂ -C ₁₃				
OH				
$\mathbf{R} \downarrow \downarrow$			R	
	DMF, POCl ₃		<u>н</u> (68)	255
			OMe (60)	256
1				

Substrate	Conditions		Product(s) and	Vield(s) (%)		Refs.
4-C ₂₂						
Ar ¹		Ar ¹ CHO	Arl	Ar ²		
\succ	MFA, $POCl_3$	<u>}</u>	4-ClC ₆ H ₄	4-ClC ₆ H ₄	(—)	241
Ar ²		Ar ²	4-HOC ₆ H₄	4-HOC ₆ H₄	()	241
			Ph	Ph	(50-60)	263,
						240,
						241
	DMF, POCl ₃		Ph	Ph	(70)	11
	DMF, $Ph_3P \cdot Br_2$		Ph	Ph	(61)	76
	MFA, POCl ₃		Ph	4-MeOC ₆ H ₄	(90)	263
			Ph	4-Me ₂ NC ₆ H ₄	(—)	240,
						263
			4-MeOC ₆ H ₄	4-MeOC ₆ H ₄	(90)	263
			$4-Me_2NC_6H_4$	$4-Me_2NC_6H_4$	()	240,
						263,
						241
			4-Et ₂ NC ₆ H ₄	4-Et ₂ NC ₆ H ₄	(—)	241
			СНО			
			ş			
$\langle \downarrow \rangle$	DMF, POCl ₃	$\langle \top \rangle$	()			7
β -cedrene		\checkmark				
,		/				
/		1				
\succ		\succ				
\bigwedge		$\left\{ \right\}$				
	DMF, POCl ₃	~C	HO (31)			7
ī		,		1		
			сно	$\sim c$	НО	
	DMF, POCl ₃		+ [<i>m</i> -	264
\times		\times		イント	NMe ₂	
		I. I		с п С	НО	
		-		-		
		DOCI	(80) (0)			
I		excess POCI ₃	(0) (76)			
$\square \ll$	DMF, POCl ₃	$\Box \ll$	(34)			7
caryophyllene		\rightarrow				
1/		4				
		СНО				
		СНО 				
\bigwedge		\land				
	DMF. POCI2	\rightarrow \downarrow /	(90)			8
/ <u>X</u>		X; X	(20)			~
\checkmark		\checkmark				
		ĊНС)			
		$ \land \downarrow $				
		<pre> []] </pre>				
	DMF, POCl ₃		CIIO	57)		265
		L				
\sim \sim		~ ~				
				C	CHO	
Me ₂ N		Me ₂ N	СНО	Me ₂ N.	СНО	
	DMF, POCl ₂ , additional conditions	Ĺ		r Ĺ		9, 10
₩ ₩ [™] Ar	(See table)	\sim	Ar 🔨		/ V "Ar	-, 10
	()	I		J	II	
		Ar	Add. Co	nd. I	п	
		Ph	_	(33) (0)	
		Ph	pyridine.	60° (40) (3	35)	
		4.0-8	C.L. DOCL ((25) (n)	

-		TABLE I. ALKENES	(Continued)	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	MeO. OH OHOME	DMF, POCl ₃	MeO CHO (98) OMe	232
C ₁₇		1. DMF, POCl ₃ 2. NaClO ₄	*NMe ₂ ClO ₄ -	6, 235
C ₁₈	CO ₂ Me	MFA, POCl ₃	$\bigcup_{i=1}^{r^{c}CHO} CO_{2}Me $ (86)	267
	Me ₂ N	MFA, POCl ₃	Me ₂ N CHO (-) NMe ₂	268
	MeO OH	DMF, POCl ₃	Ph CHO MeO (81)	259
C ₁₉	MeO CO ₂ Me	DMF, POCI ₃	OHC CO ₂ Me (94)	269
	Ar $Ar = 4 - FC_6H_4$	Ph(Me)NCH=CHCHO, POCl ₃	Ar CHO (97)	270
C ₂₀ C ₂₂	MeO ₂ C MeO OMe	_	MeO ₂ C, CHO (80) MeO OMe	271
	Aco	DMF, POCl ₃ , 24 h	Ac0 OHC, (40)	272
		DMF, POCl ₃ , 15 d	AcO (50)	272

	Sub-t-t-	TABLE II. DIENES, TRIENES AND TETR.	AENES WITH CARBON SUBSTITUENTS	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
Cs Cl-	CI		NMe ₂	
(1. DMF. POCl ₃ 2. NaOH (aq)	СІ СНО (33) СІ СІ СНО СНО	277
/	OH	DMF, POCl ₃	$(26) + (6)$ $(CHO OHC CHO CHO)$ $(NMe_2 NMe_2$	278
Í		DMF, COCl ₂	OHC CHO or (60) OHC CHO I	18
		DMF, POCl ₃	I (40)	279
		DMF, POCl ₃ , rt	I (90)	280
		DMF, POCl ₃ , -10°	NMe ₂ ()	280
		1. DMF, COCl ₂ 2. NaClO ₄	$Me_2N \xrightarrow{+} CHO (82)$	18
		1. DMF, POCl ₃ 2. HClO ₄	Me_{2} $Me_{2}N$ Me_{2	281, 282
C.		1. DMF, POCl ₃ 2. HClO4 3. NaOH (aq)	I (90)	282
	OH	DMF, POCl ₃	CHO OHC CHO (6) (24) + CHO (6)	283
	ОН	DMF, POCl ₃	OHC CHO (25)	13
1	OH	DMF, POCl ₃	" (24)	13
/	OH OH	DMF, POCl ₃	" (28)	13
11	OH OH	DMF, POCl ₃	" (22)	13
/		DMF, POCl ₃	" (35)	13

TABLE II. DIENES, TRIENES AND TETRAENES WITH CARBON SUBSTITUENTS

Substrate	I ABLE II. DIENES, TRIENES AND TET Conditions	Product(s) and Yield(s) (%)	Refs.
Jubsuak		CH ₂ Cl	
c ₇	_	сно (25) + (25) онс сно	21
Луон	DMF, POCl ₃	OHC (12) CHO	278
ОН	DMF, POCl ₃	ОНССНО (20-22)	278
OH CH	DMF, POCl ₃	онс (14-18)	278
OH OH	DMF, POCl ₃	онс Сно (20-22)	278
ОН	DMF, POCl ₃	OHC CHO (15-18)	278
OH	DMF, POCl ₃	" (15-18)	278
OH	DMF, POCl ₃	онс (14-18)	278
$C_7 - C_9$ $R^3 - C_9$ $R^2 - R^1$	-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21
C ₇ -C ₁₃	DMF, POCl ₃	CHO (18-30) + (1-2.5)	23
CH ₂ CN	DMF, POCl ₃	NC CHO (16)	23
CH2OAc	DMF, POCl ₃	$OHC \xrightarrow{CH_2OH} OHC \xrightarrow{CH_2OAc} (1.5) + (1)$	23
i-Pr	DMF, POCl ₃	СНО (4)	23
Ph	DMF, POCl ₃	(40)	23

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
Fe(CO)3	DMF, POCl ₃	CHO (70)	24
c ₈	DMF, POCl ₃	(20)	7
C ₈ -C ₁₀ (CH ₂) _b OH	DMF, POCl ₃	$(CH_{2})_{n} + (CH_{2})_{n} + (CH_$	L 3) 284 5) 2)
c,	_	CHO CHO (67) + ()	21
C ₉ -C ₁₀			
HOR	1. Al ₂ O ₃ , 300° 2. DMF, POCl ₃	R R R R R R R R R R R R R R R R R R R	285
R	DMF, POCl ₃	$R = \frac{R}{H} (75)$ $Me (85)$	8
	_	СНО сно (30) + (20) онс сно	21
C10-C11 Ar ₅ _OH	1. DMF, POCl₃ 2. HClO₄	$\begin{array}{c} \text{Ar} \\ \text{Me}_2 \text{ ClO}_4^- \end{array} \qquad $	15
Ph,	1. DMF, POCl ₃ 2. HClO ₄	$\frac{R}{Ph} \frac{R}{Me_2 ClO_4} \frac{R}{Me (91)}$	16
Ar OH	DMF, POCl ₃	$Ar \xrightarrow{R} Ar \xrightarrow{R} \frac{Ar}{4 \cdot ClC_{0}H_{4}} H (68)$ $4 \cdot MeOC_{6}H_{4} H (79)$ $4 \cdot ClC_{6}H_{4} Me (92)$ $4 \cdot MeC_{6}H_{4} Me (94)$ $4 \cdot MeC_{6}H_{4} Me (94)$	14
C ₁₁ MeS	1. DMF, POCl ₃ 2. HClO ₄	$MeS \longrightarrow Me_2 ClO_4^- $ (70)	15
and isomers	_	(53) + (30)	0) 21

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₁ -C ₁₃		СНО СНО	
R Ar OH	DMF, POCl ₃	$Ar + Ar + Ar + CHO$ $R R R$ $I II$ $Ar R I II$ $Ph H (30) (35)$ $4-MeC_{6}H_{4} H (40) (30)$ $4-MeC_{6}H_{4} Me (8) (55)$ $4-MeC_{6}H_{4} Me (10) (58)$	286
C_{11} - C_{15} R^2 Ar R^1	DMF, POCl3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	287
c ₁₂	_	CHO (85)	20
	1. DMF, POCl ₃ 2. NaClO ₄ 3. NaOH	CHO (82)	235
	1. DMF, POCl ₃ 2. NaClO ₄	I R = Me	235
	1. MFA, POCl ₃ 2. NaClO ₄	I, $R = Ph$ ()	235
den a	MFA, POCl ₃	(E = 20; Z = 20) (40)	25
C14	1. DMF, POCl ₃ 2. NaClO ₄	(94)	235
Ph	1. DMF, POCl ₃ 2. HClO ₄	Ph (45)	15

TABLE II. DIENES, TRIENES AND TETRAENES WITH CARBON SUBSTITUENTS (Continued)

TABLE II.	TABLE II. DIENES, TRIENES AND TETRAENES WITH CARBON SUBSTITUENTS (Continued)				
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.		
OH OH	DMF, POCl ₃	(92)	19		
ОН	DMF, POCl ₃ , 28°	+ (39)	19		
	DMF, POCl ₃ , 100°	I (66)	19		
A	-	СНО (86)	20		
	MFA, POCl ₃	(16)	25		
X	MFA, POCI3	(33) CHO (trace)	25		
C ₁₄ -C ₁₅		P			
HO MeO	DMF, POCl ₃	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	287		
$C_{14}-C_{18}$ R^{1} R^{2}	DMF, POCl ₃	$\begin{array}{c c} R^1 & R^2 & R^1 & R^2 \\ \hline & & 4 - Me_2 NC_6 H_4 H & () \\ \hline & Ph & Ph & () \\ \hline & & CHO \end{array}$	280		
C ₁₅	DMF, POCl ₃	OHC (60)	288		
	DMF, POCl ₃	(89)	8		
	MFA, POCl ₃	CHON	25		
Ph ^{sr} Ph	1. DMF, POCl ₃ 2. HCIO ₄	$Ph^{Ph^{Ph^{Ph^{Ph^{Ph^{Ph^{Ph^{Ph^{Ph^{$	15		

TABLE II. DIENES, TRIENES AND TETRAENES WITH CARBON SUBSTITUENTS (Continued)				
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.	
C ₁₇ -C ₁₈ Ar ¹ and Ar ² C ₁₈	DMF, POCl ₃	$\begin{array}{c} \text{CHOH} \\ \text{Ar}^1 & \text{CHO} \\ \text{Me}_{2N} & \text{Ar}^2 \end{array} \qquad \begin{array}{c} \frac{\text{Ar}^1 & \text{Ar}^2}{4 \cdot \text{MeOC}_6\text{H}_4} & \text{Ph} & (14) \\ \text{4-MeOC}_6\text{H}_4 & 4 \cdot \text{MeOC}_6\text{H}_4 & (82) \end{array}$	16	
Ph Ph	DMF. POCl ₃	Ph CHO (65) Ph	16	
C ₂₀ Ph ^{1/2*} Ph C ₂₁ -C ₂₂	1. DMF, POCl ₃ 2. HClO ₄	Ph ^{ron} NMe ₂ ClO ₄ - (49) Ph	16	
R = H	DMF, POCI ₃	R (20)	17	
	DMF, POCl ₃ , ClCH ₂ CH ₂ Cl, boil	СНО " (35)	17	
	DMF, POCl ₃ , CICH ₂ CH ₂ Cl, rt	онс (15)	17	
R = Me C ₂₁ -C ₂₆	DMF, POCl ₃ , CICH ₂ CH ₂ Cl, rt	OHC w (48)	17	
C ₂₂	DMF, POCI3	OHC R R Ac (66) Bn (29)	22	
Ph Ph Ph	MFA, POCl ₃	Ph $PhPh$ Ph (96) $E:Z, 5:1$	289	
C_{23} - C_{25} COMe $-R^2$ Cl R^1	DMF, POCl ₃	OHC Cl R^1 R^1 R^1 R^1 R^1 R^2 R^1 R^2 R^1 R^2 R^1 R^2 R^1 R^2 R^1 R^2 R^1 R^2 R^2 R^1 R^2	22	
C ₂₅	DMF, POCl ₃ , CICH ₂ CH ₂ Cl, rt	OAc OHC (35)	17	

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C_4-C_9 H_2N C_4-C_1A R^1 CN	1. R ² CONMe ₂ , POCl ₃ 2. NaSH 3. I ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	291
R ¹ HN CN	1. DMF, POCl ₃ 2. NaSH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30
C ₅ Me ₂ N	1. DMF, POCl ₃ 2. CIO ₄ -	$Me_{2}N \xrightarrow{(10)} Me_{2}ClO_{4}^{-} $	292
	1. [CICH=NMe ₂]*CI ⁻ 2. Me ₂ NH ₂ *CIO ₄	" (40)	293
Me ₂ N	 DMF, COCl₂ Hydrolysis 	HO CHO (84) CHO	32

TABLE III. ALKENES WITH NITROGEN SUBSTITUENTS

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
N H	DMF, (COCl) ₂	OHC N CHO (75) H	186
C_5-C_{17} R^3HN CO_2R^2	1. DMF, POCl₃ 2. NaSeH 3. Et₄N ⁺ WI(CO)5 ⁻	$R^{3}HN \xrightarrow{R^{1}} CO_{2}R^{2}$ $R^{3}HN \xrightarrow{R^{2}} CO_{2}R^{2}$ $SeW(CO)_{5}$ $R^{1} \qquad R^{2} \qquad R^{3}$ $Me \qquad Me \qquad H \qquad (8)$ $Ph \qquad Et \qquad H \qquad (13)$ $Ph \qquad Et \qquad Ph \qquad (23)$	30
	1. DMF, POCI ₃ 2. NaSH	$R^{3}HN \xrightarrow{R^{1}} CO_{2}R^{2}$ $R^{3}HN \xrightarrow{R^{2}} CO_{2}R^{2}$ $Et \qquad Me \ H \ (83)$ $Et \qquad Me \ H \ (48)$ $n-Pr \qquad Et \ H \ (71)$ $Ph \qquad Et \ H \ (69)$ $3-MeC_{6}H_{4} \ Et \ H \ (83)$ $4-MeC_{6}H_{4} \ Et \ H \ (83)$ $I = erstetted \ Et \ H \ (85)$	30
C_6-C_{10} R^2 R^2 C_02Me C_6-C_{12}	DMF, POCl ₃	$R^{2}_{n_{1}} r^{2}CHO = \frac{R^{1}}{-(CH_{2})_{2}-} r^{2}(66) - CH=CHCH_{2}- r^{2}(75) - (CH_{2})_{3}- r^{2}(94) - (CH_{2})_{3}- r^{2}(94) - (CH_{2})_{3}- r^{2}(94) - r^{2}(2+E) r^{2}(2+E)$	41, 294 41 41, 294 41, 294
Me ₂ N st NMe ₂	1. DMF, POCl ₃ 2. ClO₄ [−]	$Me_2N \qquad NMe_2 \\ + \\ NMe_2 ClO_4^- $ (67)	292, 295
	DMF, (COCI) ₂	$ \underbrace{\stackrel{Me_2N}{\longrightarrow}}_{OHC} \underbrace{\stackrel{NMe_2}{\longrightarrow}}_{(29)} $	296, 297
	DMF, (COCI) ₂	$ \begin{array}{c} & & \\ & & $	296, 297, 298
	DMF, (COCl) ₂	$\langle N_{NMe_2} \rangle$ (20)	296, 297
	DMF, (COCI) ₂	$ \underbrace{\bigwedge_{N}}_{OHC} \underbrace{(35)}_{N} + \underbrace{\bigwedge_{N}}_{OHC} \underbrace{(15)}_{NMe_2} $	298
C7 N COMe	DMF, POCl ₃	CHO (26) COMe	41
Me ₂ N	DMF, POCl ₃	CI 2000 (68)	79
Me ₂ N COMe	DMF, POCl ₃	Cl NMe ₂ (48) OHC CHO	38
Me ₂ N	DMF, POCl ₃	$\frac{CHO}{Me_2N_{up}}$ (11)	299
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
---	--	--	-------
C7-C13	1. ArR ² N=CHCI⁺ CI⁻ 2. NH₄⁺ ₽₽₅⁻	R^3 $+$ PF_6^-	300
CI		$\frac{Ar}{R^{2}} = \frac{R^{1}}{4 - ClC_{6}H_{4}} = \frac{R^{2}}{Me} = \frac{R^{3}}{Me} = R^{$	
		Ph Me Me H (73) Ph Et Me H (73) Ph Cl Me H (76) Ph i-Pr Me H (78) Ph Bn Me H (93) Ph CH ₂ Cl Me H (61)	
C7-C15		Ph $(CH_2)_2CI$ Me H (63) Ph Ph Bn H (70) Ph <i>t</i> -Bu Me H (70) Ph $(CH_2)_2CI$ Me H (63)	20
Me ₂ N ^P NMe ₂ ClC	D_4^- 1. DMF, COCl ₂ 2. Hydrolysis	HO' (58) CHO	32
	1. DMF, POCl ₃ 2. HClO ₄	$Me_2N \xrightarrow{+} NMe_2 \qquad (86)$ $+ 2CIO_4^-$	281
Me ₂ N ² ^{***********************************}	D₄ [−] 1. DMF, POCl ₃ 2. NaClO ₄	Me_{2} $Me_{2}N$ $+ NMe_{2}$ $+ 2CIO_{4}^{-}$ Ke_{2} $+ NMe_{2}$	33
r-Bu Me ₂ N ⁴ ⁴ NMe ₂ Clo	1. DMF, POCl ₃ D₄ [−] 2. NaClO ₄	$Me_2N \xrightarrow{t-Bu} Me_2 \qquad (90)$	33
	1. DMF, POCl ₃ 2. NaClO ₄ 3. Hydrolysis	t-Bu CHO (72)	33
Ph Me ₂ N ^d Me ₂ Clo	1. DMF, POCl ₃ D ₄ - 2. NaClO ₄	$Me_2N \xrightarrow{\text{Ph}} NMe_2 \qquad (91)$	33
	 DMF, POCl₃ NaClO₄ Hydrolysis 	Ph OH (77) CHO	33
$Ar = 4-Me_2Nc_6H_4$	1. DMF, POCl ₃ O ₄ - 2. NaOH	Me ₂ N CHO (73)	33

TABLE III. ALKENES WITH NITROGEN SUBSTITUENTS (Continued)

	TABLE III. ALKENES WITH NITRO	GEN SUBSTITUENTS (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
R^{1} R^{2} R^{1} N COR^{3}	DMF, POCI3	$R^{1} \xrightarrow[COR]{} CHO \qquad \frac{R^{1}}{H} \xrightarrow[COR]{} R^{2} \qquad \frac{R^{1}}{H} \xrightarrow[COR]{} R^{3} \qquad \frac{R^{1}}{H} \xrightarrow[COR]{} R^{3} \qquad H \qquad Me (75) \qquad H \qquad Me (75) \qquad H \qquad Me Ph (61) \qquad 0Me Me Ph (71) \qquad H \qquad Ph (43)$	41 44 44 44
C_8-C_9	DMF, POCl ₃	$\begin{array}{c} & R \\ & R \\ & H \\ & (62) \\ & Me \\ & (45) \end{array}$	42
$\begin{array}{c} C_8 - C_{12} \\ R^2 \\ N \\ R^2 \\ R^3 \\ R^1 \end{array}$	DMF, POCl3	$R^{2} + R^{3} + R^{2} + R^{2} + R^{2} + R^{3} + R^{2} + R^{3} + R^{2} + R^{3} + R^{3$	42
N Bn	DMF, POCl ₃	$Me_2N \xrightarrow{\text{CHO}} (17) + (30)$	42
N Bn	DMF, POCl ₃	(44) + (12)	42
	DMA, POCl ₃	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42
C8-C16 R	DMF, (COCI) ₂	Me R Me I I I I I I I I I I I I I I I I I I	26
R	<i>N</i> -formylmorpholine, (COCl) ₂	$\begin{array}{c c} R & & & & & \\ \hline r - Bu & (56) \\ 2 - thienyl & (45) \\ Ph & (47) \\ 3,5 - Me_2C_6H_3 & (63) \\ 3,4,5 - Me_3C_6H_2 & (66) \\ 1 - adamantyl & (42) \end{array}$	26
	_	$ \begin{array}{c} $	301
Me ₂ N Ar	DMF, acid chloride	$\begin{array}{c c} Me_2N & Ar & Ar & Acid chloride \\ \hline Me_2N & & 4-pyridyl & COCl_2 & (79) \\ \hline CHO & 2-Cl-6-O_2NC_6H_3 & POCl_3 & (74) \end{array}$	206 302

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₉ -C ₂₀				
	R^1	DMF, COCl ₂	$\begin{array}{cccc} R^{1} & & & & & & & & & \\ R^{2} & & & & & & & & & \\ \hline & & & & & & & & &$	28
		DMF, COCl ₂	0 (50) CHO	28
0		DMF, COCl ₂	OHC (92)	28
\bigcirc	N	1. MFA, POCl ₃ 2. NaSH	SHC (56)	30
	R^1	1. DMF, POCl ₃ 2. NaSH	$ \begin{array}{c} & R^{1} \\ & R^{2} \\ & CHS \\ & Ph \\ & H \\ \end{array} \begin{array}{c} R^{1} \\ R^{2} \\ -(CH_{2})_{3} \\ -(50) \\ H \\ (42) \end{array} $	30, 303
R ¹ ~ R ²	Ph	1. DMF, POCI ₃ 2. NaSH	$\begin{array}{c} R^{1} & Ph \\ R^{2} & CHS \\ R^{2} & CH$	30
R ¹ N R ²	Ph Ph	1. MFA, POCl3 2. NaSH	$\begin{array}{c} \begin{array}{c} R^{1} & R^{2} \\ R^{1} & Ph \\ R^{2} & CHS \end{array} & \begin{array}{c} R^{1} & R^{2} \\ \hline n \mbox{-Pr} & n \mbox{-Pr} & (44) \\ -(CH_{2})_{4} \mbox{-} & (43) \\ -(CH_{2})_{2}O(CH_{2})_{2} \mbox{-} & (71) \\ c \mbox{-} & c \mbox{-} & c \mbox{-} \\ R^{2} & n \mbox{-} & c \mbox{-} \\ R^{2} & n \mbox{-} & (24) \\ \hline -(CH_{2})_{4} \mbox{-} & (24) \\ -(CH_{2})_{4} \mbox{-} & (43) \\ -(CH_{2})_{2}O(CH_{2})_{2} \mbox{-} & (11) \\ R^{2} & n \mbox{-} \\ R^$	30 30, 303 30, 303 30 30
		DMF, POCl ₃	$\begin{array}{ccc} OHC & & & & & \\ OHC & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	304
C ₁₀ -C ₁₁	NNX	DMF, (COCl) ₂	$X \qquad N \qquad \qquad \begin{array}{c} CHO & X \\ \hline O & (-) \\ \hline WNMe_2 & CH_2 (20) \end{array}$	297
C ₁₀ -C ₁₃	N O R	DMF, POCl ₃ (11 eq)	$\begin{array}{c c} OHC & CHO \\ CI & N \\ CI \\ R \\ R \\ Bn \end{array} \qquad \begin{array}{c} R \\ CH_2CO_2Et \\ Ph \\ (65) \\ Bn \\ (62) \end{array}$	305
CI	N Bn	DMF, POCl ₃ (4 eq)	$Cl \xrightarrow{N} Cl (35) + Cl (10)$	305
C ₁₀ -C ₁₄	N O	DMF, POCl ₃	(13)	42

TABLE III. ALKENES WITH NITROGEN SUBSTITUENTS (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$R \xrightarrow{\bigcup_{\substack{N \\ Bu-n}}} O$	DMF, POCl ₃	$\begin{array}{c} R \\ R \\ I \\ Bu-n \end{array} \\ \begin{array}{c} R \\ i-Bu \\ Ph \end{array} \\ \begin{array}{c} R \\ i-Bu \\ (19) \\ Ph \end{array} \\ \begin{array}{c} (68) \end{array} \end{array}$	42
C_{10} - C_{16} O N R O H R	DMF, —	$ \begin{array}{c} R \\ Me (99) \\ R \\ Pr (84) \\ R \\ 4-ClC_6H_4 (94) \\ c-C_6H_{11} (82) \\ R \\ R \\ \end{array} $	43
$\begin{array}{c} R^{1} \\ R^{1} \\ R^{2} \\ R^{3} \\ R^{3} \end{array}$	DMF, POCl ₃	$R^{1} \xrightarrow{\text{CHO}} R^{2}$ $R^{3} \xrightarrow{\text{Pl}} R^{2}$ R^{3} $R^{1} \xrightarrow{\text{Pl}} R^{2}$ R^{3}	
NO ₂ N Me OH	DMF, POCl ₃	$ \frac{K K K}{NO_2 H} K (48) $ $ \frac{NO_2 H}{H} CH_2CH(Me)OAc (39) $ $ H 3,4-(MeO)_2C_6H_3 H (83) $ $ \frac{NO_2 CHO}{\sqrt{Cl}} $ $ \frac{V}{Cl} (57) $	306 307 308 307
C ₁₁ -C ₁₂	"Vilsmeier-Haack reagent"	$ \begin{array}{c} $	309
C ₁₁ -C ₁₅	DMF, POCl ₃	$\begin{array}{cccc} & R & & \\ \hline Et & (-) & \\ N-R & CH_2CO_2H & (-) & \\ i\cdot Pr & (-) & \\ 0 & 2,4\text{-}Cl_2C_6H_3 & (-) & \\ 4\text{-}ClC_6H_4 & (-) & \\ 4\text{-}NO_2C_6H_4 & (90) & \\ Ph & (96) & \end{array}$	310 310 310 310 310 310, 43 43
$C_{11} - C_{19}$ R^{1} $N - R^{2}$	DMF, POCl ₃	$\begin{array}{c} \text{OHC} & \\ R^{1} & R^{2} \\ R^{1} & \\ R^{1} & \\ R^{1} & \\ \text{OMe} & \text{SO}_{2}\text{Me} & (73) \\ \text{OMe} & \text{SO}_{2}\text{Me} & (87) \\ \text{OMe} & 4\text{-MeC}_{6}\text{H}_{4}\text{SO}_{2} & (83) \end{array}$	311, 312
C ₁₂	DMF, POCl ₃	(40)	29
H CO ₂ Et	DMF, POCl ₃	(83-88)	313,
N O		N ^N O	514

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
C ₁₂ -C ₁₄		\bigcirc	
\mathbf{R}^{1}	DMF, POCl ₃	R^1 2 MeO Me Me (47)	31
$N^{\prime} R^2$		$N R^2$ 4-MeO Me Me (60)	31
н		$3-O_2N$ Me Et (61)	31
		$4-O_2N$ Me Et (60)	31
		3-MeO Me Et (73)	31
		4-MeO Me Et (69)	31
		3,4-(MeO) ₂ Me Et (71)	31
		H CO ₂ Et Et (—)	316
C ₁₂ -C ₁₆			
\mathbf{R}^1 , \mathbf{R}^2		R^1 R^1 R^2 Reagents	
	See table	$\overline{\text{Cl} \text{H} -, \text{COCl}_2}$ ()	317
N		N CHO H H MFA, POCl ₃ (—)	318
Me		Me H H $-$, COCl_2 ()	317
		H H DMF, $POCl_3$ (39)	319
		MeO H MFA, POCl ₃ (—)	318
		$CO_2Et H -, COCl_2 ()$	317
		benzo $-, \operatorname{COCl}_2$ $(-)$	317
C ₁₂ -C ₁₈		, ,	
		$R = \frac{R}{Cl}$	
	DMF POCh		42
	DMI, I OCI3	\sim	42
Bu-n		$\dot{B}u-n$ Et (52)	
		OPh (62)	
		Urij (00)	
C ₁₃ -C ₁₄			
AV		$\mathbf{R}^1 \mathbf{R}^2$	
	DMF. POCI	H CHO (74)	319
N	Dim, roch	N CHO CHO CHO (52)	320
\mathbf{R}^{1}		\mathbf{R}^2 Me Me (65)	319
C ₁₃ -C ₂₀		Ma N	
R _N NN			
	CICH=NMe^+ CI⁻	$\frac{1}{Me}$ (96) Z	321
0= 1			
١ö		4-MeOBn (PMB) (95) E	
C ₁₄			
			42
	DMF, POCl ₃		42
✓ `N´ ≤0		$\sim N $ 10	
Bu- <i>n</i>		Bu-n	
Cis			
		Ph	
Ph			322
Ph Ph		Ph $\subset COR$ $()$	
Ph Ph	$Me_2N = Cl^-$		
Ph Ph N Me	$Me_2N = \begin{pmatrix} OPOCl_2 \\ Cl^- \\ R \end{pmatrix}$	$\frac{N}{Me} = H, Me, Ph$	
Ph Ph N Me	$Me_2N = \begin{cases} OPOCl_2 \\ CI^- \\ R \end{cases}$	$ \begin{array}{c} Ph \\ N \\ He \\ Me \\ R = H, Me, Ph \\ O \\ U \\ U \\ U \\ U \end{array} $	
Ph Ph Me COMe	$Me_2N = \bigvee_{R}^{OPOCl_2} CI^-$	$\begin{array}{c} Ph \\ N \\ Me \end{array} \qquad () \\ R = H, Me, Ph \end{array}$	323
Ph Ph Me COMe	$Me_2N = \bigvee_{R}^{OPOCl_2} CI^-$	$Ph \sum_{Me} COR (-)$ $R = H, Me, Ph$ (40)	323
Ph Ph N Me O	$Me_2N = \bigvee_{R}^{OPOCl_2} CI^-$	$Ph \sum_{Me} COR \qquad ()$ $R = H, Me, Ph$ (40)	323

		TABLE III. ALKENES WITH NITR	OGEN SUBSTITUENTS (Continued)	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		—, heat	R^{1} R^{1} R^{1} R^{2} R^{2} R^{2} R^{2} R^{1} R^{2} R^{2} R^{2} R^{1} R^{2}	329
C ₂₁		DMF, POCl ₃ R = CO ₂ Me	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	330
	$R = Ac, CO_2Me$	DMF, POCl ₃ , rt R = Ac	$ \begin{array}{c} $	330
C ₂₂	MeO N MeO ₂ C	DMF, POCl ₃ , rt	MeO - K + K + K + MeO - K + K + K + K + K + K + K + K + K + K	331
	N CO ₂ Et	1. DMF, POCl ₃ 2. NaOH (aq)	H CHO (76)	332
	Me MeO MeO NR ₂	DMF, POCl3	$\begin{array}{c} Me \\ N \\ HO \\ HO \\ NR_2 \end{array} \qquad \begin{array}{c} R_2 \\ \hline -(CH_2)_4 - (54) \\ -(CH_2)_2 O(CH_2)_2 - (50) \end{array}$	51

 $^{\it a}$ The reported yields are based on isoquinoline as the starting material.

LE IV. DIENES, TRIENES AND TETRA	ENES WITH NITROGEN SUBSTITUENTS	
Conditions	Product(s) and Yield(s) (%)	Refs.
1. HNMe ₂	СНО	
2. DMF, POCl ₃	(30)	37
3. NH ₄ Cl	N [*]	
	o ≫ CHO	
DMF, COCl ₂	Me ₂ N (35)	70
	СНО	
	(-)	333
	OHC NMc2	
	СНО	
DMF, COCl ₂	NMe ₂ (65)	70
	OHC C C	
	$Me_2N - NR^{T}R^{2} = \frac{R^{T}}{M} - \frac{R^{2}}{M}$	40
$1. \text{ K K NCHO}, COCI_2$	$R^{1}R^{2}N^{+}$ NMe_{2} (CH) (75)	40
2. NaCl04	$-(CH_2)_5-(75)$	
1 DMF COCI.	OHC -	
2. NaClO ₄	NMe ₂ (73)	40
3. K ₂ CO ₃	Me ₂ NCHO	
1. <i>N</i> -tormylmorpholine, COCl ₂	OHCOH	40
2. NaCIO4 3. KOH	HO ()	40
5. 4011	Cno	
DMF, COCh, -10°	(90)	278
2, 000.2, 10		
	Me_2N^{rr}	
	онс сно онс	
DMF, COCl ₂ , rt	(90) or CHO (trace)	278, 18
	Ma N	
Me_2NCOMe , $POCl_3$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ $	334
	Me ₂ N Me ₂ N	
BUNCH-CHCHO (COCI)	СНО (77)	324
		555
	Me ₂ N´ I	
R ₂ NCH=CHCHO, COCl ₂	I ()	334
(R not specified)		
	$R^3 R^2$	
	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	224
1. DMF, POCl ₃	κ \sim D H H D ()	336
2. INACIU4	и ноон (—) Me ₂ N	
	онс сно	
1. DMF, POCl ₃	(1) CHO (26) + (1) (37)	337
2. NaOH		
	$Me_2N^{\circ}NMe_2$ $Me_2N^{\circ}NMe_2$	
	с сно	
DMF, COCl ₂	Me ₂ N (85)	70
DMF, COCl ₂	Me ₂ N (85) CHO	70
DMF, COCl ₂	$Me_2N \xrightarrow{CHO} (85)$ $CHO \xrightarrow{CHO} (57)$	70
	E IV. DIENES, TRIENES AND TETRA Conditions I. HNMe ₂ 2. DMF, POCl ₃ 3. NH ₄ Cl DMF, COCl ₂ DMF, COCl ₂ I. R ¹ R ² NCHO, COCl ₂ 2. NaClO ₄ I. DMF, COCl ₂ 2. NaClO ₄ 3. K ₂ CO ₃ I. <i>N</i> -formylmorpholine, COCl ₂ 2. NaClO ₄ 3. KOH DMF, COCl ₂ , -10° DMF, COCl ₂ , -10° DMF, COCl ₂ , rt Me ₂ NCOMe, POCl ₃ Bu ₂ NCH=CHCHO, (COCl) ₂ R ₂ NCH=CHCHO, COCl ₂ (R not specified) I. DMF, POCl ₃ 2. NaClO ₄ I. DMF	E IV- DIENES, TRIENES AND TETRAENES WITH NITROGEN SUBSTITUENTS Conditions Product(s) and Yield(s) (%) $I = HNNe_{2}$ 2. DMF, COCl ₂ $G(r) = G(r) =$

	TABLE IV.	DIENES, TRIENES AND TETRAENES	WITH NITROGEN SUBSTITUENTS (Continued)	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₂ N NMe ₂ ClO ₄ -	DMF, POCl ₃	CHO (64) NMe ₂	38
	Me ₂ N	1. [CICH=NMe2] ⁺ CI ⁻ 2. NaClO4	$Me_2N \xrightarrow{\dagger} MMe_2 \xrightarrow{\dagger} MMe_2 \qquad (93)$ $Me_2N \xrightarrow{\dagger} MMe_2 \qquad 3CIO_4^-$	39
Cu		1. [CICH=NMe2] ⁺ CI ⁻ 2. NaCIO4 3. NH4CI	CHO N (74)	39
C10	NMe2	DMF, POCI3	OHC OHC () NMe ₂	334
Cu		R ₂ NCH=CHCHO, COCl ₂ (R not specified)	OHC	334
-11	Me ₂ N CO ₂ Bu-t	1. [CICH=NMe2] ⁺ CI ⁻ 2. NaClO₄	Me_2N CO_2Bu-t (68)	338
	Me_2N $() 3 $ $NMe_2 CIO_4^-$	DMF, COCl ₂	OHC CHO (40)	38
		1. DMF, POCl ₃ 2. NaClO ₄	$Me_2N \xrightarrow{+} NMe_2 \qquad (32)$	339
		1. Me ₂ NCH=CHCHO, POCl ₃ 2. NaClO ₄	$Me_2N \qquad \qquad$	339
C ₁₂	NMe2	[CICH=NMe₂]⁺CI⁻	$CI^{-} (61)$	36
		1. [CICH=NMe ₂]*CI [−] 2. K ₂ CO ₃ , H ₂ O		36
C ₁₂	2-C ₁₃	1. DMF, POCl ₃ 2. NaClO4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	340
C ₁	$R \xrightarrow[]{i} O_2Ph$	DMF, POCl3	$\begin{array}{cccc} R & & & \\ & \hline CHO & & \hline Cl & (64) \\ & Br & (57) \\ & H & (81) \\ & CO_2Ph & & \\ & Me & (71) \\ & MeO & (71) \\ & Ph & (73) \end{array}$	44 44 45 44 44 44
			$c - C_6 H_{11}$ (65)	44

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	DMF, POCl3	OHC	341
	DMF, POCl ₃	$\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} R \\ \hline Bn \\ 4 \\ \hline CO_2Me \\ 4 \\ O_2NBn \\ CO_2Et \\ (90) \\ \hline 4 \\ O_2NBn \\ CN \\ (74) \\ \end{array}$	342
$C_{22}-C_{27}$ R^2 R^2 $Si(Pr-i)_3$ $C_{26}-C_{27}$	DMF, POCl ₃	$\begin{array}{c cccc} R^2 & & & R^1 & R^2 \\ \hline OHC & & & & \\ R^1 & N & & & \\ R^1 & N & & & \\ R^1 & N & & & \\ CO_2Ph & Ph & H & (97) \end{array}$	343
CN C	DMF, POCl ₃	(1) (1)	34, 35 34

TABLE IV. DIENES, TRIENES AND TETRAENES WITH NITROGEN SUBSTITUENTS (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄			
	"Vilsmeier reagent"	(45)	344
AcO	1. MFA, POCI ₃ 2. NH₄ ⁺ PF ₆ [−]	$ \begin{array}{c} $	300
MeO	MFA, POCl ₃	OHC NMePh (35) McO	345
	1. MFA, POCl ₃ 2. Hydrolysis	OHC MeO (20)	345
EtO	1. DMF, COCl ₂ 2. Hydrolysis	$HO \xrightarrow{\text{CHO}} (-) + \xrightarrow{\text{CHO}} (10)$	32
C_4-C_6			
EtO	1. DMF, POCl ₃ 2. K ₂ CO ₃	$\begin{array}{c} \text{CHO} & \underline{R} \\ \hline H & (57) \\ \text{Me}_2 N & R & \text{Me} & (68) \\ \hline Et & (77) \end{array}$	46
C.	1. DMF, POCl ₃ 2. PhNH ₂ •HCl	PhHN $\stackrel{\text{here}}{R}$ $\stackrel{\text{here}}{H}$ $\stackrel{\text{her}}{H}$ $\stackrel{\text{here}}{H}$ $\stackrel{\text{her}}{H}$ $\stackrel{\text{her}}{H}$ $\stackrel{\text{her}}{H}$ $\stackrel{\text{her}}{H$	46
EtO	1. DMF, POCl ₃ 2. Me ₂ SO ₄	Me_2N $NMe_2 MeSO_4^-$ (67)	292

TABLE V. ALKENES WITH OXYGEN SUBSTITUENTS

	TABLE V. ALKENES WITH OXYGE	N SUBSTITUENTS (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
EtO	 DMF, POCl₃ N-ethyl-4-methylquinolinium iodide. Ac₂O, Et₃N, pyridine HClO₄ 	$E_{I} + N = C_{IO_4} - C_{IO_4}$	48
	DMF, POCI ₃	CHO Me ₂ N (72)	346
C ₆ EtO	MFA, POCl ₃	$\begin{array}{c} \text{OHC} & R & () \\ \text{EtO} & I & R = NMePh \end{array}$	345
	 MFA, POCl₃ Hydrolysis DMF, POCl₃ 	I $R = OH$ (—) I $R = OEt$ (36)	345 347
n-BuO	1. DMF, POCl ₃ 2. NaClO ₄	$Me_2N NMe_2^+ ClO_4^- $ (70)	292
MeO	DMF, COCl ₂	Me ₂ N (70)	348
C ₆ -C ₈ MeO	1. DMF, (COCl) ₂ or POCl ₃ 2. K ₂ CO ₃	$Me_{2}N P_{z_{z_{z_{z_{z_{z_{z_{z_{z_{z_{z_{z_{z_$	47
C7-C10 TMSO	1. DMF, POCl ₃ 2. PhNH ₂	$R^{3}R^{2}N \qquad \qquad$	55
C7 OMe	DMF, POCl ₃	OHC CHO CHO	53
OEt	DMF, POCl ₃	O 	349
C ₈ OMe	DMF, POCI ₃	OHC CHO (39)	53
OMe	DMF, POCl ₃	OHC CHO (17)	53
OMe	DMF, POCl ₃	OHC CHO (46)	53
Meo	DMF, POCI ₃	CI CI CHO CHO CI	53

	Substrate	Conditions	Product(s) and Yield(s) (%)	Ref
C ₂₀₋₂₂		DMF, POCl ₃	Me HO HO CHO R Et (64) n-Bu (46)	51
C ₂₁	D Ph	DMF, POCl ₃	Ph O Ph (68)	352
\square	$\stackrel{Ph}{\longrightarrow} =$	DMF, POCl ₃	Ph CHO O Ph (45)	353
C ₂₂		1 DMF, COCl ₂	OHC, () MeO H	52
C ₂₃	$ \begin{array}{c} O \\ OR \\ R = \int_{r}^{r} \int_{r}^{r} O \\ \end{array} $	DMF, POCl3	$ \begin{array}{c} CHO \\ OR \end{array} $ (26)	354
	Ac0 OAc	Me ₂ N ¹³ CHO, POCl ₃	$(5\% \text{ of } {}^{13}\text{C label incorporated})$	354
¢T	OR R = as above	DMF, POCl ₃	$\bigvee_{OR}^{CHO} (89)$	354
C ₂₃ -C ₂₄	Ph Ph	_	Ph Ph Ph Ph O Ph Ph O Ph Ph O Ph Ph Ph O Ph Ph O Ph Ph O Ph Ph O Ph Ph O Ph Ph O Ph Ph Ph O Ph Ph O Ph Ph O Ph) 355, 352
Ph	Ph Ph	DMF, POCl ₃	$ \begin{array}{c} $	352
C ₂₇ AcO	OR OR	DMF, POCl ₃	AcO CHO (63)	354, 356

TABLE V ALKENES WITH OXYGEN SUBSTITUENTS (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Ref
C.			
EIO	DMF, COCl ₂	Me ₂ N CHO (35)	70
CC-			
$EtO \xrightarrow{R^2}_{R^1 R^3}$	DMF, POCl ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54
C7 OEt	DMF, POCl ₃	0 NMe ₂ ()	357
OEt	DMF, POCl ₃	$\overset{O}{\longrightarrow}_{NMe_2} + \overset{O}{\longrightarrow}_{NMe_2} (-) 1:1$	357
C ₇ -C ₁₃			
	1. DMF, POCl ₃ 2. PhNH ₂	PhHN $\stackrel{R^2}{\underset{R^1}{\overset{+}{\underset{R^1}}}}$ $\stackrel{+}{\underset{NHPh Cl^-}{\overset{+}{\underset{H}}}}$ $\stackrel{R^1}{\underset{H}{\overset{R^2}{\underset{H}}}}$ $\stackrel{R^2}{\underset{H}{\underset{Me}}}$ $\stackrel{(45)}{\underset{Ph H}{\underset{K^1}}}$	55
C9-C15 R ¹			
Eto R^2 $R^1, R^2 = H, H; Me, H;$ H, Me; Me, Me; Ph, H	1. DMF, POCl ₃ 2. PhNH ₂	PhHN $HPh Cl^-$ (30-50) R^2	358
C ₁₂ OTMS	<i>N-</i> formylmorpholine, POCl ₃	Cl Cl CHO (8)	350
R^2 R^3 CO_2Me R^3	1. DMF, POCl ₃ 2. HClO ₄	$\begin{array}{c} R^{1} & CO_{2}Mc & \frac{R^{1} & R^{2} & R^{3}}{H & H & H & (28)} \\ & & & \\ R^{3} & CO_{2}Mc & & \\ \end{array}$	56
Ph MeO C ₁₉	DMF, POCI3	MeO (34) ^a	57
H H H	1. DMF, COCl ₂ 2. LiBH4 ^b	MeO ()	59
C ₂₀ -C ₂₆			
RO R = Me, Et, Bn	1. DMF, COCl ₂ 2. LiBH4 ^b		59, 57
$\mathbf{R} = \mathbf{M}\mathbf{c}, \mathbf{B}\mathbf{n}$	DMF, COCl ₂	I, $X = CH_2NMe_2$ I, $X = CHO$ ()	359, 360

Substate	TIBLE VI. DIENES WITH OX	TGEN SUBSTITUENTS (Continued)	
Sausu att	Conditions	Product(s) and Yield(s) (%) $\frac{R^1 R^2 R^3 R^4}{Me H - 0}$	Refs.
	1. DMF, COCl ₂ 2. LiBH ₄ , rt ^b	$\begin{array}{cccc} () & Et & H & OH & OH \\ R^{1}O & & & Me & H & OAc & H \\ CH_{2}NMe_{2} & & Et & H & OAc & H \end{array}$	59
3	DMF, POCl ₃	$R^{1}O$ $(-)$ $\frac{R^{1}}{Me} + \frac{R^{2}}{OAc} + \frac{R^{4}}{H}$ $(-)$ $\frac{R^{1}}{Me} + \frac{R^{2}}{OAc} + \frac{R^{4}}{H}$	360, 363
H H H		EtO ()	364
H H	_	EtO CHO (95)	364a
C ₂₆ Ac CHR ²	DMF, COCl ₂	MeO $(-)$ $\frac{R^1}{H}$ $\frac{R^2}{H}$ CHO Ac Me	359
HO HO -OH MeO	DMF, POCl ₃	OHCO OHCO CHO CHO COCH ₂ OAc (60-70)	365
OAc MeO	DMF, COCl ₂	MeO () CHO	359
Ero	DMF, COCl ₂	EtO CHO ()	359
C ₂₅			
$\begin{array}{c} 0 \\ 0 \\ R^{1} \\ R^{2} \end{array} = OMe. H: \end{array}$	DMF, COCl ₂		359

	Та	BLE VI. DIENES WITH OXYG	EN SUBSTITUENTS (Continued)	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₄ -C	$R^{1}O$ $COCH_{2}OAc$ $R^{1}, R^{2} = Me, OH;$ Et, OH; Me, OAc	DMF, COCl ₂	R ¹ O ()	359
C	RO RO RO RO RO R = Me, Et, <i>n</i> -Pr	1. DMF, COCl ₂ 2. LiBH4 ^b	RO CH ₂ NMe ₂ ()	59
0.25	MeO Ac MeO	1. DMF, COCl ₂ 2. LiBH ₄ , rt ^b	MeO () CH ₂ NMe ₂	59
	Eto	DMF, COCl ₂	Eto CHO ()	359
	Eto CHO	DMF, POCl ₃	OHC EtO CHCI (45)	73
		DMF, COCl ₂	EtO CHO ()	359
C ₂₆		1. DMF, COCl ₂ 2. LiBH4, π, ^b	EtO () CH ₂ NMe ₂	59
C ₂₈	EIO Ac	DMF, POCl ₃	EtO CHO (75)	58
0	H Ac OCOC ₆ H ₁₃ -n MeO	DMF, POCl ₃	MeO ()	366, 367
C33	CHPh EIO	DMF, COCl ₂	Eto CHO ()	359

 a The yield is that of the corresponding enone.

^b Phenazone is added to suppress reduction of the carbonyl group.

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C5	(s)	DMF, POCl ₃	SCHO ()	368
C 9	R ¹ SR ²	1. DMF, POCl ₃ , 0° 2. 90°, 3 h	$\begin{array}{ccc} OHC & & \frac{R^1 & R^2}{Ph} & \frac{R^2}{Ph} & \frac{R^2}{Me} & \frac{R^2}{Ph} & \frac{R^2}{P$	62a
		1. DMF- <i>d</i> 7, POCl ₃ , 0° 2. 90°, 3 h	$\begin{array}{ccc} ODC & & \displaystyle \frac{R^1 & R^2}{Ph & Me & (75)} \\ R^1 & SR^2 & Me & Ph & (73) \end{array}$	62a
	$\left(\begin{array}{c} S \\ S \end{array} \right) = \left(\begin{array}{c} CO_2 Et \\ CO_2 Et \end{array} \right)$	DMF, POCl ₃	$ \begin{array}{c} S \\ S \\ S \\ \end{array} \begin{array}{c} S \\ \end{array} \begin{array}{c} S \\ \end{array} \begin{array}{c} CO_2 Et \\ CHO \end{array} $ (96)	62
C ₁₀	$\sum_{S} \sum_{CO_2Et} CO_2Et$	DMF, POCl ₃	$S = CO_2Et CO_2Et CHO (76)$	62
6	MeO	_	MeO ()	369
C ₁₄	PhS SPh $E \text{ or } Z$	MFA, POCl ₃	OHC SPh (74)	61
C ₁₅				
		"Vilsmeier reagent"	CHO CI ^{Junda} (75)	370
C ₁₆	Ph S Ph	DMF. POCl ₃	OHC S Ph (32)	61a
	R S R	DMF, (COCI) ₂	$R \xrightarrow{S} CHO S \xrightarrow{R} CHO S \xrightarrow{R} CO_2Me (75)$ benzo (74)	371
C ₂₄	R S S R S R	DMF, (COCI) ₂	$R \xrightarrow{S} CHO S \xrightarrow{R} R \xrightarrow{R} CO_2Me (86)$ S = R benzo (85)	371

TABLE VII. ALKENES, DIENES AND TRIENES WITH SULFUR SUBSTITUENTS

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
C5			
MeO OMe	Et ₂ NCHO, POCl ₃	Et ₂ N (79)	372
EtO OEt	1. DMF, COCl ₂ 2. Me ₂ NH ₂ +Cl ⁻ 3. NaClO ₄	$Me_2N_{\text{Me}_2}ClO_4^{-} $ (64)	69
	DMF, COCl ₂	R X R CHO S OH (52)	67
$\left(\begin{array}{c} s \\ s \end{array} \right)$	1. DMF, COCl ₂ 2. 4-MeC ₆ H ₄ SO ₃ H	S (77)	67
C6-C8 RO OR NMe ₂	1. DMF, POCl₃ 2. ClO₄ [−]	Me_2N Me_2N $Me_2CIO_4^-$ R $Me (20-39)$ $Et (78)$	295
C ₆ -C ₁₂ EtO OEt	1. DMF, POCl ₃ 2. S N I ⁻ Et 3. HClO ₄	$ \begin{array}{c} $	- 48
		Et (80) OFt (65)	

i-Pr (40) Ph (46)

n-Pr

n-Pr

n-Pr

n-C₆H₁₃

n-C₇H₁₅

 $n-C_8H_{17}$

 $n-C_{10}H_{21}$ Ph

3-MeC₆H₄

4-MeC₆H₄

Ph

Ph

Ph

 $n-C_{10}H_{21} - 4-MeC_6H_4$

4-MeOC₆H₄ (21)

(70)

(68)

(61)

(62)

(50)

(29)

(35)

66

66

66

66

66

66

66 66

C₆-C₁₃ R¹O OR¹ R² R1 \mathbb{R}^2 Me₂N DMF, COCl₂ Et Н сно (69) 373 Me Εt (89) 372 Et Me (81) 373 Me i-Pr (31) 372 Et Et (75) 373 Et n-Pr (70) 373 Et *i-*Pr (48) 373 Et n-Bu (60) 373 *n*-C₅H₁₁ Et (89) 373 Et Ph (87) 373 Et Bn (70) 373 C₆-C₁₆ 6 EtO OEt R Ar ArHN ______NHAr CI⁻ `R (48-81) 1. DMF, POCl₃ CI Ph 66 2. ArNH₂ Ph н (14) 46 Me Ph (66-81) 66, 46 Et Ph (75) 66, 46 Et $4-BrC_6H_4$ (31) 66 Et 2-HOC₆H₄ (79) 66 Et 2-MeC₆H₄ (1) 66 Et 3-MeC₆H₄ 66 (32) 4-MeOC₆H₄ (51) Et 66 Ph n-Pr (71) 66 n-Pr 4-ClC₆H₄ 66 (80)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
EtO OEt	1. DMF, POCl ₃ 2. N, Ac ₂ O, Et ₃ N, pyridine	$Et_{\mathbf{N}} \xrightarrow{\mathbf{E}t} CIO_4^- $ (73)	48
	3. HClO ₄ DMF, POCl ₃	EtO(73)	375
EtO EtO	DMF, COCl ₂	$Me_2N \xrightarrow{+} NMe_2 Cl^- $ (56)	63, 64
	1. [CIHC=NMe2]' CI− 2. NaCIO4	$Me_2N \xrightarrow{+} NMe_2 CIO_4^- (37)$	33
C ₈ EtO OEt	DMF, COCl ₂	EtO OEt OEt ()	376
McO OPr-n	1. DMF, POCl ₃ 2. CIO_4^-	$Me_2N \xrightarrow{OPr-n} + NMe_2 ClO_4^- $ (55)	378
C_8-C_{10} R^1O OR^1 R^2	DMF, POCl ₃	$\begin{array}{cccc} R^2 & \frac{R^1 & R^2}{Et & Et & (51)} \\ Me_2 N & & Me & Ph & (-) \end{array}$	67
C9 EtO EtO	DMF, POCl ₃	Me ₂ N _n ()	67
EtO EtO	DMF, COCl ₂	NMe ₂ CHO (48)	63, 64
C_9-C_{11} CH(OR) ₂ R = Me or Et	1. DMF, POCl ₃ 2. PhNH ₂ 3. HClO ₄	PhHN NHPh ClO ₄ (60)	81
C ₁₀ OEt OEt Eto	1. DMF, COCl ₂ 2. NH4OAc	(55)	70, 3
OEt	1. DMF, POCl ₃ 2. PhNH ₂	PhHN ⁴ (64)	81
EtO EtO	DMF, COCl ₂	OEt CHO (59)	64
Eto Eto Bu- <i>t</i>	DMF, COCl ₂	oEt r-Bu (82)	63, 6
EtOBu- <i>t</i>	1. [CIHC=NMe2] ⁺ Cl ⁻ 2. Me2NH 3. NaClO4	$\operatorname{Me}_{2}N^{r^{r^{*}}} \bigvee \operatorname{NMe}_{2}^{+} \operatorname{ClO}_{4}^{-} \qquad (71)$	65
C ₁₀ -C ₁₂			
OEt OEt	DMF, POCl ₃	$Me_2N \begin{pmatrix} & & n \\ & & \\ $	68

TABLE VIII.	ACETALS, KETALS AN	D THEIR THIO	ANALOGS (Continued)
-------------	--------------------	--------------	---------------------

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$C_{10}-C_{15}$ $C_{10}-C_{10}-C_{15}$	1. DMF, POCl ₃ 2. PhNH ₂ 3. HX	PhHN R^{1} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{3} R^{2} R^{3} R^{2} R^{3} R^{3} R^{3} R^{3} R^{3} R^{4} R^{2} R^{3} R^{3} R^{3} R^{4} R^{2} R^{3} R^{3} R^{3} R^{4} R^{3} R^{4	81
OEt OEt	1. [CIHC=NMe2]⁺CI⊤ 2. NaClO4	OEt OEt $NMe_2^* CIO_4^- (82)$	33
	1. [CIHC=NMe ₂] ⁺ CI [−] 2. NaClO ₄ 3. Me ₂ NH	NMe_2 $NMe_2^+ ClO_4^- (41)$	33
	1. [CIHC=NMe₂]* CI [−] 2. NaClO4 3. NaOAc, H₂O	OEt CHO (32)	33
	DMF, COCl ₂	Cl CHO (6) + NMe ₂ CHO (26)	63, 64
		+ NMe_2 + $NMe_2 Cl^-$ (45)	
Eto	DMF, COCl ₂	Me ₂ N OEt (55)	71
EtO OEt OEt	1. [CIHC=NMe ₂] ⁺ Cl ⁻ 2. Me ₂ NH ₂ ⁺ Cl ⁻	Me_2N $NMe_2^+ Cl^-$ (62)	69
	DMF, POCI3	Me ₂ N CHO (43-50)	68
	1. DMF, POCl ₃ 2. PhNHMe	PhMeN NMcPh ⁺ Cl ⁻ ()	68
EtO OEt	1. [CIHC=NMe2] ⁺ CI ⁻ 2. Me2NH2 ⁺ CI ⁻ 3. NaClO4	$Me_2N \longrightarrow NMe_2^+ ClO_4^- $ (57)	69

Substrate	Conditions	P	Product(s) and Yield(s) (%)	Ref
C ₁₂ -C ₁₅				
EtO,		XAr	X Ar	
	DMF, POCl ₃	Me ₂ N	$S 4-ClC_6H_4 \qquad (23)$	379
OEI		Cho	S Ph (30)	
			$3 4 - B C_6 \pi_4$ (29)	
			0 3 C (42)	
			$0 - 4 - C C_2 H_4 = (48)$	
			$O = 4 - BrC_6 H_4$ (70)	
			O Ph (81)	
			O $3-CF_3C_6H_4$ (44)	
			O $3,4-MeClC_6H_3$ (53)	
			O $2-MeC_6H_4$ (33)	
			O $3-MeC_6H_4$ (61)	
			O $4-MeC_{6}H_{4}$ (22)	
			$O 3-MeOC_6H_4 \qquad (4)$	
			O $4-MeOC_6H_4$ (26)	
			$O = 4-MeSC_6H_4$ (15)	
			O 2,4-Me ₂ C ₆ H ₃ (69)	
			$O = 3.5 \text{ Ma}_{2} C H = (34)$	
			0 3 5 (34)	
			$O 4-EtC_{eH_4} \qquad (15)$	
			$O \qquad 4-i-\Pr C_{6}H_{4} \qquad (36)$	
C ₁₃				
EtOOEt		OEt		
	DMF, COCl ₂	CHO	(92)	63, 64
C ₁₃ -C ₁₇				
		SBu-n	\mathbf{R}^1 \mathbf{R}^2 $F \cdot \mathbf{Z}$	
n-Bus SBu-n	DMF, POCl ₃	PI CHO	Et Me (67) 100	380
		K ² 22	2-thienyl H (72) 80:20	
ĸ		ĸ	(CH ₂) ₄ (65)	
			Ph H (69) 95:5	
C ₁₄			Me Ph (70) 30:70	
EtO	1. $[CIHC=NMe_2]^+ Cl^-$			
	2. $Me_2NH_2^+ Cl^-$	Me ₂ N	$\mathbb{NMe}_2^+ \operatorname{ClO}_4^- $ (77)	69
ÖEt ÖEt	3. NaClO ₄			
C ₁₅ -C ₂₂				
			$\mathbf{R}^1 \mathbf{R}^2 \mathbf{R}^3$	
\mathbb{R}^2			$\frac{1}{H} = \frac{1}{H} = \frac{1}$	
R^3	1. DMF, POCI3		R^3 H Me Me (48)	381
	2. HClO ₄	\mathbb{R}^{1}	H(CH ₂) ₂ (60)	
		ClO ₄	Me_2 H $-(CH_2)_3-$ (66)	
			H —(CH ₂) ₄ — (63)	
			OMe $-(CH_2)_2-$ (60)	
			OMe $-(CH_2)_3-(51)$	
			OMe $-(CH_2)_4$ (45)	
			NEt ₂ —(CH ₂) ₂ — (56)	
			NEt ₂ —(CH ₂) ₃ — (41)	
а. <u>.</u>			NEt ₂ —(CH ₂) ₄ — (20)	
~17				
		PhHN		
∕OEt				
())	1. DMF, POCl ₃	$\left(\begin{array}{c} \end{array} \right) + $	(42)	81
→ → OEt	2 DENIL ALI	NH NH	Pn I	

TABLE VIII. ACETALS, KETALS AND THEIR THIO ANALOGS (Continued)

OEt 1. DMF, POCI₃ 2. PhNH₂+HI L

TABLE VIII. ACETALS, KETALS AND THEIR THIO ANALOGS (Continued)

TABLE VIII. ACETALS, KETALS AND THEIR THIO ANALOGS (Continued)

	1	ABLE VIII. ACEIALS, KEIALS AN	D THEIR THIO ANALOGS (Continuea)	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₉	C8H17	DMF, POCl3	CHO OHC (84)	72

	TABLE	IX. ALKYNES	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
EtO-	DMF, COCl ₂	$Me_2N \longrightarrow NMc_2 Cl^- $ (66)	74
5			
MeO	1. DMF, (COCl) ₂ 2. (See table) 3. NaClO ₄	$X \xrightarrow{Y} \underbrace{Cond. 2 X}_{None} \underbrace{H}_{ROO} \underbrace{Cl}_{(60)} \underbrace{H}_{Cl} \underbrace{K}_{None} \underbrace{H}_{Cl} \underbrace{K}_{(1,0)} \underbrace{K}_{(1,0)$	77
	DMF, Ph ₃ P•Br ₂	$\frac{Br}{McO} \xrightarrow{+} (70)$	77
	DMF, POCl ₃ , I ₂	$MeO \longrightarrow NMe_2 I^- $ (64)	77
	MFA, COCl ₂ , SbCl ₅	MeO (66)	77
MeOR	[Me ₂ N=CHCl] ⁺ SbCl ₆ ⁻	$MeO \xrightarrow{Cl} R \xrightarrow{R} D (48)$ $MeO \xrightarrow{R} R \xrightarrow{R} D (48)$ $Me (-)$	77
5 MeO	DMF, Ph ₃ P•I ₂	$MeO \xrightarrow{I} (-)$	77
Me ₂ N	1. [Me₂N=CHOMe] ⁺ MeSO₄ [−] 2. NaClO₄	$Me_2N \xrightarrow{\text{OMe}} NMe_2 \operatorname{ClO}_4^{-} $ (81)	77

Substrate	Conditions		Product(s) and Yield(s) (%)	Refs
		SMe	2	
	[Me ₂ N=CHSMe] ⁺ HgI ₃ ⁻	Me ₂ N	$\longrightarrow^{+}_{NMe_2HgI_3^-} (83)$	77
-8		Br	<i>(</i> ())	- /
Ph	DMF, Ph ₃ P·Br ₂	Ph	(60)	76
C ₈ -C ₁₀				
Ar	MFA. POCl ₂	CI	$\frac{\text{Ar}}{\text{Ph}}$ (45)	243
		Ar	$4-BrC_6H_4$ (24)	
			$4-MeOC_6H_4$ (51)	
		Cl	Ar	
	DMF, MFA or N-formylmorpholine, POCl ₃	СНО	Ph (67)	75
		Ar 💎	$3-\text{MeC}_6\text{H}_4$ (70)	
			$4-\text{MeC}_6\text{H}_4$ (70)	
			$4-MeOC_{6}H_{4}$ (70)	

TABLE X. ALDEHYDES					
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.		
0	DMF, COCl ₂		32		
23		Ar			
O II	1. DMF, POCl ₃	ArIIN THAT CI Ph (55)	46		
	2. ArNH ₂ •HCl	$2-HOC_{6}H_{4}$ (42)	66		
	-	$4-BrC_6H_4$ (31)	66		
		$2-MeC_6H_4$ (30)	66		
		$3-\text{MeC}_6\text{H}_4$ (30)	66		
		$4-MeC_6H_4$ (29)	66		
		$4-MeOC_{6}H_{4}$ (29)	66		
4	1. DMF, POCl ₃ 2. N Et 3. HClO ₄ N C N C N C C C C C C C C	$Et_{N} \xrightarrow{\dagger} ClO_{4} ClO_{4} (30)$	48		
	1. DMF, POCl ₃ 2. PhNH ₂ •HCl	PhHN NHPh Cl ⁻ (18)	46		
	DMF, POCl ₃	CI ^{pr} (40)	78, 79		

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$ \underbrace{ \left(\begin{array}{c} C_{4} - C_{10} \end{array} \right)}_{n}^{O} $	1. DMF, POCl ₃ 2. MeRNH, NaClO ₄	$Me_{2}N () + 1 NMeR CIO_{4}^{-} = \frac{n R}{1 Me} (28)$ $2 Me (11)$ $3 Me (60)$ $4 Ph (33)$	80
f_{\ast}	1. DMF, POCl ₃ 2. pbRNH 3. HClO4	PhRN $(1)_{4}^{*}$ NRPh ClO ₄ H (42) Me (40)	68
OEt CHO	1. DMF, POCl ₃ 2. Me ₂ NH 3. HClO ₄	$\mathrm{Me}_{2}\mathrm{N}\left(\overset{*}{\underset{2}{\longrightarrow}}\right)_{2}\overset{*}{\overset{*}{\mathrm{NMe}}_{2}}\mathrm{ClO}_{4}^{-} \tag{60}$	68
CHO	1. DMF, POCl ₃ 2. PhNH ₂	PhHN ⁺ NHPh X ⁻ (8-10)	81
СНО	DMF, POCl ₃	СНО (54)	94
OEt CHO	1. DMF, POCl ₃ 2. PhMeNH 3. HX	PhMeN $(\longrightarrow)_{4}^{+}$ NMePh X ⁻ $\frac{X}{Cl}$ (15) Br (17) ClO ₄ (15)	68

TABLE X. ALDEHYDES (Continued)

		TABLE XI	. KETONES	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	DMF, POCI3	Cl Cl CHO (39)	79, 386, 83	
		1. DMF, POCl ₃ 2. K ₂ CO ₃	$= - \begin{pmatrix} & NMe_2 \\ & CHO \end{pmatrix} $ (14)	299
		DMF, COCl ₂	CI ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	78
		DMF, COCl ₂	$Me_2^{+}NMe_2 \qquad (31)$	299
		1. DMF, COCl ₂ 2. K ₂ CO ₃	$OHC \xrightarrow{NMe_2} CHO (25)$	299
		1. DMF, COCl ₂ 2. NaClO ₄	$Me_2N \xrightarrow{\text{r}} NMe_2 + Me_2 2CIO_4^- (87)$	299
		DMF, PBr ₃	Br CHO (20)	92
		[BrHC=NMe ₂] ⁺ Br ⁻	Br CHO (27)	92

	TABLE XI. KETONE	ES (Continued)	Product(s) and Yield(s) (%)	Refs.
Substrate	Conditions			
	1. DMF, COCl ₂ 2. NH ₃ 3. Cu(OAc) ₂	CHO	(66)	299
	1. DMF, COCl ₂ 2. NH ₃ 3. HCl	OH CHO + N CI-	(39)	299
GrGu	1. DMF, COCl ₂ 2. K ₂ CO ₃ 3. NH ₄ Cl, H ₂ O, NH ₃	NMe ₂ CHO	(15)	299
R N2	1. [Me2N=CHCI]*CF , −10° 2. rt, 1h	R CHO N2	R Me (14) <i>i</i> -Pr (27) <i>i</i> -Bu (21) <i>t</i> -Bu (44) 2-furyl (30) 2-thienyl (21) <i>i</i> -Me-2-pyrrolyl (12) <i>i</i> -Me-3-pyrrolyl (15) 3,5-Me ₂ -3-furyl (19) 2,5-Me ₂ -3-furyl (17) 4-MeC ₆ H ₄ (66) 4-MeOC ₆ H ₄ (20) <i>i</i> -naphthyl (41) 2-naphthyl (35)	112d
	DMF, POCl ₃	СІ, СНО	(46)	71
	DMF, POCI ₃	Cl Cl CHO		79, 386, 83 387 82
	1. DMF, POCl ₃ 2. K ₂ CO ₃	(•NMe ₂ (18) O	299
	1. DMF, POCl ₃ 2. K ₂ CO ₃	Me ₂ N NI	Me ₂ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	299
	1. DMF, POCl ₃ or COCl ₂ 2. NaClO ₄	Me ₂ N ⁺	Me2 СЮ4 ⁻ (67) СНО	299
С,	DMF, PBr ₃	Br	(36)	92
o (s	DMF, POCl ₃	Cl CHO S	(30)	388, 389

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
°		СНО	
	DMF, POCl ₃	X Cl (82)	126, 79, 386
	DMF, COCl ₂ DMF, PBr ₃ [BrHC=NMe ₂] ⁺ Br ⁻	Cl () Br (45) Br (31)	78 92 92
	1. DMF, POCl ₃ 2. HNMe ₂	NMe ₂ + (34)	390
	3. NaClO4 1. DMF, COCl2 2. K2CO3	$Me_2 (20)$ $Mc_2 N (20)$	71
		Me ₂ N + NMe ₂ X-	
	1. DMF, COCl ₂ 2. HClO ₄	X ClO ₄ (100)	71
0	DMF, POCl ₃	PO ₂ Cl ₂ () Cl	48
$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	DMF, POCl ₃	CHO X X S (52)	388, 389
	DMF, POCl ₃	CHO Cl (98)	88, 38, 123, 124,
	N-formylmorpholine, POCl ₃	$\begin{array}{c} CHO \\ Cl \\ Cl \end{array} (17) + \\ OHC \\ Cl \end{array} (29)$	391 123
° V	DMF, POCl ₃	Cl CHO (77)	386, 43, 48
	DMF, COCl ₂	Cl ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	78
	DMF, POCl ₃	Cl CHO (59)	83
\mathbf{y}	DMF, POCl ₃	Cl CHO (14)	83
'	1. DMF, COCl ₂ 2. NaClO ₄ 3. NaOH	CHO (68)	68
	1. DMF, COCl ₂ 2. NaClO ₄	$ \begin{array}{c} \searrow \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \\ \leftarrow \\ \\ \\ \\ \\ \\ \\ \\$	48

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
, Å	DMF, POCl ₃	Cl CHO OHC CHO (10)	392
	DMF, POCl ₃	CHO I CHO I (44)	38
$C_{5}-C_{7}$ $R^{1} \xrightarrow{O} R^{2}$ $R^{3} \xrightarrow{R^{4}}$ $\frac{R^{1}}{Me} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{4}}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{4}}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{4}}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{4}}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{3}} R^{3}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{4}} R^{4}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{4}} R^{4}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{3}} R^{3}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{3}} R^{3}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{3}} R^{3}$ $\frac{R^{1}}{R^{3}} \xrightarrow{R^{3}} R^{3} \xrightarrow{R^{3}} \xrightarrow$	DMF, POCI3	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ R^{5} & & \\ & & \\ \hline R^{2} & R^{3} & R^{4} & R^{5} \\ \hline CI & CI & H & H & (18) \\ CI & CI & Me & H & (45) \\ H & CI & CI & Me & (38) \\ H & CHO & CI & Me & (38) \\ H & CHO & CI & Me & (29) \\ \hline H & CHO & CI & Me & (29) \\ \hline H & CHO & CI & Me & (24) \\ H & CHO & (19) \\ \end{array} \begin{array}{c} \begin{array}{c} R^{2} & R^{3} & R^{4} & R^{5} \\ \hline R^{3} & R^{5} \\ \hline R^{3} & R^{5} \\ \hline R^{3} & R^{5} \\ \hline R^{5} & R^{5} \\ $	89a
C_5-C_8 R CO_2Me	DMF, POCl ₃	$R \xrightarrow{Cl} CO_2Me \qquad \frac{R}{CF_3 (-)} \\ HCF_2 (-) \\ H(CF_2)_2 (-) \\ C_4F_9 (-) \\ H(CF_2)_4 (-) \end{cases}$	393
C_6 X X = Cl, Br	DMF, POCl ₃	$\begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{Cl} \\ \text{Cl} \\ \text{CHO} \end{array} \qquad \begin{array}{c} \text{From } X = \text{Cl } (43) \\ \text{From } X = \text{Br } (59) \end{array}$	123
	DMF, POCI ₃	Cl cho (20)	83
	DMF, POCl ₃	$\begin{array}{c} Cl \\ CHO \\ 1 \end{array} \begin{array}{c} CHO \\ CHO \\ 1 \end{array} \begin{array}{c} CHO \\ CHO $	84 ⁶)
	<i>N</i> -formylmorpholine, POCl ₃	Cl (45) OHC CHO	123
$\begin{array}{c} R^4 & O \\ R^1 & R^2 & R^3 \end{array} \qquad \begin{array}{c} R^1 & R^2 & R^3 & R^4 \\ \hline Me & H & Et & H \\ Et & H & Me & H \\ Me & H & Me & Me \end{array}$ $\begin{array}{c} Me & Me & Me & H \end{array}$	DMF, POCl ₃	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	392
	DMF, POCl ₃	OHC CHO OHC OHC OHC OHC OHC OHC OHC OHC OHC	38
OMe O	DMF, POCl ₃	(42) + (12) (23)	38

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		S S	
Соме	1. MFA, POCl ₃ 2. NH₄*PF ₆ ⁻	$ \begin{array}{c} $	300
	DMF, POCl ₃	S CI (11)	83
Br	N-formylmorpholine, POCl ₃	CHO Cl (20)	123
	DMF, POCl ₃	(24)	123, 124
	DMF, POCl ₃ , Cl ₂ C=CHCl, boil	Cl (20) OHC Cl	122
	<i>N</i> -formylpyrrolidine, POCl ₃	CI CI (42) OHC CHO	122
	N-formylmorpholine, POCl ₃	CI CI (30) OHC CHO	123, 122
0	MFA		122
Ĭ	N-formylmorpholine, POCl ₃	$HO = \frac{Cl}{N} = 0 $ (16)	123
	DMF, POCl ₃	OHC CHO CHO	121
	DMF, POCl ₃	OHC (17) + CHO (26)	119
	DMF, POCl ₃	CHO (51) Cl	391
	DMF, POCl ₃	CHO Cl (25)	391

TABLE XI. KETONES (Continued)				
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.	
	DMF, POCl ₃	(60)	89	
	DMF, POCl ₃	$\mathbf{I}, \mathbf{X} = CI (80)$	126, 79, 386,	
	DMF, COCl ₂	I , $X = C1$ (—)	113 78	
	DMF, PBr ₃	I , $X = Br$ (54)	92	
	1. DMF, PBr ₃ 2. NaOAc	$HO \xrightarrow{\text{Br}} CHO (-) + \xrightarrow{\text{Br}} CHO (-)$	92	
	1. DMF, COCl ₂ 2. NaOAc	HO CHO (>95)	118, 71	
	1. DMF, COCl ₂ 2. NaOAc 3. HClO ₄	$Me_2N \qquad \qquad$	71	
	DMF, POCl ₃	$\mathbf{I}, \ \mathbf{X} = \mathbf{PO}_2\mathbf{Cl}_2 ()$	48	
	1. DMF, POCl ₃ 2. NaOCH ₂ CH ₂ OH	о СНО (36)	115	
× [°]	DMF, POCl ₃	Cl CHO (80)	386, 78,	
	DMF, COCl ₂	Cl Cl CHO (80)	83 79	
	DMF, PBr ₃	Br ,CHO (75)	92	
	1. DMF, POCl ₃ 2. NaClO ₄	$\overset{\text{Cl}}{\swarrow} \overset{+}{\overset{+}}_{\text{NMe}_2} \text{ClO}_4^- \qquad (47)$	33	
	1. DMF, PBr ₃ 2. NaClO ₄	$\overset{\text{Br}}{\swarrow} \overset{+}{\overset{+}} \operatorname{NMe}_2 \operatorname{ClO}_4^- $ (84)	92	
C ₆ -C ₁₀				
R CF3	DMF, POCl ₃	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	86, 394 86 86 87 86 394	
		$\begin{array}{cccc} Ph & (75) & 40:60 \\ 3-CF_3C_6H_4 & (79) & 55:45 \\ 4-MeC_6H_4 & (81) & \\ 4-MeOC_6H_4 & (75) & 45:55 \\ \hline COD From Code \\ COD From C$	87 87 395 87	
	Divir', $COCI_2$	CO ₂ Ei ()	393	
	TABLE XI. KETONES	S (Continued)	Refs	
--	---	---	---------	
Substrate	Conditions	Product(s) and Trend(s) (10)		
C_7 C_7 C_7 R^2	DMF, POCl ₃	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	392	
20:1 0 + 20:1	DMF, POCl ₃	OHC CHO (60)	121	
7:3	DMF, POCl ₃	OHC CHO (63)	121	
	DMF, POCl ₃	CHO Cl (24)	391	
	DMF, POCl ₃	CHO Cl Cl (7.5)	391	
	DMF, POCl ₃	Cl CHO (5) + OHC (47)	119	
	1. DMF, POCl ₃ 2. HCONH ₂	$ \begin{array}{c} & & \\ & & $	117	
	DMF, POCl ₃	X CHO	79, 386	
	DMF, COCl ₂	I, X = CI (88)	126	
	DMF, PBr ₃	I , $X = Br$ (45)	92	
	[BrHC=NMe ₂] ⁺ Br ⁻	I , $X = Br$ (67)	92	
	DMF, POCl ₃	$Me_2N \qquad \qquad$	48	
Me ⁻ Ne ⁻ I ⁻	DMF, POCl ₃	$Me_2N \xrightarrow{\begin{array}{c} Cl \\ Me_2N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	48	
	1. DMF, POCl ₃ 2. NaOCH ₂ CH ₂ OH	$\int_{n-\Pr}^{O} CHO $ (50)	115	
O OAc	DMF, POCl ₃	Cl OAc (30) CHO	396	
C_{7} - C_8				
Q		CI R		
R	N-formylmorpholine, POCl ₃	OHC R Me (33)	397,	
L 🗍		Et (12)	350	

	TABLE XI. KETONE	S (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
R	N-formylmorpholine, POCl ₃	$R \xrightarrow{CI} \frac{R}{H} \frac{R}{(66)}$ $Me (73)$	350
C_7-C_{1R} $R^1O_2C\left(\int_{R} R^2 R^2 \right)$	DMF, POCl ₃	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 90
C ₈ O OEt	N-formylmorpholine, POCl ₃	$Et Ph 3 (77)$ $Et 4-(i-Pr)C_{6}H_{4} 1 (67)$ $Et 4-(c-C_{6}H_{11})C_{6}H_{4} 1 (60)$ $OHC + (CHO) (31)$ $CI + (CHO) (31)$	350
	DMF, POCl ₃	0HC СНО (30) + СНО (3	3) 398
	N-formylmorpholine, POCl ₃	I I (22)	123
SMe	1. DMF, POCl ₃ , 0–5° 2. п, 20 h	OHC SMe (38)	399
	DMF, POCl ₃	Cl CHO (40) $+$ Cl (2)	119
	DMF, POCl ₃	CI (24) + (24) (24) (24)	119
	DMF, POCl ₃		126, 386
0	DMF, COCl ₂ DMF, PBr ₃ [BrHC=NMe ₂] ⁺ Br	I, X=Cl () I, X=Br (37) I, X=Br (63) Q Ph(Me)N Cl ⁻	78 92 92
↓ S	1. MFA, POCl ₃ 2. NaOAc	HOHC, R (29) + HOHC (1) R R OHC (29) + HOHC (1) OHC (29) + HOHC (1) OHC (29) + HOHC (1) OHC (29) + HOHC (1) OHC	19) 220
		+ Cl (5) + S NMePh (38) + S	(5) —CHO

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
0 C ₆ F ₅	1. DMF, POCl ₃ 2. HClO ₄	$C_{6}F_{5} \xrightarrow{NMe_{2}} (36) + F \xrightarrow{F} (0) (3)$	112a
O OH	DMF, POCl ₃	CHO (-)	400
Ph	DMF, PBr ₃	Ph CHO	92
	[BrHC=NMe ₂] ⁺ Br ⁻	I , $X = BI$ (45) I , $X = Br$ (68)	92
	1. [IHC=NMe₂] ⁺ I [−]	I, X = I (72)	345
	2. NaClO ₄		
	3. NaOAc	x	
	1. $[IHC=NMe_2]^+ I^-$	Ph NMea CIQ-	345
	2. NaClO ₄	II , $X = I$ (90)	
	1. DMF, COCl ₂	$\mathbf{II}, \mathbf{X} = \mathbf{Cl} (98)$	71
	2. NaClO ₄		
	1. DMF, PhOP(O)Cl ₂	$\mathbf{II}, \mathbf{X} = \mathbf{CI} (62)$	345
	2. NaClO ₄		
	1. DMF, PBr ₃	$\mathbf{H}, \mathbf{X} = \mathbf{Br} (50)$	92
	2. NaCl O_4		
	1. [BrHC=NMe ₂] ⁺ Br ⁻	II , $X = Br$ (76)	92
Q	2. NaClO ₄	0	
Ph I N2	[CIHC=NMe₂] ⁺ CI [−]	Ph CHO (50)	160
°	<i>N</i> -formylmorpholine, POCl ₃	OHC CHO (29)	350
C_8-C_{10} R^1 N_3	XCHO, POCl ₃	R^1 Cl Cl R^2	93c, 93d
		R^1 R^2	

		I	п			
R1	\mathbb{R}^2	х	Y	I	п	ш
н	н	Me ₂ N	Me ₂ N	(35)	(50)	(0)
Н	н	PhMeN	PhMeN	(0)	(41)	(0)
н	н	Morpholino	Morpholino	(30)	(12)	(0)
Br	Н	Me ₂ N	Me_2N	(28)	(26)	(0)
Cl	н	Me ₂ N	Me_2N	(44)	(44)	(0)
н	Me	Me_2N	Me_2N	(0)	(53)	(19)
Br	Me	Me_2N	Me_2N	(0)	(80)	(0)
Cl	Me	Me ₂ N	Me ₂ N	(0)	(78)	(0)
н	Me	PhMeN	PhMeN	(0)	(46)	(2)*
н	Me	Morpholino	Morpholino	(0)	(53)	(18)
н	Ме	Piperidino	Piperidino	(0)	(53)	(20)
Н	Et	PhMeN	PhMeN	(0)	(29)	(3)*
н	Et	Morpholino	Morpholino	(0)	(29)	(33)
н	Et	Piperidino	Piperidino	(0)	(19)	(51)
Br	Et	Me ₂ N	Me_2N	(0)	(30)	(36)
	*In t	hese compour	ds Y = (4-OH	CC ₆ H ₄)	MeN	

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₈ -C ₁₂ O Ar	1. DMF, POCl ₃ 2. HClO ₄	$\begin{array}{c} Cl & Ar \\ \hline & & & \\ Ar & & & \\ Ar & & & \\ Ar & & & \\ & & & \\ Ar & & & \\$	401
	1. [CIHC=NMe ₂] ⁺ Cl ⁻ , CHCl ₃ , boiling point 2. NaClO ₄	Ar (1) $($	402 402 402 402 33
	1. DMF, POCl ₃ 2. NH ₂ OH	$\begin{array}{c c} Cl & & \\ \hline Ar & \\ \hline 4-ClC_6H_4 & (74) \\ \hline 4-BrC_6H_4 & (54) \\ \hline CN & 4-O_2NC_6H_4 & (61) \\ \hline Ph & (50) \\ \hline 4-MeC_6H_4 & (46) \\ \hline 4-MeOC_6H_4 & (47) \\ \hline 2-naphthyl & (44) \end{array}$	403
R^{1} $(+++)$ $(++)$ $(++)$ R^{4} $(++)$ R^{3} $(++)$ $(+)$	1. DMF, POCl ₃ , 0° 2. 90°, time	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106 112c 112c 112b 112b 112b 112c 112c 112c
COMe	DMF, (Cl ₂ PO) ₂ O, 0°	СНО (61)	102

Substrate	Conditions		Product(s) and Yiel	d(s) (%		Refs
Substrate	Conditions		P			
		U II				102
COMe			CHU 3,5-Br ₂	(DL	<i>))</i>	103
R	DMF, $POCI_3$	R	3,5-Cl ₂	(/)	()	103
ОН		~ .0.	5-Cl	(53	3)	103
			Н	(71	1)	100
			5-Cl-7-M	e (58	3)	103
			4-Me	(86	5)	100
			4,5-Me ₂	(55	5)	103
			3,5-Br ₂	(4())	101, 10
			5-Cl	(73	3)	101, 10
			5-O ₂ N	(54	4)	101, 10
			5-Me	(65	5)	101, 10
			5-CN	(55	5)	101, 1
			4-MeO	(6)	101, 10
			5-MeO	(62	2)	101, 1
			6-MeO	(6)	1)	101, 10
			5-HO ₂ C	(14	4)	101, 10
			3,5-Me ₂	(25	5)	101, 10
			5-Et	(70	5)	101, 10
			5-Me ₂ N	(49	9)	101. 10
			4.5-(MeC)n (4)	101, 10
			4-AcO	.,2 (6	, 7)	101, 10
			6-AcO	(0)	~ <i>,</i> 7)	101 1
			5 n.Pr	(5)	7) Z)	101, 1
			5 i De	().)))	101, 1
			J-1-FI	(4)	2) 7)	101, 1
			5-n-Bu	()	2) ()	101, 1
			4,5-(AcU) ₂ (0	b)	101, 1
			4,6-(AcC) ₂ (8	U)	101, 1
			5- <i>n</i> -C ₆ H ₁	.3 (6	0)	101, 10
			<i>Ֆ-Ը-</i> Ը ₆ Ոլ	1 (4.	3)	101, 10
Q		CI	Ar	R		
R	DMF, POCl ₃	↓ .R	4-CIC ₆ H ₄	Н	(30)	127
Ar' 🗸		Ar Street	4-BrC ₆ H ₄	Н	(24)	127
		ĆНО	4-O2NC6H4	н	(71)	387
			Ph	Н	(54)	91, 79
						94, 38
						387.4
						386
			РЬ	CE.	()	30/
			2-McOC-H	ыз Н	(40)	37 4 327
			3-MeOC-U	и Ц	(71)	
			A Magor II	n U	(71)	95
			+-IVICUC6H4	п	(70)	95, 12 404
			2-BrC ₆ H ₄	Me	(85)	94
			4-BrC ₆ H ₄	Мс	(79)	94
			2-O2NC6H4	Me	(69)	94
			3-O2NC6H4	Me	(58)	94
			4-O2NC4H4	Me	(80)	94
			Ph 2	Me	(98)	372. 7
					</td <td>94. 38</td>	94. 38
						387
						567
			2-MeC.H.	Mo	(63)	0/
			$2-\text{MeC}_6\text{H}_4$	Me	(63)	94
			2-MeC ₆ H ₄ 3,4-(MeO) ₂ C ₆ H ₃	Me H	(63) (60)	94 404, 83
			2-MeC ₆ H ₄ 3,4-(MeO) ₂ C ₆ H ₃ 2-(3-methylindolyl)	Me H H	(63) (60) (50)	94 404, 83 260
			2-MeC ₆ H ₄ 3,4-(MeO) ₂ C ₆ H ₃ 2-(3-methylindolyl) 2-naphthyl	Me H H H	(63) (60) (50) (56)	94 404, 83 260 83, 387
			2-MeC ₆ H ₄ 3,4-(MeO) ₂ C ₆ H ₃ 2-(3-methylindolyl) 2-naphthyl 6-MeO-2-naphthyl	Me H H H	 (63) (60) (50) (56) (30) 	94 404, 83 260 83, 387 387
			2-MeC ₆ H ₄ 3,4-(MeO) ₂ C ₆ H ₃ 2-(3-methylindolyl) 2-naphthyl 6-MeO-2-naphthyl 4-PhC ₆ H ₄	Me H H H H	 (63) (60) (50) (56) (30) (36) 	94 404, 83 260 83, 387 387 127
			2-MeC ₆ H ₄ 3,4-(MeO) ₂ C ₆ H ₃ 2-(3-methylindolyl) 2-naphthyl 6-MeO-2-naphthyl 4-PhC ₆ H ₄ Ph	Me H H H H Ph	 (63) (60) (50) (56) (30) (36) (50) 	94 404, 83 260 83, 387 387 127 127

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
R ² R ¹ COCH ₂ N ₃	DMF, POCl ₃ (6 eq), rt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	93a, 93b
C ₉ C ₉ C ₉ C ₉	DMF, POCl ₃ , 80-90° (X = N ₃); or 1. DMF, NaN ₃ 2. POCl ₃ , heat (X = Br)	$R^{1} \xrightarrow{(X = N_{3})} (X = Br)$ $R^{1} \xrightarrow{(X = N_{3})} (X = Br)$ $R^{1} \xrightarrow{(X = N_{3})} (X = Br)$ $C1 (36) (48)$ $Br (42) (56)$ $Ph (45) (61)$ $OHC \xrightarrow{(X = N_{3})} (X = Br)$	93a, 93b
	DMF, POCl ₃ DMF, POCl ₃ (3 eq) <i>N</i> -formylmorpholine, POCl ₃	I = 2:1 + II (-) $I = 2:1 + II (-)$	406 406 350
O R	<i>N-</i> formylmorpholine, POCl ₃	OHC R R $n-Pr$ (3) <i>i</i> -Pr (5)	397
	<i>N</i> -formylmorpholine, POCl ₃	OHC CHO (31)	350
Ph	1. DMF, POCl ₃ 2. NaOAc, H ₂ O	Ph Ph (92)	94
	DMF, COCl ₂	Ph CHO	79, 78
	DMF, PBr ₃ [BrHC=NMe ₂] ⁺ Br	I, $X=C1$ (60) I, $X = Br$ (71) I, $X = Br$ (11)	92 92
	1. DMF, POCl ₃ 2. NaOCH ₂ CH ₂ OH	O Ph CHO (59)	115
Ĺ	1. MFA, POCl ₃ 2. NH ₄ ⁺ PF ₆ ⁻	$ \begin{array}{c} \text{Ar} \\ \text{CHO} \\ \text{(32)} \\ \text{N+} \\ \text{PF}_{6}^{-} \\ \text{Me} \\ \text{Ar} = 4 \cdot \text{MeC}_{6}\text{H}_{4} \end{array} $	300
Meo	1. DMF, PCI5 2. NH2OH	Cl MeO (50)	403
0 	1. DMF, POCl ₃ 2. NH ₂ OH	I I (42) O	403
CI	DMF, POCl ₃	CI (69)	103

	TABLE XI. KETON	ES (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
N CO ₂ Me	1. DMF, POCl ₃ 2. ClO ₄ -	$ \begin{array}{c} CI \\ \downarrow \\ \downarrow \\ N \\ H \end{array} \xrightarrow{r^{-}} NMe_2 Clo_4^{-} \\ (33) $	407
	DMF, POCl ₃	CI CHO (80)	408
PhCF ₃	DMF, POCl ₃	$\begin{array}{c} Cl \\ Ph_{n} \\ CF_3 \\ CHO \end{array} (80) E:Z = 4:6 \\ CHO \end{array}$	394, 409
	DMF, POCl ₃	СІ (—)	74
()	1. [C1HC=NMe2]⁺C1- 2. NaClO4	$ \begin{array}{c} \stackrel{+}{\underset{\scriptstyle}{\overset{\scriptstyle}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{}}{\overset{\scriptstyle}}}{}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}{}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{}\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{}\overset{\scriptstyle}}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{}\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{}\overset{\scriptstyle}}{\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{}\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}}{\overset{\scriptstyle}}{}\overset{\scriptstyle}}{\overset{\scriptstyle}}}{}}{}\overset{\scriptstyle}}}{}\overset{\scriptstyle}}}{}}}{}\overset{\scriptstyle}}{}\overset{\scriptstyle}}{}}{}}$	36
	Me ₂ NN=CHCHO, POCl ₃	$\bigcup_{0}^{0} \longrightarrow \mathbb{NNMe}_{2} \qquad (42)$	135
	DMF, POCl ₃	$\begin{array}{c} Cl \\ CHO \\ X \end{array} \begin{array}{c} X \\ CHO \\ S \end{array} \begin{array}{c} (36) \\ S \end{array} \begin{array}{c} (68) \end{array}$	127
	DMF, POCl ₃ (n eq)	$I + \bigcup_{X} + $	388, 389
		XnTemp.IIIIIIO1.3 65° ()(0)(0)O5 100° (0)(0)(48)S1.3 20° ()(0)(0)S5 100° (40)(29)(0)	
See O	_	Cl CHO ()	128
O Ph	DMF, POCl ₃	Cl Ph Ph	94, 387
	DMF, POCl ₃	I () $E:Z = 58:42$	82
	_	I ()	394
	DMF, POCl ₃ , (4 eq)	Ph (60)	410

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
Ph	DMF, PBr ₃	Br cHO (25) Ph	92
	[BrHC=NMe2]*Br-	Br (56)	92
	1. DMF, POCl ₃ 2. NaOCH ₂ CH ₂ OH	O O Ph (32) CHO	115
	HCONH ₂ , POCl ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	411
	DMF, POCl ₃	CHO (56)	119
	DMF, POCl ₃	Cl CHO (65)	83
MeO 0 ⁺	DMF. POCl ₃	MeO CHO (97)	412
	1. DMF, POCl ₃ 2. NaClO ₄ 3. NaOH	$\begin{array}{c c} CI & CHO & Ar \\ \hline Ph & (36) \\ Ar & O & NMe_2 & 4\text{-CIC}_6H_4 & (28) \\ \hline 4\text{-HOC}_6H_4 & (15) \\ \hline 4\text{-MeOC}_6H_4 & (36) \end{array}$	413
$Ar \longrightarrow CF_3$ $C_9 C_{12}$	1. DMF, POCl ₃ , π 2. 65°, 6 h	$\begin{array}{ccc} CHO \\ Ar & E:Z \\ Ph & (75) & 63:37 \\ Cl & 4-BrC_6H_4 & (77) & 50:50 \\ & 3-CF_3C_6H_4 & (79) & 46:54 \\ & 4-MeOC_6H_4 & (75) & 55:45 \end{array}$	87
R^1 S R^2	1.DMF, POCl ₃ , 0° 2. 60°, 3 h	$R^{1} - CI + R^{1} - CI$ $R^{1} - R^{2} - R^{2} - R^{1} - R^{2}$ $I - II$ $\frac{R^{1} - R^{2} - I - II}{H - SMe - (56) (30)}$ $H - SO_{2}Me (46) (0)$	414
		$\begin{array}{rrrr} CO_2 Et & SMe & (61) & (25) \\ CO_2 Et & SO_2 Me & (0) & (0) \end{array}$	

Gubetrata	Conditions	Product(s) and Yield(s) (%)	Refs.
Substrate	Conditions		
C ₁₀ Me ₂ N	1. [CIHC=NMe2] ⁺ CI ⁻ , п 2. NaClO4 3. NaHCO3	Me ₂ N CHO (66)	33
	1. [CIHC=NMe₂]*CI⁻, 75° 2. H₂O	Cl CHCH CHO (23) + Cl Me ₂ N CHO (23) + Cl	D (25) 33
0 ^{Ph}	1. [CIHC=NMe2]*CI⁻ 2. NaClO4	Ph $^{\text{Cl}}$ $^{\text{+}}_{\text{NMe}_2 \text{ClO}_4^-}$ (65)	69
	1. [CIHC=NMe2]*CI− 2. NaClO4 3. Me2NH	$\overset{\text{NMe}_2}{\underset{\text{Ph}}{}}\overset{\text{+}}{\underset{\text{NMe}_2}{}}\operatorname{CIO}_4^-}$	69
	1. [CIHC=NMe ₂]⁺CI⁻ 2. NaClO ₄ 3. Me ₂ NH 4. NH ₃ , NH₄Cl	(20)	69
	<i>N</i> -formylmorpholine, POCl ₃	OHCHC (95)	350
o o o BF ₂	DMF, POCl ₃	CHO (7)	412
	DMF, POCl ₃ (4 eq)	$Ar \qquad \qquad Ar \qquad \qquad 2-MeOC_6H_4 (63) \qquad \qquad$	410
	DMF, POCl ₃ (4 eq)	$\begin{array}{c} OMe \\ \hline \\ \hline \\ CHO \end{array} \qquad \begin{array}{c} Ar \\ \hline 3-MeOC_{6}H_{4} (72) \end{array}$	410
	DMF, POCl ₃	$\begin{array}{c c} CI & CHO & \underline{x} \\ & & O & (70) \\ \hline & & S & (54) \end{array}$	127
	DMF, POCl ₃	OHC _{wn} Cl Cl OHC Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl C	415

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	DMF, POCl ₃	OHC (55)	391, 415
Ph Ph	DMF, POCl ₃ , 50°	Ph (50)	391
	DMF, POCl ₃ , 80°	Ph (18.5)	391
Р.Н	DMF, PBr ₃	OHC H (47)	416
k − °	1. DMF, POCl ₃ 2. HCONH ₂	(33)	116
	DMF, POCl ₃	CI CHO (88)	125, 126, 417, 418, 419
	DMF, PBr ₃	Br CHO ()	420
	DMF, POCl ₃ , 27°, 8 h	Cl (84)	418
	1. DMF, POCl ₃ , 100°, 5 min 2. rt, overnight	CHO CHO CHO	421
See Cu	1. DMF, POCl ₃ 2. NaOCH ₂ CH ₂ OH	CHO (36)	115
R^2 R^1 R^3	DMF, POCl ₃	R^{2} R^{1} R^{1} R^{2} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R	422
		R^1 R^2 R^3 Temp I II H H C1 40° (0) (68) C1 H H 90° (65) (0) H H H 90° (65) (0) H H H 90° (65) (0) H H H 90° (0) (60) Me H H 90° (0) (69) OMe H H 90° (62) (0) H OMe H 90° (62) (0)	

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
x CO ₂ H	DMF, POCl ₃	$\begin{array}{c} & X \\ & Cl & (75) \\ & H & (80) \\ & Me & (85) \end{array}$	89
R^1 R^2 O PC_{16}	HCONH ₂ , POCI ₃	$\begin{array}{ccc} & & & & & & \\ & & & & & \\ R^1 & & & & \\ & & & & \\ R^2 & & & & \\ R^2 & & & & \\ R^2 & & & & \\ R^1 & & R^2 & & \\ & & & & -OCH_2O- & (-) \\ & & & & & \\ McO & H & (6) \\ & & & MeO & (-) \end{array}$	423 411 423
$\bigcup_{0}^{CN} R = H, Me, Ph$	HCONH ₂ , POCl ₃	$ \begin{array}{c} H_2 N \\ N \\ 0 \\ 0 \\ \end{array} $	424
$MeO \xrightarrow{CN} R = H, Me, Et, Ph$	HCONH ₂ , POCl ₃	$MeO \xrightarrow{H_2N}_R (-)$	425
MeO	DMF, POCl ₃	MeO CHO (84)	125, 417
	DMF, POCI3	$\begin{array}{c cccc} O & O & \\ O HC & & \\ & & \\ & & \\ & & \\ N & \\ & &$	142
	DMF, POCl ₃	CI CHO (75)	126, 426
	DMF, POCl ₃ (1 eq)	CI CHO (6) Et	131
	DMF, POCl ₃ (2 eq)	$\begin{array}{c} OHC \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	131
	DMF, PCI ₃	$\begin{array}{c c} X \\ X \\ X \\ X \\ X \\ CHO \\ C$	129

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
$MeO \qquad \qquad CN \\ MeO \qquad \qquad R = 1$	HCONH ₂ , POCl ₃ H, Me, Ph	$MeO \xrightarrow{H_2N} N \xrightarrow{N} (-)$ $MeO \xrightarrow{R}$	427
MeO	HCONH ₂ , POCl ₃	MeO N MeO N N N N N N N N N N N N N	428
	DMF, POCl ₃	Cl CHO (82) O Ph	114
MeO MeO	DMF, POCl ₃	MeO MeO MeO Cl Cl Cl Cl Cl (30)	421
OH O	DMF, POCl ₃	СНО 0 (64)	429
Он	DMF, POCl ₃	CHO (90)	429
o ⁺ BF ₂	DMF, POCl ₃ (2 eq)	O CHO (25) +	CHO O (71) 429, 105 OH
o ⁺ BF ₂	DMF, POCl3 (2 eq)	CHO (91)	429
	1. DMF, POCI ₃ 2. Na ₂ CO ₃ (aq)	Fe Cl CHO (55)	98
	DMF, POCl ₃	Fe ()	403a
N.	"Vilsmeier complex"		96

	TABLE XI. KETONE	S (Continued)	
MeO MeO	Conditions	$MeO \qquad \qquad$	430
MeOCCO2Et NHNAr	DMF, POCl ₃	$\begin{array}{c cccc} & & & & & & & \\ & & & & & & & \\ $	142
	DMF, POCl ₃	CI CHO (80)	127, 431
	DMF, POCl ₃	CHO CHO (41)	323
	DMF, POCl ₃	OMe O CHO OMe (89)	432
	DMF, POCl ₃	R = CI $R = CI$ (41)	391, 415
Ph O	HCONH ₂ , POCl ₃	$ \begin{array}{c} Ph \\ N \\ N \\ N \end{array} (17) + \begin{array}{c} Ph \\ Ph \\ N \\ N \\ N \end{array} (3) $	411
R MeO	DMF, POCi3	$R \rightarrow CI \qquad R \rightarrow CH \qquad R \rightarrow H \rightarrow$	433
	1. DMF, POCl ₃ , 0° 2. 80°, 5-6 h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	434
R O	DMF, POCl ₃	$\begin{array}{c} Cl \\ R \\ \hline \\ R \\ \hline \\ R \\ \hline \\ \\ \\ \\ \\ \\ \\ \\$	434a
R^{1} $R^{1} = H, Cl, Br, CO_{2}Et$ $R^{2} - H Me$	"Vilsmeier reagent"	OHC N (60-80)	435

TABLE XI. KETONES (Continued)					
Substrate	Conditions	Product(s) and Yield(s) (%)	Reis.		
C_{12} - C_{19} C_{12} - C_{19} C_{12} - C_{19} C_{12} - C_{19} C_{12} - C_{19}	DMF, POCl ₃ (1 eq)	$I = \begin{bmatrix} R & I & H \\ H & (0) & (85) \\ R & (85) & (0) \\ Ph & (98) & (0) \\ Bn & (96) & (0) \end{bmatrix}$	429		
e^{-BF_2}	DMF, POCl3 (1 eq)	$I = \begin{bmatrix} 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & &$	429		
$C_{12}C_{20}$ $R^{2} \qquad NH_{2} \qquad 0$ $R^{1}0 \qquad 0$	DMF, POCl ₃	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	436		
	DMF, POCl ₃ , cold	$\mathbf{C} \mathbf{I} + \mathbf{C} \mathbf{H} \mathbf{O} + \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$	85		
O + N Br	of () NMePh, MeCOBr or PhCOBr	$H_{N}^{+} Br^{-} (-) n = 1 \text{ or } 2$ $ArCO^{-} H_{n}^{+} Ar = 4 - BrC_{6}H_{4}$	437		
	_	Cl r ^r CHO (68)	438, 439		
Me-N _N Ph	DMF, POCI ₃	$Me^{-N} N He^{-N} Ph^{(73)}$	83		
	DMF, POCl ₃	CI CHO (84)	440		
	DMF, POCl ₃	CHO (86)	440		

TABLE XI. KETONES (Continued)					
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.		
	DMF, POCl ₃	Z:E = 1:2	387		
EtO ₂ C Ph	DMF, POCl ₃	EtO_2C R Cl Me (57) Et CHO Et (71)	90		
$R^{1} \rightarrow N - SO_{2}R^{2}$	DMF, POCl ₃	$R^{1} \xrightarrow{Cl} N - SO_{2}R^{2} + R^{1} \xrightarrow{R} N - SO_{2}R^{2}$ $I \xrightarrow{R^{1}} R^{2} \xrightarrow{I} I$ $\frac{R^{1}}{MeO} Mc \xrightarrow{(29)} (30)$ $H \xrightarrow{4}MeC_{2}H_{4} (19) (36)$	² 311, 312		
	DMF, POCI3	$Me^{-N} N = 0$ (75)	83		
Ph O Ph Ph	DMF, PBr ₃	Ph Br Ph CHO (75) Ph	92		
	H2NCHO, POCl3	$\stackrel{Ph}{\overbrace{N}} (-)$	423, 441		
	DMF, POCl ₃	Cl CHO (71)	442		
C S S	DMF, POCI3	OHC Cl (52)	443		
	Me ₂ NN=CHCHO, POCl ₃ or COCl ₂	0 (70) Me ₂ NN	135		
	1. MFA, POCl ₃ 2. NH ₂ OH	(40)	242		
OH O OII	DMF, PhCOCl	OH O OH OH OH	134a		
		NMe ₂ COOPh			
		(51) (15)			

	TABLE XI. KETONES	(Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	R ¹ MeNCHO, POCl ₃	$\begin{array}{c} OH & O & OH \\ \hline H & O & OH \\ \hline H & H & R^2 \\ \hline H & Me \ (25) \\ Ph & Me \ (11) \\ I \end{array}$	134b
	[R ¹ R ² N=CHCl ⁺]Cl ⁻ , MeN MeN MeN MeN NMe, pyridine	$I \qquad \qquad$	134b
	DMF, POCl ₃	(46)	432
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	DMF, POCl ₃ , rt	Cl (34) Me ₂ N	260
	DMF, POCl ₃ , 70°	CHCHO CI CO ₂ Et (73)	260
$\begin{array}{c} C_{14} - C_{15} \\ HO \\ HO \\ R^1 \end{array} \xrightarrow{O} \\ R^2 \\ HO \\ R^1 \end{array}$	DMF, POCl ₃	$HO \xrightarrow{P} R^{2} R^{2} = \frac{R^{1} R^{2}}{H Ph} (100)$ $R^{1} OH Ph ()$ $I H 4-MeOC_{6}H_{4} ()$	444, 445 444 444
	_	$I () R^1 = H; R^2 = 4 - FC_6 H_4 O \text{ or PhO}$	445
	DMF, POCl3	$\begin{array}{c} C \\ Y \\ Y \\ R \\ R \end{array} \begin{array}{c} R \\ R \\ R \end{array} \begin{array}{c} R \\ R \\ R \\ R \end{array} \begin{array}{c} R \\ R \\ R \\ R \\ R \end{array} \begin{array}{c} R \\ R $	131
$C_{14}C_{16}$ R^4 R^4 R^3 $C_{14}C_{20}$	MFA, POCl ₃	$R^{4} \xrightarrow{CI}_{R^{3}} \xrightarrow{R^{1}}_{CHO} R^{2} \xrightarrow{(-)} \frac{R^{1}}{CI} \xrightarrow{R^{2}}_{R^{3}} \frac{R^{4}}{R^{4}}$ $H H H H H$ $H H H$ $H H H$ $H MeO H MeO$	134
	DMF, POCl ₃	$\begin{array}{c} Ph \\ R \\ OHC \\ Cl \end{array} \\ \begin{array}{c} Ph \\ N \\ Cl \end{array} \\ \begin{array}{c} R \\ H \\ H \\ Cl \end{array} \\ \begin{array}{c} R \\ H \\ R \\ H \\ Cl \end{array} \\ \begin{array}{c} R \\ H \\ R \\ R \\ H \\ Cl \end{array} \\ \begin{array}{c} R \\ R \\ H \\ R \\$	132

		Braduet(e) and Vield(e) (#)	Dof
Substrate	Conditions	Product(s) and Tield(s) (%)	Kei
O Ph	DMF, POCl ₃	Cl CHO Ph ()	447
	DMF, POCl ₃	(40)	323
COMe BnO ₂ C N H	DMF, POCl ₃	BnO ₂ C N (69)	446
Ph Ph	DMF, POCl ₃	$Ph \xrightarrow{0} Ph (35)^{e}$	448
$\operatorname{H}_{\operatorname{A}}$	DMF, POCl ₃	CI CHO OHC (68)	415
Ph N N O	DMF, POCl ₃	CIHC O (72)	132
	DMF. POCl ₃	$\begin{array}{c cccc} CI & & X & & \\ \hline CHO & X & CHO & S & (73) \\ \hline SO_2 & (68) \\ CO & (69) \\ \end{array}$	415
	DMF, POCl ₃	$\begin{array}{c} CH_2 (73) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	449
R^1 R^2 C_{17} - C_{19}	DMF, POCl ₃ , 80-100°	$\begin{matrix} Cl & & R^1 & R^2 \\ R^1 & & F & (24) \\ R^2 & & Cl & H & Br & (22) \\ R^2 & & H & MeO & (37) \\ MeO & MeO & (35) \end{matrix}$	450
R^1 OMe OMe R^2 OMe OMe OMe	DMF, POCl ₃	R^{1} R^{2} R^{2	451
- 10 MeO	DMF, POCl ₃ , 0-60°	MeO MeO (47)	447

	Substrate	Conditions	Product(s) and Yield(s) (%)	Ref
0 H	\mathbb{R}^{1}	DMF, POCI3	$\begin{array}{c} OHC \\ Cl \\ Cl \\ H \\ H \\ Cl \\ H \\ H \\ OAc \\ OAc \\ H \\ OAc \\ OAc \\ H \\ OAc $	۲ 22
	COMe	DMF, POCI3, AcCl		452
Aco		DMF. POCl ₃	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	II 454, (69) 454, () 35 (41) 120a
o	H	DMF, POCl ₃ , AcCl, boiling point	CI H (5)	453
		 DMF, POCl₃, rt Boil NaAc (aq), boiling point 	(20 crude) HOHC	453
	J S S S S S S S S S S S S S S S S S S S	DMF, POCI3, AcCl	OAc (22)	453
Η̈́		DMF, PBr3, Cl2C=CCl2, reflux	$\begin{array}{ccc} X & & H \\ OHC & I, X = CI \\ I. X = Br & (32 crude) \end{array}$	453
		DMF, POCl ₃	I, $X = C1$ (20)	120a,
o H	OAc J	DMF, POCl ₃ , AcCl	$OHC \rightarrow H \rightarrow (45) + CI \rightarrow H \rightarrow H$	35 `(3) 452
Ph	O Ph	DMF, POCl ₃	CHO (45)	353

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$C_{21}-C_{27}$ R^{3} R^{4} $C_{21}-C_{27}$ R^{3} R^{4} R^{4} R^{2} R^{2}	DMF, POCI3	$C_{1} \xrightarrow{R^{1}} C_{1} \xrightarrow{R^{1}} C_{1} \xrightarrow{R^{1}} I$	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 22 73 22, 73 22 73 73 22 22 22 22
C ₂₂	DMF, POCl ₃	OHC CI CI CHO (56)	459
OAc OH	DMF, POCl ₃	$Me_2N \xrightarrow{P} H $ (34)	454
	DMF, POCl ₃ , excess	OHC CI OHC H OHC H (12)	454
	_	Ph + CHO CI (29)	460
	DMF, POCI ₃	(39) + OHC CI) 22

^a The yield given is that of the product isolated as the cupric salt.

^b The authors repeated the work detailed in reference #83 where the yield was reported as 20%. They did not report a yield for this reaction in reference #84.

^c This reaction was carried out at rt.

^d The ratio of E to Z isomers in the crude mixture is 6:4.

^e Sixty percent of the starting ketone was recovered.

	Substrate	Conditions		Product(s) and Yiel	d(s) (%)	Refs.
C ₄		DME DOCI	онс	(04)		469
/=_NNHMe		DMP, POCI3	N N Me I	(94)		408
		DMF, COCl ₂	I (98)			469,
		DMF, SOCl ₇	I (7)			470 469,
		-				470
		MFA, POCl ₃	I (11)			468
$C_4 - C_{10}$			OHC, R	D		
	IHa	DMF, POCl ₃		Me	(—)	139
			N	2-thienyl	(83)	139
			Н	2-(5-O ₂ N)-furyl	(21)	471
				Ph	(85)	139
				3-O2NC6H4	(54)	139
				$4-O_2NC_6H_4$	(63)	139
6.6				2-MeOC ₆ H ₄	(95)	139
	$\begin{pmatrix} NHCOMe \\ from \\ R \end{pmatrix}$	DMF, POCl ₃		(30-38)		472
R = Me,	, <i>i</i> -Pr, (CH ₂) ₂ CO ₂ H, CH ₂ Pr- <i>i</i>		NNMe			
	2	1. DMF, POCl ₃ 2. NaClO ₄ , MeOH	+ NMe ₂ ClO	(74) 4		473

TABLE XII. IMINES, HYDRAZONES, SEMICARBAZONES, AND OXIMES

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C_{9}	DME DOCI	OHCHC Me	474
$\sim \mathbf{X}$ \mathbf{X} \mathbf{X} \mathbf{C}_{9} - \mathbf{C}_{14}	DMF, POCI3	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	474
R NNHPh	1. DMF, POCl ₃ 2. HClO ₄	$Me_{2}N \xrightarrow{+} R \xrightarrow{R} Me (77)$ $N CIO_{4} \xrightarrow{-} Ph (96)$	475 475,
C ₉ -C ₂₀		Ph	476
R^1 \longrightarrow NNR^2R^3	DMF, POCl ₃ or 1. DMF, POCl ₃ 2. H ₂ O (pH 8)	$R^{1} \xrightarrow{NNR^{2}R^{3}} R^{1} \xrightarrow{CHO} R^{1} \xrightarrow{NNR^{2}R^{3}} I II$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140 477 141 141 140, 141
		$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	140 140 140 140 140 140
C ₁₀ o N Ph	DMF, POCl ₃	$\begin{array}{c c} OHC & OHC \\ OHC & CHNMe_2 & OHC \\ Cl & N & (51) & + & Cl & N & (8) \\ & Ph & Ph & Ph \end{array}$	478
ClarCla	DMF, POCl ₃	CI N-CONH ₂ (18)	479
R^{2} R^{2} R^{3} R^{3}	DMF (x eq), POCl ₃ (y eq), heat	R^{1} R^{2} R^{3} R^{3} R^{3} R^{3} R^{3} R^{3} R^{3} R^{3} R^{1} R^{1} R^{1} R^{2} R^{3} R^{3} NMe_{2} NMe_{2} Me_{2} Me_{2} Me_{2} Me_{2} Me_{2} Me_{2} Me_{2} Me_{2} Me_{2} R^{3} Me_{2} R^{3} Me_{2} R^{3} Me_{2} R^{3} Me_{2} R^{3} Me_{2} Me	136, 137
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

TABLE XII. IMINES, HYDRAZONES, SEMICARBAZONES, AND OXIMES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₄ -C ₂₀			
		R R	
R		$4-FC_6H_4 \qquad (70)$	138
>=NNHPh	DMF, POCl ₃	// 4-ClC ₆ H ₄ (90)	138
		N' 4-BrC ₆ H ₄ (88)	138
		$\dot{P}h$ 4- $O_2NC_6H_4$ (72)	475,
			476
		Ph (96)	475,
			138
		$4-\text{MeC}_6\text{H}_4$ (50)	138
		$4-\text{MeOC}_6\text{H}_4$ (92)	138
		$4-PhC_{6}H_{4}$ (85)	138
C ₁₅ -C ₁₈		D	
OH CR		OH R	
L L	DME POCI	N-Ph Me (30)	479
NNHPh	Dim, i oci3	$\begin{bmatrix} & & \\ & $	
CI		Cl $n-Pr$ (20)	
0.		n-Bu (20)	
C.			
016		CHO	
NNHCONH ₂		СНО	
	DME DOCI		481
	DMF, POCI ₃		401
0 NEt2		0 NEt2	
		CHO	
NNHCONH ₂			
	DME POCI	N (90)	481
	Dimerocity		
0~0		0,000	
C ₁₆ -C ₁₈		× + Ar	
		Me ₂ N Ar	
	1. DMF, POCl ₃	$4-O_2NC_6H_4$ (40)	476
	2. HClO ₄	$\stackrel{\text{N}}{\mid} ClO_4$ Ph (100)	
		Ar 4-MeC ₆ H ₄ (95)	
		$4-McOC_{b}H_{4}$ (90)	
C ₁₇			
NNHPh		CHO	
		Ph-N	401
	DMF, POCl ₃	N^{-} (90)	481
0 0		OHC	
		Ar CHNMe2	
N	DMF, POCl ₃	0 ()	482
$Ar = 4-ClC_6H_4$, Ph		♥ N	
Ph		Ph	
Cir			
$\left(\begin{array}{c} OH & Et \\ & \end{array} \right)$			
N	DMF, POCl ₃	N ⁽¹⁾ (8)	479
		ОН	
$\langle Cl^{\prime} \rangle /_2$			
		\searrow	
		ĊI	
C ₂₀		Ph Ph	
Ph		\rightarrow	
>=NNHPh	_	// (45)	475
B'n			
		Ph	

TABLE XII. IMINES, HYDRAZONES, SEMICARBAZONES, AND OXIMES (Continued)

TABLE X	TABLE XII. IMINES, HYDRAZONES, SEMICARBAZONES, AND OXIMES (Continued)				
$ \underbrace{ \begin{array}{c} & & \\ &$	DMF, POCl ₃ , 5-10°	Me_2N OHC N N Cl Cl Cl Cl Cl Cl Cl Cl			
C ₂₁	DMF, POCl ₃ , 70°	(78)	482a		
NNHPh	DMF, POCI ₃	OHC (98)	481		
S NO2 NNHPh	DMF, POCI ₃	NO ₂ S N OHC N Ph (76)	483		
Et ₂ N, O, O NNHPh C ₂₂	DMF, POCl ₃	$Et_2N \qquad \qquad$	481		
S = S - S - S - S - S - N - N - N - N - N -	DMF, POCI ₃	$ \begin{array}{c} S \\ N \\ N \\ N \\ Ph \\ Ph \\ Ph \\ Ph \\ Ph \\ $	479a		
Ph N	DMF, POCI ₃	$Ph \qquad Ph \qquad Ph \qquad (93)$ $OHC \qquad OHC $	484		
Aco	DMF, POCl ₃ (10 eq), 0°	AcO CI (82)	144a		
	DMF, POCl ₃ (10 eq), 65°	Aco (75)	144a		

	Substrate	Conditions	Product(s) and Yicld(s) (%)	Refs.
C ₂₄	Ph H	"Vilsmeier reagent"	$Ph \rightarrow N \rightarrow 0 \rightarrow 0 \qquad (-)$	485

TABLE XII. IMINES, HYDRAZONES, SEMICARBAZONES, AND OXIMES (Continued)

C_2 C_2 CHO Me_2N CHO (15)	74
$DMF POCI_2 Me_2N \checkmark CHO $ (15)	74
$r \sim ONa$ I F	
DMF, (COCI) ₂ , Et ₃ N I (40-50)	145,
	486,
	292
$Me_2N \longrightarrow Me_2 ClO_4^- (40)$	292
ONa 2. HClO ₄ Cl	
	146
OH 2. NaClO4	1.0
1. DMF (3 eq), POCl ₃ 2. NaClO ₄ $Me_2N + Me_2 + 2ClO_4^{-} (60)$	146
DMF, POCI ₃ $Me_2N \xrightarrow{CHO} (85)$	74
$Me_2N \checkmark Me_2 $ (80)	146
$\begin{array}{c} Br \\ OH \end{array} \qquad 2. Br_2, NaBr \\ \end{array} \qquad \qquad$	140
1. DMF, POCl ₃ CHO	
2. K_2CO_3 (65)	74
3. H ⁺ /H ₂ O OHC CHO	
$\begin{array}{c} 0 \\ H_2 N \\ H_2 N \\ H_3 N \\ H_4 N \\ H_5 \\$	487
$\Pi_{2}N$ OH (V)	107

TABLE XIII. CARBOXYLIC ACIDS, ANHYDRIDES, AND ACID CHLORIDES

TABLE X	III. CARBOXYLIC ACIDS, ANHYDRID	ES, AND ACID CHLORIDES (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
H_2N	DMF, POCl ₃	$H_2N \qquad (81)$ $[as a Co(trien) complex]$	488
C⊢H₃N, OH	1. DMF, POCI ₃ 2. HClO ₄ 3. Et ₃ N	$Me_2N \xrightarrow{M} NMe_2 \operatorname{ClO}_4^- (59)$ $N \xrightarrow{N} NMe_2$	149
	1. DMF, POCI ₃ 2. HCIO ₄	$\begin{array}{c} Me_2 N & \begin{array}{c} & + \\ & & NMe_2 \\ & & HN \\ & + \\ & & NMe_2 \end{array} 2CIO_4^- (74) \end{array}$	149
	1. DMF, POCl ₃ 2. HClO ₄ 3. Et ₃ N 4. Ac ₂ O 5. K ₂ CO ₃ (aq)	Me ₂ N CHO NHCOMe (51)	149
	1. DMF, POCl ₃ 2. HClO ₄ 3. Et ₃ N 4. (PhCO) ₂ O 5. K ₂ CO ₃ (aq)	$Me_2N \xrightarrow{CHO} (-) + O \xrightarrow{N} (31)$	149
	1. DMF, POCl ₃ 2. HClO ₄ 3. NaOH 4. See table	HO CHO $\frac{\text{Cond. 4} \text{R}}{\text{Ac}_2 \text{O} \text{Me} (66)}$ NHCOR $(CF_3 \text{CO})_2 \text{O} CF_3 (19)$ PhCOC1 Ph (39)	149
	1. DMF, POCl ₃ 2. HClO ₄ 3. NaOH 4. 4-MeC ₆ H ₄ SO ₂ Cl	HO CHO (13) NHTs	149
	DMF, (COCI) ₂ , Et ₃ N	$Me_2N \xrightarrow{CN} (-) \text{ or } \xrightarrow{f = -t_2} (-) $	145
CI⁻ MeH₂N OH	1. DMF, POCl ₃ 2. HClO ₄	$\begin{array}{c} Me_2N & \stackrel{+}{\underset{Me}{\longrightarrow}} Me_2 \\ Me & \stackrel{-}{\underset{Me}{\longrightarrow}} NMe_2 \end{array} 2CIO_4^- (56)$	149
но он	1. DMF, POCl ₃ 2. NaHCO ₃	Me ₂ N CHO (40) CHO	74
	1. MFA, POCl ₃ 2. NH ₄ *PF ₆ -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	489
$R^1 = CO_2Me$	 3-Cl-4-F-N-ethylformanilide, POCl₃ NH₄⁺PF₆⁻ 	$\begin{array}{c} Cl \\ F \\ Cl \\ Cl \\ Et \end{array} \xrightarrow{Cl} CO_2Me \\ PF_6^- \\ Et \end{array} (40)$	490

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄ -C ₇			
0	1. DMF, POCl ₃	CHNMe2	
Ar OH (on each on which each dealt)	2. HClO ₄	Ar MMe ₂ ClO ₄	
Ar =		1	
N		I (60-70)	491
N-N-X		I (76)	492
\setminus			
N N		I (60-70)	491
N ^N s ^{ir}		I (54)	492
O ₂ N			
		I (60-70)	491
N-18 sty			
HN H		I (99)	492,
14. WI			491
		$\mathbf{I} = (60,70)$ Countering $= 2ClO_{1}^{-1}$	/01
N+r yr		$\mathbf{I} = (0070) \text{ connerton} = 20104$	492,
			493
Me-N+		I ()	492
rr. · rr.			
O-N		$V_2 N \longrightarrow Me$	
Me	1. DMF, (COCI) ₂ 2. PhNHa, Cattan	(56)	494
N - Las	3. NaHCO ₃ (aq)		-77-
		N I Dh	
		111	
C			
Q.		¢CO ₂ Et	_
EtO ₂ COK	DMF, POCl ₃	ر (58) MesN CHO	74
		СНО	
	DMF. POCl ₂ (6 ea), 90°	(30)	149a
HO ₂ C N CO ₂ H			
C ₆		сно сно	
х х со и			150
CO ₂ H	DMF, POCI ₃	$ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{pmatrix} (37) \\ + \\ 3 \end{bmatrix} \begin{pmatrix} (3) \\ - \\ 3 \end{pmatrix} $	152
C. C.		онс сно онс сно	
0 0	1 DME POCI.		
но он	2. See table	Me ₂ N CHO or Me ₂ N NMe ₂ ClO ₄	148
R	3. See table	R R I II	
		R Cond. 2 Cond. 3 I II	
		$CH_2CH=CH_2 OH^-$ — (50) (0)	
		<i>n</i> -Bu $Me_2NH_2^+ClO_4^- OH^- () (0)$	
		<i>n</i> -Bu $Me_2NH_2^+ClO_4^ (0) (31)$ Bn $OH^ (47) (0)$	
		Bn $Me_2NH_2^+ClO_4^-$ (0) (41)	
C ₇			
CO ₂ H	DMF, POCl ₃	(13) + ^{Cl} (5)	152
		онс сно онс сно	
C ₇ -C ₈			
CO ₂ H		CHO Ŗ	
R	DME DOCI	R H OHC H CHO R H H (CP) (P)	152
	DMF, FOC13	OHC CHO He (34) (6)	155

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
		он сно	
	DMF, POCI3	(45) + OH (6)	152
CO ₂ H			100
	1. DMF. POCI2		495
и он	$2. \mathrm{NH}_{2}\mathrm{NH}_{2}$	NH	475
ርውዝ			
		\downarrow	
	DMF, POCI ₃	(14)	153
\sim		онс	
CO ₂ H			
\bigcap	DMF, POCl ₃	OHC CHO (17)	153
ļ		СНО	
F		F F CHO	
F CO ₂ H	DME POCI		404
F	DMF, POCI3		490
F		F F	
	1. DMF, POCl ₃	F	496
	2. OH-		
2		F F	
0 .	1 DMF POCh	$\begin{array}{c} \text{CHOH} & \frac{\text{Ar}}{\text{C}_{\text{c}}\text{F}_{\text{c}}} \end{array}$	496
Ar OH	2. OH [−]	Ar CHO 1-naphthyl (56)	497
0		CHNMc2	
Ar Lau	DMF, POCl ₃	AT CHO	
 OH (or carboxylic acid salt) 		AL CHO	
(of carboxyne lent har)		Ar	
		C_6F_5 (36)	496
		$2,4-Cl_2C_6H_3O$ (3)	379
		$3,4-Cl_2C_6H_3 \qquad (91)$	147
		$2-O_{2}NC_{6}H_{4}$ (58)	147
		$4-O_2NC_6H_4$ ()	498
		Ph (52)	147,
			74
		$Ph^{a} (73)$	151
		$3-HOC_6H_4$ (72)	151
		4-100614 (72) 3-MeCeH4 (68)	147
		$4-\text{MeC}_6\text{H}_4$ (80)	147
		$4-MeOC_6H_4$ (37)	147
		$3,4-OCH_2OC_6H_3$ (40)	498
		$4-MeSC_{6}H_{4}$ ()	498
		$4-\text{MeSOC}_6\text{H}_4 \qquad ()$	498
		$4-MeSU_2U_6H_4 ()$ 3.4.(MeQ)_bC_cH_2 (53)	500.
		$3.4.5-(MeO)_{3}C_{8}H_{2}$ (75)	147,
		2, ., (501

1-naphthyl

3,4-(MeO)₂C₆H₃ (---)

(66)

497

501

TABLE XIII. CARBOXYLIC ACIDS, ANHYDRIDES, AND ACID CHLORIDES (Continued)

MFA, POCl₃

Substrate Conditions		Product(s) and Yield(s) (%)			Refs.	
C ₈ -C ₁₈	0 0	1. DMF, POCla	CHNMe ₂			
Ar		2. See table	NMe ₂ ClO ₄ [−]			
	(or carboxylic acid salt)		A			
	(01 011 00.1) 10 1010 0111)		Ar	Cond. 2	(77)	
			4-CIC ₆ H ₄		(77)	402
			4-BIC6H4	HCIO ₄	(60)	493
			4-02/106/14	110104	(30)	74, 493, 502
			Ph	NaClO ₄ or HC	10, (92)	74 151
						292, 493.
						502
			3-HOC ₆ H ₄	HClO ₄	(47)	151
			4-HOC ₆ H ₄	HClO ₄	(96)	234, 151
			4-HOC ₆ H ₄	NaPF ₆ ^b	(86)	503
			4-NCC ₆ H ₄	HClO ₄	()	502
			2-MeC ₆ H ₄	HClO ₄	(48)	493
			4-MeC ₆ H ₄	HClO ₄	(91)	234, 493
						502
			4-MeC ₆ H ₄	NaClO ₄	(70)	402
			4-MeOC ₆ H ₄	HClO₄	(70)	234, 493
			4-MeOC ₆ H ₄	NaClO ₄	(99)	402
			3,4-(MeO) ₂ C ₆ H	3 NaClO ₄	(69)	74
			4-EIC-614		(78)	234
			4-Elocan4	N₀ClO.	(94)	234 74
			4-n-PrCcH	HCIO4	(75)	234
			4-n-PrOC ₆ H ₄	HClO ₄	(83)	234
			4-n-BuC ₆ H ₄	HClO ₄	(69)	234
			4-n-BuOC ₆ H ₄	HClO ₄	(81)	234
			4-n-BuSC ₆ H ₄	HClO ₄	(84)	234
			1	NaClO	(30)	74
			1-naphuiyi 2 nophthyl		(85)	/4
			2-naphtnyi 4-n-CcHy/CcHy	HClO ₄	(85)	234
			4-n-CeH11CeH4	Mg(ClO ₄) ^c	()	504, 505
			4-n-CsH11OC6H	HClO ₄	(79)	234
			4-n-CsH11OC6H4	$Mg(ClO_4)_2$ ^c	()	506
			4-PhC ₆ H ₄	HCIO4	()	493
			4-n-C ₆ H ₁₃ C ₆ H ₄	HClO₄	(88)	234
			4-n-C6H13OC6H4	HClO ₄	(85)	234
			4-n-C ₆ H ₁₃ SC ₆ H ₄	HClO ₄	(64)	234
			4-n-C7H15C6H4	HClO ₄	(95)	234
			4- <i>n</i> -C ₇ H ₁₅ OC ₆ H ₄	HClO ₄	(78)	234, 154
			$4 - n - C_8 H_{17} C_6 H_4$	HC104	(83)	234
			$4-n-C_8H_{17}C_6H_4$	Mg(ClO ₄) ₂	()	507
			4- <i>n</i> -C ₈ H ₁₇ OC ₆ H ₄	HClO ₄	(96)	234
			$4-n-C_9H_{19}C_6H_4$	HClO ₄	(81)	234
			$4 - n - C_9 H_{19} OC_6 H_4$	HClO ₄	(81)	234
			4- <i>n</i> -C ₁₀ H ₂₁ C ₆ H ₄ 4- <i>n</i> -C ₁₀ H ₂₁ OC ₆ H	HCIO ₄ A HCIO ₄	(76) (95)	234 234
(CO₂H O H		x	<u>x</u>		
		DMF. POCl ₂ , (6 eq), 90°	\searrow	CI (75)		149a

TABLE XIII. CARBOXYLIC ACIDS, ANHYDRIDES, AND ACID CHLORIDES (Continued)

 $\begin{array}{c|c} & CHO & CI & (75) \\ \hline N & H & Br & (61) \\ H & H & (75) \end{array}$

Substrate	Conditions	Product(s) and Yield(s) (%)	Ref
		Cl	
CO ₂ H N H CO ₂ H	DMF, POCl ₃ , (6 eq), 0°-rt	CHO (53)	149a
	DMF, POCl ₃ , (6 cq), 90°	$\begin{array}{c} Cl \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	149a
o Ph Cl	1. DMF, POCl ₃ 2. HClO ₄	$Me_2N \xrightarrow{+} NMo_2 ClO_4 \xrightarrow{-} (90)$ Ph I	74
o n ONa	1. DMF, POCl ₃ 2. HClO ₄	I (74)	74
$H_2 O H_2 $	1. DMF, POCl ₃ 2. HClO ₄	$Me_2N \xrightarrow{+} NMe_2 2CIO_4 - (62)$ Bn N NMe ₂	149
ть т он о	Me ₂ NN=CHCHO, POCl ₃ or COCl ₂	$NNMe_2 $ $N O $ $Ph $ (41)	135
	DMF, POCl ₃	N = 0 $Ph = 0 $ (93)	508
	DMF, POCl ₃	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	508
CO ₂ H	DMF, POCl ₃	CHO (45)	153
СО2Н	MFA, POCl ₃	(100)	489
	DMF, POCl ₃	(80)	150
	DMF, POCl ₃	(-)	509. 150
HO ₂ C CO ₂ H	1. DMF, POCl₃ 2. EtOH 3. NaClO₄	$EtO_2C - \left\langle \begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	402

$ \begin{array}{c} $	Amide, POCl ₃ DMF, POCl ₃ , (6 eq), 90°	$ \begin{array}{c} $
$ \begin{array}{c} $	DMF, POCl ₃ , (6 eq), 90°	СІ ————————————————————————————————————
СОън		₩ N H
CO ₂ H	1. DMF, POCl ₃ 2. K ₂ CO ₃ (aq)	CHO () 36 CHNMe ₂
HO ₂ C CO ₂ H	1. DMF, POCl ₃ 2. NaClO ₄	$\begin{array}{c} Me_2N \\ \hline MMe_2 \\ \hline MMe_2 \\ \hline MMe_2 \\ \hline MMe_2 \end{array} \begin{array}{c} + \\ + \\ NMe_2 \\ \hline CIO_4^- \\ (65) \\ \hline (65) \\ 36 \\ \hline \end{array}$
HO ₂ C CO ₂ H	1. DMF, POCl ₃ 2. NaClO ₄	$Me_2N \xrightarrow{+} 2ClO_4^{-} (82) 36$ $Me_2N \xrightarrow{+} NMe_2$
	1. DMF, POCl ₃ 2. NaClO ₄ 3. K ₂ CO ₃ (aq)	онс но Сно (49) 36
СО2Н	DMF, POCl ₃	CHO (15) 152
CO ₂ H	DMF, POCl ₃	CHO (91) 153 (91)
CO ₂ H	DMF, POCl ₃	СНО (87) 51
MeO-	DMF, POCl ₃	MeO-(10) 155 Me ₂ NHC O

TABLE XIII. CARBOXYLIC ACIDS, ANHYDRIDES, AND ACID CHLORIDES (Continued)
T	ABLE XIII. CARBOXYLIC ACIDS, ANHYDI	RIDES, AND ACID CHLORIDES (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₄	1. DMF. POCl ₃ 2. NaHCO ₃ (aq)	CHNMe ₂ (35)	512
C ₁₅	DMF, POCI ₃	СНОН (70)	511
C ₁₇	1. DMF, POCl ₃ 2. NaHCO ₃ (aq)	$\bigvee_{N}^{N} \bigvee_{N}^{OH} Pr \cdot i $ (20)	512

 $^{\it a}$ In this example, reaction with DMF, POCl_3 was followed by treatment with K_2CO_3.

^{*b*} The counterion in this reaction was PF_6^- .

^c The first condition was not reported.

		TABLE XIV. ESTE	RS AND LACTONES	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C4	EtO ₂ C	[Me ₂ N=CHCl] ⁺ Cl [−]	$EtO_2C CHO $ $N_2 (48) + EtO_2C Cl (55)$	160
	$\sqrt[n]{0}$ and/or $\sqrt[n]{0}$	1. DMF, POCl ₃ , 0° 2. 60-70°, 3 h 3. HClO ₄	$Me_2N \xrightarrow{+} CIO_4^- (80-84)$	513, 514
C5	EtO ₂ C ^C N	DMF, COCl ₂	$EtO_2C \underbrace{CN}_{CHNMe_2} $ (75)	156
C ₇	EtO ₂ C ^{CO} 2Et	DMF, COCl ₂	$EtO_2C \underbrace{CO_2Et}_{CHNMe_2} (81)$	156
C ₈	CO ₂ H	DMF, POCl ₃	$OHC \xrightarrow{O}_{CHNMe_2} + \xrightarrow{CHO}_{CHNMe_2} OHC \xrightarrow{CHNMe_2} OHC CHNMe$	151
С,	CO ₂ Et	DMF, POCI ₃	(41) (50) (50) (50)	157
-11		DMF, POCI ₃	$ \begin{array}{c cccc} N & CO_2Et & X \\ \hline O & (69) \\ CHNMe_2 & S & (78) \\ \hline O & (10) \\ \hline O & $	515

NH (66)

 a The starting material is as shown, however, the author states that it reacts as the cyclic lactone.

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	POCl ₃	N = N = N = N = N = N = N = N = N = N =	519, 520
0 H NHMe	HCONH ₂ , POCl ₃	$N \xrightarrow{NH_2}_{N} Me ()$	162
^O ↓ N H CO ₂ H	DMF, POCl ₃	$OHC \xrightarrow{N}_{H} C1 (82)$	472
Me ₂ N	DMF, POCl ₃	$Me_2N \xrightarrow{CHO} (76) \\CHNMe_2$	74
	1. DMF, COCl ₂ 2. NaClO ₄	Me_2N^{-} (86) I, X = CIO ₄ ⁻	74
	1. [Me₂N=CHCl] ⁺ Cl ⁻ 2. HClO₄	I , $X = ClO_4^-$ (54)	521
	[Me ₂ N=CHCl] ⁺ Cl [−]	$\mathbf{I}, \ \mathbf{X} = \mathbf{C}\mathbf{I}^{-} ()$	522

TABLE XV. AMIDES AND LACTAMS

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄ -C ₆			
	HCONH ₂ , POCl ₃	$N = (1)^{n} + $	162
C ₄ -C ₁₀			
N R R	DMF, POCl ₃	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	523 175 175 523
6-6-			
Me_2N R	POCl ₃	$Me_2N \xrightarrow{O}_{R} R \xrightarrow{R}_{R} Me \qquad (52)$ $El \qquad (61)$ $i \cdot Pr \qquad (60)$ $r_{P}Pr \qquad (61)$	524 524, 525 524 524 524
		$n-c_8H_{17}$ (57)	525
$C_4 - C_{18}$ $R^1 \xrightarrow{O} R^2$ R^2	H2NCHO, POCl3	$\begin{array}{c c} R^1 & R^2 \\ \hline Me & H & (32) \\ \hline Me & Me & (28) \\ H & Et & (16) \\ H & n-Pr & (17) \\ H & n-Bu & (17) \\ H & n-Bu & (17) \\ Me & n-Pr & (18) \\ H & n-C_8H_{17} & (16) \\ H & n-C_14H_{29} & (27) \\ H & n-C_16H_{33} & (21) \end{array}$	162
0	1. [Me ₂ N=CHCl] ⁺ Cl [−]	NMe ₂ R	
Me ₂ N R	2. Me ₂ NH 3. NaClO ₄	$\begin{array}{c} \begin{array}{c} & + \\ Me_2N \end{array} & \begin{array}{c} NMe_2 \end{array} & \begin{array}{c} CIO_4^- \end{array} & \begin{array}{c} CN & (86) \\ CO_2Et & (40) \end{array}$	521
C ₅ -C ₁₃			
$\begin{pmatrix} & & \\ & $	COCl ₂	$\begin{pmatrix} & & n \\ & & & \\ & & N \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	161
	POCl ₃	$ \begin{array}{c} $	526, 527 = Cl or I
		$\frac{\mathbf{R} \qquad \mathbf{n} \mathbf{I} \mathbf{II}}{\mathbf{Me} \qquad 2 () ()}$	
		Bn 2 () ()	
		$(CH_2)_2Ph \ 2 \ () \ ()$	

TABLE XV. AMIDES AND LACTAMS (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
R^{1} N R^{2} R^{2}	1. MFA, POCI ₃ 2. NaPF ₆	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	163
Ei2N	DMF, COCl ₂	Et_2N (23) .	161
	COCI ₂	$Et_2N \xrightarrow{O O} (83)$	161
H ₂ N NH ₂	HCONH ₂ , POCI ₃	N (14)	162
	DMF, POCl ₃	$\begin{array}{c} \text{OHC} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	472
CerC ₁₀ NHCOMe	DMF, POCl ₃	S CI DMF:POCI ₃ R 1:3 H (77) 3:7 CHO (72)	164, 165
R^2 R^1 S R^1 S R H H	DMF, POCl ₃ (1:3)	$R^{1} \xrightarrow{R^{2}}_{N} Cl \qquad \qquad \frac{R^{1} \qquad R^{2}}{Br \qquad H \qquad (66)} \\ Me \qquad H \qquad (79) \\ Me \qquad Me \qquad (72) \\ -(CH_{2})_{4} - \qquad (79)$	164, 165
	DMF, POCl ₃ (3:7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	164, 165
$O \xrightarrow{\mathbf{N}} B\mathbf{u} \cdot \mathbf{n}$	 POCl₃, toluene or ClC₆H₅, 0-20° 80°, then DMF 100°, 2-3 h NaOH 	$\begin{array}{c} CI \\ N \\ OHC \\ N \\ H \end{array} Bu-n $ (55)	528
	COCl ₂		161
• H ₂ N Ph	1. R ¹ R ² NCHO, POCl ₃ 2. HClO ₄	$R^{2}R^{1}N^{+}NR^{1}R^{2} ClO_{4}^{-} \qquad \frac{X R^{1} \qquad R^{2}}{O Me \qquad Me (36)}$ $S Me \qquad Me (61)$ $S -(CH_{2})_{4}^{-} \qquad (96)$	529

TABLE XV. AMIDES AND LACTAMS (Continued)

5	TVIC.	1410	(01)
S	(CH ₂) ₄		(96)
S	(CH ₂) ₂ O(CH ₂)2	(82)

	TABLE XV. AMIDES AND LA	CTAMS (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
NHCOMe	DMF, POCl ₃	$\begin{array}{c} R \\ \hline \\ N \\ \hline \\ S \end{array} \xrightarrow{\text{Cl}} DMF: \text{POCl}_3 R \\ \hline 1:3 H (52) \\ 3:7 \text{ CHO (39)} \end{array}$	164, 165
N H O	1. DMF, POCI ₃ 2. H ₂ NOH	CN (70)	530, 531
CI OH	DMF, POCl ₃	$\begin{array}{c} & H \\ & H \\$	532
R N H $R = H, Cl, NO_2$	DMF, POCl ₃	$R \xrightarrow{S} CHINMe_2 ()$	533
S N H O	DMF, POCl ₃	S CHO N H Cl (48)	178, 179, 533
Co-Co			
R^{2} R^{1} N H $R^{1} = Cl, R^{2} = H$	1-Me-2-pyrrolidone, POCl ₃	$ \begin{array}{c} Me \\ N \\ R^2 \\ R^1 \\ \hline N \\ \hline Cl \end{array} $ (20)	181
$\mathbf{R}^1 = \mathbf{H}$, $\mathbf{R}^2 = \mathbf{OMe}$	DMF, POCl ₃	" ()	533
	DMF, POCl ₃	$ \begin{array}{c} & & \\ & & $	180
R NOH	DMF, POCI3	$\begin{array}{c} R \\ R \\ \hline R$	169

	R ⁴	
	R ³ CHO	
DMF, POCl ₃	L I I	
	$R^2 \sim N^2 \sim Cl$	
	R'	
	R^1 R^2 R^3 R^4	
	H H H H (78)	166, 16
	н сі н н (2) н н сі н (2)	166, 10
	H H Br H (23)	166, 16
	Me H H H (67)	166, 16
	H Me H H (66)	166, 16
	H H Me H (70)	166, 16
	UME H H (3) H OME H H (89)	100 166, 16
	· · · · · · · · · · · · · · · · · · ·	534
	Н Н ОМе Н (56)	166, 16
	H SMe H H (92)	167
	$\begin{array}{cccc} H & N_3 & H & H & () \\ H & H & H & H & (22) \end{array}$	535
	Me H Me H (32) H OMe OMe H (72)	107 166 16
	$\prod_{i=1}^{n} OMC OMC \prod_{i=1}^{n} (12)$	534
	OMe H H OMe (50)	536
	H OMe OMe (92)	166, 16
		544
DMF, POC1 ₃ , 80-90°	$\begin{array}{c} R^{1} \\ R^{2} \\ R^{3} \\ R^{3} \\ \end{array} \begin{array}{c} R^{1} \\ R^{2} \\ Cl \\ R^{3} \\ \end{array} \begin{array}{c} H \\ Cl \\ Cl$	5) 8) 93a 8) 9) 2) 6) i1)
	Me H H (4	1)
	R t R X	
1. DMF, POCl ₃	$Me_2N \qquad NMe_2 ClO_4^- \qquad Ph \qquad O \qquad (80)$	174a
2. NaClO ₄	$4-O_2NC_6H_4 O (76)$	
	Ph S (85)	
	Ph N Ph 4-O ₂ NC ₆ H ₄ S (69)	
		5362
Me_2NCOPh , $POCl_3$	N (69)	5504
	່ຕ	
	CI	
	OHC $\frac{n}{1}$ (11)	93a
Divir, 1 0Cl3, 80-90	$N = (CH_2)_n Ph \qquad 2 (20)$	
	NMc ₂	
	Me CHO	
	x x	
1 DMF POCI- 0°	OH (60-64)	537
	N [×] N	
	DMF, POCl ₃ DMF, POCl ₃ , 80-90° 1. DMF, POCl ₃ 2. NaClO ₄ Me ₂ NCOPh, POCl ₃ DMF, POCl ₃ , 80-90°	$DMF, POCl_{3} = \begin{pmatrix} R^{2} & R^{3} & R^{4} \\ \hline R & H & H & H & H & (25) \\ H & H & Cl & H & H & (25) \\ H & H & Cl & H & (2) \\ H & H & Br & H & (23) \\ Me & H & H & H & (66) \\ H & H & H & H & (66) \\ H & H & H & H & (66) \\ H & Me & H & H & (66) \\ H & Me & H & H & (57) \\ H & OMe & H & H & (59) \\ H & OMe & H & H & (59) \\ H & OMe & H & H & (52) \\ H & OMe & OMe & H & (12) \\ H & OMe & OMe & (50) \\ H & OMe & OMe & (52) \\ \end{pmatrix}$ $DMF, POCl_{3}, 80-90^{*} = \begin{pmatrix} R^{2} & R^{3} & R^{$

	Substrate	Conditions		Produc	t(s) and '	Yield(s) ((%)		Refs.
C ₉ -C ₁₁									
D 4	R ⁵		R ⁵	ol R	1 R ²	R ³	R ⁴	R ⁵	
R	R	DMF, POCl ₃	R	$\mathbf{\mathbf{x}}^{\mathbf{K}} = \frac{\mathbf{x}}{\mathbf{N}}$	4e H	н	н	H (6	2) 171
R3	N NO		R ³	v∼ci ⊦	н	Me	H I	H (6	4) 164
	R^2 H		\mathbf{R}^2	H	і н	OMe	H I	H (7	3) 164
				N	1e H	Me	H I	H (7	8) 171
				F	сн гн	ОМе	Н	н (о ОМе (5	5) 165
0.0				L L	сн	OMe	OMe	OMe (7	1) 164,
C9-C12	Ŗ⁴		R ⁴						165
	R ¹			R ¹					
		DMF, POCl ₃		1					
R ³	N NO		$\mathbb{R}^{3^{2}}$ \mathbb{P}^{2} N	I Cl	2	2			
	R ²		К-	$\frac{R^{1}}{C}$	R ²	R ³	R*	(29)	171
				CN	н	Me	н	(13)	171
				CN	н	OMe	н	(40)	538
				CH ₂ Cl	н	OMe	н	(76)	171
				(CH ₂) ₃ Cl	н	N_3	н	(—)	535
				(CH ₂) ₂ Cl	н	Me	Н	(90)	171
				(CH ₂) ₂ Cl	п	OMe Ie H	: П ОМе	(70)	171
				Me	H*	н	NMe	(22) ₂ (76)	539
				Me	OM	le H	OMe	(70)	536
				Et	OM	le H	OMe	(75)	536
				n-Bu	Н	Н	н	(75)	171
				CH ₂ CO ₂ I	Me H	OMe In H	H OMe	(50)	171 536
				$^{*}R^{2} = 0$	'HO in t	ne produ	et.	(04)	550
						ie produ			
C ₉ -C ₁₄						R ¹			
\sim	R^3 Cl		\bigwedge	,.Cl	\bigwedge	$\downarrow \land$, Cl		
		DMF, POCl ₃		≥o or		<u> </u>			168
) Ri			\mathbf{R}^{1} \mathbf{R}^{2}	0	R	$\frac{1}{R^2}$,		
K	ĸ		I			п			
			R^1 R	R ² R	<u>3</u> I	<u> </u>			
			Cl N	Me H	(4)	3) (0)			
			H N H (I	CHADOFL F	(4. (4.	s) (0) 3) (0)			
			н	сп <u>2</u>)2021 г Рћ Г	L (4:	3) (0)			
			Me M	Me H	I (0) (19))		
			Me M	Me N	1e (0) (44))		
$C_9 - C_{15}$			ö		л	1 D2			
	CO ₂ H	$[(\mathbb{R}^2),\mathbb{N} \rightarrow \mathbb{C}\mathbb{H}^{-1}]^+$			<u>к</u> н	(CF	I)2O(CH2)2 (77	-) 173a
	$\downarrow \downarrow \downarrow_{\mathbb{R}^1}$	$[(\mathbf{R}^2)_2\mathbf{N}=CHCl]^+Cl^-$. M	le (CH	I)2O(CH2)2 (75) 173a
\sim		$[(\mathbf{R}^2)_2\mathbf{N}=\mathbf{CHCl}]^+\mathbf{Cl}^-$	✓ `N ²	$\sum_{\mathbf{P}^1} N(\mathbf{R})$	⁻⁾ 2 P	n Me		(95) 173a
		COCl ₂ , DMF		K-	P	n Me		(50) 173,
C9-C16									173a, 174
R ¹	R4		R1	~~ ^{R4}	R ¹ F	$R^2 R^3$	R^4		1/4
		DMF, POCl ₃	I J	Ì	H H	I Me	Cl	(4	6) 168
R ²	N 0	. 2	R ²	N NO	Ci ł	I Et	Cl	(6	7) 168
	Ŕ ³			К.,	H H	ł Et	Cl	(5	5) 168

168

168

168

168

168

540

168 168

(28)

(22) (43)

(6)

(23)

(---)

(40)

Me H Me Cl

H Me Me Cl

н

Н

Me Cl

Me OMe

Me SMe

Ph Cl

Me Ph

H H Me $PhN(Me)SO_2$ (2)

OMe H

н

н

Н Н

н н

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$R^{2} \xrightarrow{R^{1}} R^{1}$ $R^{2} \xrightarrow{R^{1}} R^{3}$ $R^{3} \xrightarrow{R^{4}} O$	1. DMF, POCl ₃ 2. KMnO4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 182
	DMF, POBr ₃	$ \begin{array}{c} Br \\ \hline N \\ Br \end{array} $ (13)	171
NH2 CONH2	Me2NCOPh, POCl3	(82)	536a
Me H H	1. DMF, POCl ₃ 2. 105°, 2 h	Me CHO N CI	541
N N H	DMF, POCl ₃	$\bigcup_{\substack{N \\ N \\ O}} N \xrightarrow{a} (68)$	210
NHCOMe	DMF, POCl ₃ (3:1), reflux, 1 h	CHO (8) + CHO S NHCOMe (8) + (80) 165
, , , , , , , , , , , , , , , , , , ,	DMF, POCl ₃ (3:1), reflux, 15 min	I II I (76) + II (12)	165
O ₂ N	DMF, —	$\begin{array}{c} O_2 N \\ & & \\ N \\ H \\ & \\ H \\ & \\ \end{array} \begin{array}{c} O_2 N \\ (-) \\ (-) \end{array}$	542
$Et_2N \xrightarrow{O} VEt_2$	COCI2	$\underbrace{\overset{O}{\underset{NEt_2}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{$	161
C10-C11	DMF, POCl ₃	$\begin{array}{c} \text{Ar} \\ \text{Ph} \\ \text{Cl} \\ \text{Ar} \\ \text{Ph} \\ \text{Cl} \\ \text{Ch} \\$	144a

	TABLE XV. AMIDES AN	ND LACTAMS (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	DMF, POCl ₃	$\begin{array}{c} R \\ N \\ H \end{array} \begin{array}{c} CHO \\ Ph \\ Cl \\ H \end{array} \begin{array}{c} R \\ Ph \\ 4-MeOC_6H_4 \end{array} \begin{array}{c} (84) \\ (41) \end{array}$	178, 179
$\int_{O} \frac{1}{R^{1}} R^{2}$	HCONH ₂ , POCI ₃	N = N = N = N = N = N = N = N = N = N =	162
	DMF, POCl ₃	$\begin{array}{c c} OHC & \hline & R^1 & R^2 \\ \hline & & \\ CI & R^1 & R^2 \end{array}$	178
C ₁₁ -C ₁₇ R ¹ N N N NHCOMe R ²	DMF, POCI3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170
	1. DMF, POCI3 2. NaOH	CHO Cl (100)	176
	DMF, POCI3	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$) 173
C_{13} C	CI ≻≕™Me₂ CI⁻ OHC	NMe_2 (90)	173, 173a
NCOAr Mc	1. DMF, POCl ₃ 2. H ₂ NNHC ₆ H ₄ NO ₂ -4	$MeHN \underbrace{()_{n}}_{V_{6}} \underbrace{()_{n}} \underbrace{()_{n}} \underbrace{()_{n}}_{V_{6}} \underbrace{()_{n}} \underbrace{()_{n}} \underbrace$	543
$Ar \\ CO_2Me \\ N \\ H$	DMF, POCI ₃	$\begin{array}{c c} Ar \\ OHC \\ Cl \\ N \\ H \\ H \\ \end{array} \begin{array}{c} CO_2Me \\ Ph \\ 2-ClC_6H_4 \\ 3-O_2NC_6H_4 \\ 4-NCC_6H_4 \\ 4-NCC_6H_4 \\ (73) \\ \end{array}$	544

Substrate	Conditions	Product(s) and Yield(s) (%)	F
C ₁₄ -C ₁₇		A .	
N Co	DMF, POCl ₃		172
n		Ar = 2-FC ₆ H ₄ , 3-FC ₆ H ₄ , 4-FC ₆ H ₄ , 2-ClC ₆ H ₄ ,	
		4-CIC ₆ H ₄ , 4-BrC ₆ H ₄ , 4-HOC ₆ H ₄ , 4-NCC ₆ H ₄ ,	
		$4-Cr_{3}C_{6}H_{4}$, $2-MeC_{6}H_{4}$, $4-MeC_{6}H_{4}$, $2-MeOC_{6}H_{4}$, $3-MeOC_{6}H_{4}$, $4-MeOC_{6}H_{4}$, $4-MeSC_{6}H_{4}$, $4-i-PrOC_{6}H_{4}$,	
		2,5-(MeO) ₂ C ₆ H ₃	
\mathbb{R}^{3} \mathbb{R}^{4} Pb		\mathbf{R}^4 \mathbf{R}^3 \mathbf{D} \mathbf{R}^1 \mathbf{R}^2 \mathbf{R}^3 \mathbf{R}^4	
	DMF, POCl ₃	$\begin{array}{c} \mathbf{R} \\ $	17
R^2 N O		R^2 N Cl	17:
R,		R ¹ н менн (95) ОМенн (95)	17.
		H OMe H H ()	17
		H SMe H H ()	17
		H H SMe H ()	17
		OMe H H OMe (61)	53
		$H \qquad NMe_2 \qquad H \qquad H \qquad ()$ $H \qquad H \qquad n - PrO \qquad H \qquad ()$	17
P ₁₅			
H O			
	1-Me-2-pyrrolidone, POCl ₃		18
Ph		Fh Me Ph	
NH		N	
	DMF, POCl ₃	(70)	18
		 CHNMe ₂	
Ph 		Me Ph N	
	1-Me-2-pyrrolidone, POCl ₃	(90)	18
N NO		N CI	
		$\frac{Ph}{r}$ R^1 R^2	
	R ¹ R ² NCHO, POCl ₃	Me Me (90)	54
		$ \begin{array}{c} & (CH_2)_5 - (SO) \\ & (CH_2)_2 O(CH_2)_2 - (SO) \\ & (CH_2)_2 O(CH_2)_2 - (SO) \\ \end{array} $	
Ph		Ph	
NH	1 DMF POCIA		11
	2. KMnO ₄		
		сно	
\searrow		\searrow	
O CO2Me	DMF, POCl ₃	$Me_2NHC \longrightarrow O \qquad (-)$	54
o N N N			
н			

TABLE XV. AMIDES AND LACTAMS (Continued)

TABLE XV. AMIDES AND LACTAMS (Continued)					
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.		
C_{15} - C_{16} R^1 R^1 R^2 N H O OMe	DMF, POCl ₃	$R^{1} \xrightarrow{O} CHO \\ + CHO \\ + CHO \\ + CF_{3} H (60) \\ CI OMe (66) \\ - CI OME (70) \\ - CI OME (7$	173		
C ₁₆	DMF, POCl ₃	MeO_2C (50)	547		
Ph N ^{Me}	1. DMF, POCl ₃ 2. KMnO ₄	CHO (25)	182		
$C_{16}-C_{18}$	1. DMF, POCl ₃ 2. NaClO ₄	$(1) \qquad \qquad$	548		
С ₁₇ РЬНИ О Л Л Л Л Л Л Л Л Л Л Л Л Л Л Л Л Л Л	POCl ₃	$ \begin{array}{c} O \\ H \\ H \\ Ph \end{array} $ (60)	549		
$C_{18}-C_{31}$ $R^{2}R^{1}N \xrightarrow{O} (CH_{2})_{n}$ $Ph \xrightarrow{N} O$ R^{3}	1. POCl ₃ 2. NH4 ⁺ PF6 ⁻	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	549		
	1. POCl3, PCl5 2. NH4* PF6 ⁻	2 Ph Ph Ph (39) () 2 Me Ph Ph (6) (trace) (1) $(CH_{2})_{n}$ (30) R^{3} PF ₆ ⁻ $\frac{n}{2}$ R^{1} R^{2} R^{3} $\frac{n}{2}$ $-(CH_{2})_{5}$ Me	549		

^a The acid cyclizes to the lactam before reacting with the Vilsmeier reagent.

Substrate	Conditions		Product(s) and Yield(s) (%)	Refs.
$C_5 - C_{10}$	DMF, POCl ₃	OHC CHO CI N CI R	R Me (72) Et (40) -Pr (41) Ph (74)	183
	DMF, POCl ₃	O N CI	R H (1) Me (21) EL (53) F-Pr (85) Ph (41)	185
$C_5 \cdot C_{12}$ $R^2 \cdot R^3$ $O \cdot R^1$ R^1	DMF, POCl ₃	OHC R^2 R^3 CHO CI N CI R^1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	184 551 184 184 184 184
O N H	DMF, POCl ₃ DMF, (COCl) ₂		$\begin{tabular}{c} \hline R \\ \hline 3-ClC_6H_4 & (80) \\ \hline 3-O_2NC_6H_4 & (61) \\ Ph & (72) \\ \hline 3-CF_3C_6H_4 & (75) \\ H & (65) \end{tabular}$	186
C_6 C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{2} $C_{$	DMF, POCl ₃ or COCl ₂	OHC CI N CI	(66)	187
O N R	DMF, POCl ₃ DMF, POCl ₃ PhNHCHO, POCl ₃ MFA, POCl ₃	CHX O N _R	R X H OH (96) Me OH (75) Me NHPh (96) Me N(Me)Ph (84)	188

	TABLE XVII. NITRILES					
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.			
C ₂						
Me-CN	DME POCI-	Me ₂ N ^{s²} CHO (22)	145			
	DMI, FOCI3	CN (32)	145			
		MeO				
	(3-MeOC/H4OCHaCHaNHCO)a		552			
	(Cl ₂ PO) ₂ O		332			
		N				
		HN C ₆ H ₄ OMe-3				
C ₃		CN CN				
	DMF, POCl ₃	Me_2N N (17)	553			
		Cl				
		ÇN .				
	1. DMF, POCl ₃ , COCl ₂ , or (COCl) ₂	$Me_2N N N N N N N N N N N N N N N N N N N $	189			
	2. HClO ₄	CI				
		I				
	1. $[Me_2N=CHCl]^+ Cl^-$	I (81)	189			
	2. HClO ₄					
	1. DMF, POCl ₃ or [Me ₂ N=CHCl] ⁺ Cl ⁻	$R^1 \sim R^2$				
	2. HClO ₄	NC	189			
	3. NH ₃ (aq)	N N				
		$\mathbf{H} = \mathbf{R}^{1}, \mathbf{R}^{2} = \mathbf{M}\mathbf{e} (60)$				
	1. DMF, POCI ₃ or $[Me_2N=CHCI]^+CI^-$ 2. HCIO.	$\Pi = R^1 - H R^2 - Ph$ (90)	189			
	3. aniline	$\mathbf{H} = \mathbf{K} - \mathbf{H}, \mathbf{K} - \mathbf{H} = \mathbf{H}$ (90)	109			
	4. NH ₃ (aq)					
	1 DME POCIA or [MeaN-CHCI] ⁺ CI-					
	2. HClO ₄	$\mathbf{II} = \mathbf{R}^1 = \mathbf{M}\mathbf{c}, \mathbf{R}^2 = \mathbf{P}\mathbf{h}$ (90)	189			
	3. N-methylaniline					
	4. NH ₃ (aq)					
	DME_POCI ₂ or CICO ₂ Et	Me ₂ N CN (10)	190			
			150			
		R^1 \Leftrightarrow CN $\frac{R^1}{R^2}$				
	R ¹ R ² NCHO, POCl ₃	N Me Me (33)	554			
		R ² CN Me Ph (42)				
Q		CHO				
CN	DMF, POCl ₃	Me_2N' ()	145			
CC.u		Civ				
		NHR				
	POCI.	$\frac{CN}{Ma} = \frac{R}{Ma}$	101			
N N CN	rocij	H_2N N CI IME (60)	555			
		R Bu (86)	191,			
			555			
		<i>i</i> -Pr (39)	191			
		$c-C_{5}H_{9}$ (67)	191			
		c-u ₆ H ₁₁ (⊃7) ∞-CaH ₁₂ (75)	191			
		$n - C_8 H_{17}$ (75)	191,			
C5		• • • • •	555			
- Q		CO ₂ Et				
EtOCN	DMF, POCl ₃ or CICO ₂ Et	$Me_2N \qquad (31)$	1 90			
	- 1- 2	R^1 CO ₂ Et $\frac{R^1 R^2}{R^2}$				
	R ¹ R ² NCHO, POCl ₃	$R^2 CN$ Me Me (48)	554			
		Me Ph (/1)				

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$C_5 - C_7$ $R^1 - N$ H R^2	CN 2	POCl ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	192
$C_5 - C_{10}$ $R^1 - N$ R^2	_CN	POCl ₃	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	556, 191
$C_5 - C_{16}$	_CN 2	Me2NCOR ³ , POCI3	$\begin{array}{c} \begin{array}{c} & & & & & & & \\ CI & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \hline \\ \hline$	193 193 193 193 193 193 193 536a 536a
	v	DMF, POCI3	CHO (34)	558
$C_{6}-C_{7}$ H $C_{6}-C_{7}$ X $C_{6}-C_{7}$	CN	Me_2N N NMe_2 ClO_4 Me_2N Me_2N NMe_2 ClO_4 R R	(-) $(-)$	194) 194) 194))))
°-6-℃8 ₽¹			$\mathbf{II} \qquad \begin{array}{c} \mathbf{NH} & \mathbf{R} & \mathbf{R} \\ \mathbf{II} & \mathbf{NH}^* & \mathbf{OMe} & (0) & (8) \\ \mathbf{NH}^* & \mathbf{Bn} & (0) & (7) \\ \mathbf{NMe} & \mathbf{H} & (94) & (0) \\ \mathbf{NMe} & \mathbf{Me} & (85) & (0) \\ \mathbf{NMe} & \mathbf{OMe} & (91) & (1) \\ \mathbf{NMe} & \mathbf{Bn} & (95) & (0) \\ *X = \mathbf{N} \text{ in products } \mathbf{II} \\ \end{array}$ $\mathbf{R}^1 \qquad \qquad \begin{array}{c} \mathbf{R}^1 & \mathbf{R}^2 & \mathbf{R}^3 \\ \mathbf{H} & \mathbf{R}^2 & \mathbf{R}^3 \\ \mathbf{H} & \mathbf{R}^2 & \mathbf{R}^3 \\ \mathbf{H} & \mathbf{R}^2 & \mathbf{R}^3 \end{array}$))))))
	N III	DMF, POCI3	R^{3} K^{2} R^{3} K^{2} CN R^{3} K^{2} CN $C1$ R^{2} R^{3} K^{2} R^{3} K^{2} R^{3} K^{2}	196
		DMIF, FOC13	$\begin{array}{ccc} & X & CN & N & (71) \\ C1 & CH & (87) \\ C(Me) & (95) \end{array}$	553

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$\begin{array}{c} \hline C_6 - C_{12} & \bigcirc \\ R^1 & \swarrow & CN \\ R^2 & R^3 \end{array}$	Mc2NCOCH2Ph, POCl3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	559
	POCl ₃	$-(CH_{2})_{4} - Et (40)$ $R^{3} + CN + R^{3} + CN + R^{3} + CN + CI + NR^{1}R^{2}$ $I \qquad II \qquad II = \frac{R^{1} R^{2} R^{3} Time I II}{Me \qquad Me i-Pr \qquad 2h (9) (10)}$ $Me \qquad Me i-Pr \qquad 16h (0) (75)$	559
C ₇		$-(CH_2)_4 - i - Pr = 2 h (31) (23) \\ -(CH_2)_4 - i - Pr = 16 h (0) (88) \\ Et = Et i - Pr = 16 h (62) (0) \\ Me = Me CH_2Ph 16 h (0) (60)$	
	DMF, POCl ₃	(69)	157
C7-C14 R N N S CN	H DMF, POCl3	$ \begin{array}{c} OHC \\ V \\ N \\ V \\ V \\ Me_2N \end{array} $ (40) (40)	195
R =	Me DMF, POCl ₃	OHC CHO OHC N (67)	195
R =	CF ₃ DMF, POCl ₃	OHC N (93)	195
R = R =	Ph DMF, POCl ₃ 4-MeOC ₆ H ₄ DMF, POCl ₃	I, $R = CF_3$ I, $R = Ph$ (75) I, $R = 4-MeOC_6H_4$ (51)	195 195
C ₈			
F CN	DMF, POCl ₃	$F \xrightarrow{NO_2}_{CN} (81)$	218
CN	1. DMF, POCl ₃ , 10-12° 2. 60-70°	$Ph \underbrace{\downarrow}_{CHO} Ph \underbrace{\downarrow}_{CHO} + Ph \underbrace{\downarrow}_{CHO} Ph \underbrace{\downarrow}_{CHO} + Ph \underbrace{\downarrow}_{CHO} Ph \underbrace{\downarrow}_{C$	560
		+ Ph N Ph + Ph Ph Ph Ph Ph Ph Ph Ph	

TABLE XVII. NITRILES (Continued)

	TABLE XVII. NI	TRILES (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Keis.
	DMF, POCl ₃	CN (9)	196
C ₉ MeO	DMF, POCl ₃	MeO (87) NMe ₂	218
MeO	DMF, POCl ₃ , 110-120°, 2 h	MeO CHO (4)	561
	H2NCHO, POCl3	McO ()	425
	1. DMF, POCl ₃ , 10-12° 2. 60-70°	$OMe \qquad OMe \qquad OMe \qquad (10)$ $OMe \qquad OMe \qquad OMe$	560
McOCN	1. DMF, POCl ₃ , 10-12° 2. 60-70°	+ (11) O H Ar Ar Ar H Ar H Ar H H Ar H H H H H H H H	5) 560
O CN	DMF, POCl ₃ , 100-110°, 3 h	$Ar = 4 \cdot MeOC_{6}H_{4}$	561
CN O CN	DMF, POCl ₃	$ \begin{array}{c} & & \\ & & $	562
Ph Ph	Me ₂ NCOPh, POCl ₃	$ \begin{array}{c} Ph \\ N \\ Cl \\ Cl$	536a
	Me ₂ NCOC ₆ H ₄ Me-2, POCl ₃	$Ar \xrightarrow{N} Ph \qquad Ph \xrightarrow{Ph} CN$ $(50) + N \xrightarrow{NMe_2} (13)$ $Ar = 2-MeC_6H_4$	536a
$C_{9}C_{10}$	DMF, POCI ₃	$ \begin{array}{c} R \\ CN \\ H \\ H \\ (10) \end{array} $	196

IABLE A VII. NITRILES (Communea)					
Substrate	Conditions	Product(s) and Yield(s) (%)	Reis.		
C_9-C_{14} $R^1 \xrightarrow{CO_2Me}_{R^2}$	DMF, POCl ₃	$\begin{array}{c} R^{1} & R^{2} \\ \hline R^{2} \\ \hline N & Cl \end{array} \qquad \begin{array}{c} R^{1} & R^{2} \\ \hline Me & Me & (65) \\ -(CH_{2})_{3}- & (35) \\ -(CH_{2})_{4}- & (50) \\ -CH_{2}C_{6}H_{4}- & (20) \\ \hline Ph & Me & (35) \\ -(CH_{2})_{2}C_{6}H_{4}- & (40) \end{array}$	197		
C_9-C_{17} NC + R Ar	H2NCHO, POCI3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	198 198 563 563 427 563 427 563 198 563 563 427		
C ₁₀	DMF, POCI ₃ , 110-120°, 4 h	CHO (3)	561		
	1. DMF, POCl ₃ 2. HCl 3. HClO ₄	$\sum_{NMe_2}^{+} ClO_4^{-} $ (59)	529		
OMe McO CN	DMF, POCl ₃ , 110–120°, 4 h	$MeO \longrightarrow (8)$ Cl OMe	561		
	NH ₂ CHO, POCl ₃	McO NH ₂ N N N N	427		

	TABLE XVII. NITR	ALLES (Continued)	Dafa
Substrate	Conditions		Keis.
MeO	DMF, POCl ₃ , 90-95°	$MeO \xrightarrow{N} (62) + (Cl) (Cl) (Cl) (Cl) (Cl) (Cl) (Cl) (Cl)$	561, 456
	1. DMF, POCl ₃ , 10-12° 2. 60-70°	MeO (4) + I (52) + MeO (4) + I (52) + MeO (4) + I (52) + (1) $(3)(1)$ (3)	560
	H2NCHO, POCl3		425
MeO MeO MeO	DMF, POCl ₃ , 110-120°, 4 h	MeO MeO MeO CHO (8)	561
	DMF, POCl ₃	(81) NMe ₂	157
\mathcal{L}_{S}^{CN}	DMF, POCI3	$ \begin{array}{c} & & \\ & & $	564
CN NO ₂	DMF, POCl3	(81) NO_2 NMe_2	218
	Me_2N R $NMe_2 CIO_4$ R	$R = \frac{R}{H (41)}$ NC Ph (79)	214
MeO COR	H2NCOMe, POCl3	MeO MeO NH R NH MeO MeO MeO CN I I	198
ĊOR		$R \xrightarrow{H} MeO^{*} \bigvee \bigvee$ $I \qquad II$ $\frac{R I II}{Me (58) (6)}$ Et (45) (9)	

^a This entry is from reference 191 only.

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₃ NO C ₅			
N ₀	1. "Vilsmeier-Haack" 2. H ₂ NOH		200
Ph ON	_	Ph O'N ()	200
C_{6} C_{6} $S + Clo_{4}^{-}$	Mc2NCHS, POCI3	(59)	220
C ₃ N ₃			
C ₁₀ O N NH Ph	DMF, 4-McC6H4SO2Cl	Ph NH $(-)Ph NHe_2$	201
C_{24}	PhCONR ₂ , POCl ₃	X X X X X X X X X X	(3) 202 21) (8)
		$\frac{Ph}{NR_2} Ph \qquad -(CH_2)_2O(CH_2)_2 - (4)$	15)

TABLE XVIIIA. METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED MONOCYCLIC RING

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄ N ₂			
Pyridazines			
C ₅		Y	
		x	
	DMF, POCl ₃		199
N N			
		N ^N	
		$\mathbf{I} \mathbf{X} = \mathbf{CHO}, \mathbf{Y} = \mathbf{NMe}_2 (91)$	
	1. DMF, POCl ₃	I X = CHO, Y = OH ()	199
	2. HO ⁻		
Pyrimidines		011	
L,			
NII	DME (COCI)	(40)	565
	DMF, $(COCI)_2$	NH	505
N O			
		Y	
ł		X	
N	1. DMF, COCl ₂	I	204,
	2. HCl	N II	566
N		N ¹	
		$I X = H, Y = NMe_2 \cdot 2HCl$ (80)	
	1. [ClCH=NMe ₂] ⁺ Cl [−]	$\mathbf{I} \mathbf{X} = \mathbf{H}, \ \mathbf{Y} = \mathbf{NMe}_2 (56)$	567
	2. HO ⁻	· · · · · · · · · · · · · · · · · · ·	560
	DMF, $(COCl)_2$	$\mathbf{I} \mathbf{X} = \mathbf{CHO}, \ \mathbf{Y} = \mathbf{NMe}_2 ()$	508
	1. DMF, COCl ₂	I X = CHO, Y = OH ()	200
	2. $H_2 U$	$\mathbf{I} \mathbf{X} = \mathbf{C} \mathbf{H} \mathbf{O} \mathbf{Y} = \mathbf{O} \mathbf{H}$ (47)	567
	[CiCitertine2] Cr (creass)		
C ₅ -C ₁₁		ОН	
		CHO \mathbf{p}^1 \mathbf{p}^2	
N	1. DMF, POCl ₃	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \end{array} $ \\ \begin{array}{c} \end{array} \\ \end{array}	569
	2. HO-	N Ph H (62)	
K IV K		R^1 R^2 H Ph (48)	
0 			
	1. DMF, POCl ₃	HN HN H (70)	228
	2. NaHCO3 (aq)	Me (67)	570
KN			
		$\mathbf{I}, \ \mathbf{X} = \mathbf{C}\mathbf{H}\mathbf{O}$	
	DME DOCT.	$\mathbf{L} = \mathbf{D}_{\mathbf{h}} \cdot \mathbf{Y} = \mathbf{C} \mathbf{U} = \mathbf{N} \mathbf{M}_{\mathbf{h}} \cdot \mathbf{T} \mathbf{C} \mathbf{T} $ (62)	228
	DMIF, FOCI3	$\mathbf{I}, \mathbf{K} = \mathbf{F}\mathbf{I}, \mathbf{X} = \mathbf{C}\mathbf{H} = \mathbf{N}\mathbf{M}\mathbf{C}_2 \mathbf{C}\mathbf{I} (05)$	228
C.			
-0		N ^N N	
		\mathbf{R}^1 \mathbf{R}^2	
R' N	HCONH ₂ , POCl ₃	p1 H Me (6)	571
R ² N		N Me H (12)	
		R ² N ⁻¹	
<i></i>		NMc ₂	
		N	
N II	1. DMF, POCl ₃	онс, (43)	569
[™] N [™]	2. Na ₂ CO ₃ (aq)	∬ N `	
		но	
C ₆ -C ₇		Q	
O II		NH R	
NH NH	1. DMF, POCl ₃	OHC Me (10)	569

TABLE XVII	A. METHYL ANI	METHYLENE GROUP	S ACTIVATED BY	Y A FULLY	CONJUGATED	MONOCYCLIC	RING (Continued

$$\begin{array}{c|cccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ HO \end{array} \end{array} \xrightarrow{\begin{subarray}{c} NH & & \\ & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

	Substrate	Conditions		Product(s) and Yield(s) (%)	Refs.
C ₈	NMe ₂	1. DMF, POCl ₃ 2. Na ₂ CO ₃ (aq)	NMe ₂ N CHO OH	(6)	569
$\left(\right)$	N	H ₂ NCHO, POCl ₃	NH N N	(23) + N CHNHCHO (0.4)	571
C9	Me ₂ N N +HCl	1. DMF, POCl ₃ 2. H ₂ O	H H H N N N OHC	(65)	572

C9-C15

R^1 R^2	N N N N R^3	.R ⁴		DMF, POCI ₃	R	5	$N \xrightarrow{NMe_2} R^4$	
R ¹	R ²	R ³	\mathbb{R}^4	Temp		R5	R ⁶	
н	Н	Me	Н	95°		н	СНО	(70)
OMe	Н	н	Н	_		Cl	СНО	(73)
н	CONH ₂	Ме	н	_		Н	CN	(98)
Me	н	Me	н			Me	CHO	(36)
н	CONHMe	Me	н	15°		н	CONHMe	(72)
н	CONHMe	Me	н	95°		н	CON(CHO)Me	(85)
н	CONHNH ₂	Me	н	25°		н	CONHN=CHNMe2	(70)
н	CONHNH ₂	Me	н	60°		н	CO ₂ H	(45)
н	CONH ₂	Me	Me	_		н	CN	(78)
Ph	н	Mc	н	—		Ph	СНО	(89)

573

		Substrate				Condit	tions		Product(s) and Viald(s) (%)	Dafe
<u> </u>	••••••	Substrate				Conui			Floduct(s) and field(s) (%)	Reis.
Cy-C	R^1 N R^2 O	R^{5} R^{3} R^{4}			R ⁶ R ⁷ N0	COR ⁸ , POC	313, rt-95°	R^1 R^2 R^2 O	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
	\mathbb{R}^1	R ²	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^5	R ⁶	R ⁷	R ⁸		
	Н	Н	Me	Н	Н	Me	Me	Н	(73)a	573
	Н	Me	Me	Н	Н	-(CH ₂)	;	н	(53)	574
	н	Me	Me	н	н	Me	Me	н	(81)	573
	(CH ₂) ₄	_	Н	Н	н	Me	Me	Н	(63)	575
	н	CO ₂ Et	Me	Н	н	Et	Et	Ph	(38)	574
	Н	CH ₂ CO ₂ Et	Н	Н	н	Me	Me	н	(72)	573
	Me	Et	Me	Н	Н	Me	Me	Н	(73)	573
	-(CH ₂) ₄ -		Me	Н	н	Me	Me	н	(74)	575
	(CH ₂) ₄	_	Н	Me	н	Me	Me	н	(52)	575
	н	CH ₂ CO ₂ Et	Me	Н	н	Me	Me	н	(88)	573
	Н	CH ₂ CO ₂ Et	Н	Me	Н	Me	Me	Н	(85)	573
	н	CH ₂ CO ₂ Et	Н	Н	Me	Me	Me	н	(71)	573
	Н	$2,4-(O_2N)_2C_6H_3$	Н	н	н	Me	Me	н	(84)	573
	н	(CH ₂) ₂ CO ₂ Et	Me	н	н	Me	Me	н	(79)	573
	1-piperidyl	н	Me	Н	Н	Me	Me	н	(43)	573
	Н	Ph	Me	Н	Н	Et	Et	Ph	(35)	574
	Н	Ph	Me	н	Н	Me	Me	н	(86)	573
	Н	Ph	Н	CO ₂ Et	Н	Me	Me	Н	(61)	573
	Me	Bn	Mc	н	Н	Me	Me	н	(70)	573

C₁₀-C₁₃

576

DMF, POCl₃

576

		S	Substra	te			Condit	ions	Product(s) and Yield(s) (%)	Refs.
C ₁₀ -	C ₁₅									
	R ¹	N ^	R ⁵						R [°] _{Mar} NR [°] R′	
	Ì	$\langle \gamma \rangle$	ſ			- 6- 7			R^{1} N R^{5}	
	R^2	` ↓ ^N ↓	∧ _{R⁴}			R°R'NCC	JR°, POCI	3		
		\mathbf{O} \mathbf{R}^3							\mathbb{R}^{2} \mathbb{V} \mathbb{R}^{4}	
							_		$O = R^3$	
	<u>R'</u>	<u>R²</u>	<u>R'</u>	R ⁴	R ^o	Rº	<u>R'</u>	R ⁸		
	н	CN CO U	Me	н	н	Me	Ph	н	(82)	574
	н ц	CO_2H	Me	n u	n u	Me	Me (CH	н .).	(59)	5/3
	н	CN	Me	н	н	Me	Me	н	(97)	573
	н	CO ₂ Et	н	н	н	Me	Me	н	(65)	576.
		-								573
	н	$\rm CO_2Mc$	Me	Н	Н	Me	Me	Н	(70)	573
	н	CO ₂ Et	Me	Н	н	Me	Me	Н	(76)	576,
										573
	н	CO ₂ Et	Me	н	Н	(CH ₂)5—	Н	(95)	574
	н	CO ₂ Et	Me	H	н	Me	Ph	н	(88)	574
	н ц	CO ₂ Et	н u	ме ц	H Mo	Me	Me Me	н u	(72)	5/3
	н	CO ₂ Et	Me	н	Me	Me	Me	н	(79)	573
	н	CH ₂ CO ₂ Et	Me	н	н	Me	Ph	н	(51)	574
	н	Ph	Me	н	н	Me	$\mathbf{P}\mathbf{h}$	н	(75)	574
C ₁₁										
	Ph								Ph	
	Ţ									
	ſ.	N 				1. DMF, 1	OCl ₃			569
	N/					2. Ma ₂ CO	3 (aq)		N CHOH	
									сно	
									OHC CHOH	
		Ņ				1. DMF, 1	POC13		N (62)	569
		<u> </u> _рь				2. Na ₂ CO	3 (aq)			
C11-0	215	111							N FU	
									R	
	R	∕_N							<u>R</u>	
						1. DMF, 1 2. NoClO	POC13		N NMe_2 $4-BrC_6H_4$ (38)	203
		N				Z. MaCIO	4		+ 4- <i>n</i> -BuC ₆ H ₄ () NMe ₂ ClO ₄ ⁻ 4- <i>n</i> -BuOC H (37)	
C ₁₂									4-11-54006014 (37)	
									п (
		N	\sim							
						HANCHO	POCL			574
	EtO ₂ C		Ύ			njatemo	10013		CO_2Et (13)	5/4
		0	1						EtO ₂ C N	
_	_								0	
C ₁₂ -0	-13	Me							Ma CHO	
		+N	~							
		$\int $				DMF, PO	Cl3		$\frac{1}{H}$ (53)	221
	EtO ₂ C	N_N_	ر ک	MeSO ₄			-		$EtO_2C' \longrightarrow N $ Me ()	576
	_	O I	R							
Pyraz	ines									
C5	м								CHNMe ₂	
	N	Ĭ				DMF, PO	Cl _a		CHO (61)	205
	[\] ∼ _N ∕	'n				, _ 0	-			
C ₅ -C	6								СНО	
	N_								\mathbb{N} \mathbb{R}	
	6	L				1. DMF, P	OCl ₃		H (56)	229
	N	NHR				2. H 2U			N N ME (20) R	

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄ NO			
Ph Ph Ph Ph Ph Clo_4^- C_5N	DMF, POCl ₃	$\begin{array}{c} Ph \\ N \\ Ph \\ O \\ Clo_4^- \end{array} (50) \end{array} $	222
	DMF, POCl ₃	NMe ₂ CHO (91)	206
	DMF, COCl ₂	I I (51) OH	206
	1. DMF, (COCI) ₂ 2. OH ⁻	(68)	577
	1. DMF, POCl ₃ 2. OH ⁻	П П (80) +	206
	DMF, (COCI) ₂	$ \begin{array}{c} NMe_2 \\ CHNMe_2 \\ 2CI^- (82) \\ H \\ H \end{array} $	577
Cr	1. DMF, POCl ₃ 2. KOH (aq)	OHC NH (19)	578
CO ₂ H	DMF, POCI ₃	OHC. Ne 0 (58)	231
C9-C14	DMF, POCl ₃	(47)	231
$HO + (R^{1}) + (R^{1}) + (R^{2}) +$	DMF, POCi3	$I \qquad \qquad$	R ¹ 230 R ²

TABLE XVIIIA. METHYI	AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED MONOCYCLIC RING (Continued	Λ
and the second se		~

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$C_{9}-C_{16}$ HO_2C N $C_{5}O$	DMF, POCI3	$Me_{N} \xrightarrow{O}_{HO} R \xrightarrow{O}_{N} Me = \frac{R}{H} (18)$ Ph (27) $CHO CHO 4-MeOC_{6}H_{4} (15)$	231
C ₁₈	DMF, POCl ₃	$Me_{2}N + Me_{2} + Me_{2} + 2ClO_{4} - (94)$ $Ph + O + Ph$	219
	Me2NCOMe, POCl3	$\begin{array}{c} \overset{\bullet}{\operatorname{CHC}}(\operatorname{Me}) = \overset{\bullet}{\operatorname{NM}} He_2 \operatorname{ClO}_4^- \\ & (60) \\ & Ph & O & Ph \end{array}$	219
	Me ₂ NCOPh, POCl ₃	$CHC(Ph)=NMe_2 ClO_4^-$ (84) Ph O Ph	219
	1-Me-2-pyrrolidone, POCl ₃	$\begin{array}{c} Me \\ N \\ N \\ N \\ N \\ ClO_4^- \end{array} $	219
Ph ClO ₄ ⁻	DMF. POCl ₃	Ph Ph Ph NMe_2 + 2ClO ₄ ⁻ (83)	219
	Me2NCOMe, POCI3	Ph Ph O NMe ₂ ClO ₄ - (54)	219
	Me2NCOPh, POCi3	Ph Ph Ph Ph (66) Ph (66)	219
	1-Me-2-pyrrolidone, POCl ₃	$Ph \qquad Me + ClO_4 \qquad (50)$	219
Ph Ph ClO4-	DMF, POCl ₃	Ph $Ph $ Ph	219
Ar = 4 Me	DMF, POCl ₃ OC ₆ H4	$Ar \qquad (90)$ $Ar \qquad (90)$ $+ \qquad 2ClO_4^-$	219

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C19-C25			
R.		R CHNMe ₂	
		$\frac{R}{M}$	579
CIO4-	DMF, Ac_2O	ClO_4^- Me (95)	519
+		Ph O Ph OPh (75)	
Ph ^r O Ph			
	1 DMF AccO	R CHO R	
	$2 HClO_4 AcOH H_2O$	Me (95)	579
	3. hydrolysis	[] Ph (80)	
	5. iij	Ph COPh (80)	
		011	
	I DME POCIA 80° 0-5 h	Cho	
	2 HNO2	O_2N NO_2 (42)	207
	2. HNO3		
NO ₂	5.110	\mathbb{Y}	
-		NO ₂	
		Me ₂ NHC CHO	
	1. DMF, POCl ₃ , reflux, 2 h	O_2N , NO_2 (17)	207
	2. HNO ₃	(47)	
	3. HO ⁻		
		NO ₂	
		MeaNHCs a +	
		NMe ₂ NO ₃	
	1. DMF, POCl ₃	O_2N (60)	207
	2. HNO ₃		
		Ť	
		NO ₂	
I		Me ₂ NHC + NMe ₂ ClO ₄ -	
O ₂ N NO ₂		O ₂ N NO ₂	
Ť. Ť	1. DMF, POCl ₃	(76)	580
CI	2. HClO ₄	X	
NO2		NO ₂	
		$\mathbf{I}, \mathbf{X} = \mathbf{C}! \qquad \text{Me_NHC} \qquad \frown +$	
		NMe ₂ ClO ₄ -	
U ₂ N NO ₂		Cl Cl (13)	580
	1. DMF, POCl ₃	I, X = On (33) + (13)	200
Y OH	2. HClO ₄	Ŭ ОН	
1402		NO ₂	
	1 DME POCI	$\mathbf{I} = \frac{\mathbf{X}^{2}}{\mathbf{N}} + \frac{\mathbf{N}}{\mathbf{N}} + \frac$	580
	1. DWF, POC3	CHNMe ₂	
I .	2. 10104	-	
NO ₂		Me ₂ NHC +	
		NMe ₂ ClO ₄ -	
U ₂ N NU ₂	I DATE DOC	O_2N (75)	580
	1. DMF, POU3		
	2. ACI04	Ĭ,	
с02н		CO ₂ H	
1 Dr-	-i	N .	
,N	•	O NY PT-1	
$0 N \downarrow 0 \uparrow =$	=0 1. DMF, SOCl ₂	OH H (63)	581
	2. Pd, H ₂		
		N H	
. NO		NO ₂	
INO2	DMF, POCl ₃	Ts (72-91)	218
		ww NMc2	

	METUVI AND METHVIENE	GROUPS ACTIVATED BY	A FULLY CONJUGATED	MONOCYCLIC R	ING (Continued)
I ABLE A VIIIA.	METHIC AND METHICENE	UKOUIS MEITIMED DI			

Substrate	Conditions	Product(s) a	and Yield(s) (%)	Refs.
	N-methylpyrrolidone, POCl ₃	CI Ts (-)		218
C ₁₅ MeO ^{NO₂} Ts	DMF, POCI3	MeO NO ₂ MeO NMe ₂ (-)		218
C ₈	1. Ph(Me)NCHO, POCl ₃ 2. NaClO ₄	$= N(Me)Ph ClO_4^-$	(81)	223
C ₈ -C ₁₄			$\mathbf{R}^1 \mathbf{R}^2 \mathbf{R}^3$ n	
R		\bigwedge	$\frac{\mathbf{R} \mathbf{R}}{\mathbf{H} \mathbf{Me} \mathbf{Me} 0 (9)$	6)
+ ClO ₄ -	1. R ² R ³ N(CH=CH) _n CHO, PCl ₅		H Me Ph 0 (74	4) 223
	2. NaClO ₄	R ¹	H Me Ph 1 (-	-)
			Me Me Me 0 (93	3)
			Me (CH ₂) ₅ — 0 (-	-)
			Me Me Ph 0 (63	3)
			Ph Me Me 0 (62	2)
			Ph $-(CH_2)_5-$ 0 (-	-)
C9			Ph Me Ph 0 (63	3)
+ CI04-	MFA, POCl ₃	$= N(Me)Ph ClO_4^-$	(91)	223

TABLE XVIIIA. METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED MONOCYCLIC RING (Continued)

^a This reaction was carried out at 25°.

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$C_{3}S_{3}/C_{3}S_{2}$ $C_{6}-C_{7}$ $R = \langle \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Me2NCHS, POCl3	$R \xrightarrow{NMe_2} \frac{R}{H} (18)$ $Me (2.5)$	208
$\begin{array}{c} C_{3}N_{2}/C_{4}N_{2} \\ C_{6} \\ \\ N \\ N \\ N \\ H \end{array}$	DMF, POCl ₃	$\begin{array}{c} \text{OHC} & \text{CHOH} \\ N & N \\ N & $	209
	1. DMF, POCl ₃ 2. PbNH ₂	(42)	209
C3NS/C4N2	1. DMF, POCl ₃ 2. RNH ₂	N - X $N - X$ $N - X$ OH O O OH O OH O OH O OH OH	209
C_{14} - C_{20} Ar N H_2N R $ClO_4^- \text{ or } Br^-$	DMF, POCl ₃	$\begin{array}{cccccccc} Ar & Ar & R \\ \hline N & Ph & Me & (47) \\ \hline N & Ph & CO_2Et & (71) \\ \hline N & S & Ph & Ph & (57) \\ \hline N & & 4-MeOC_6H_4 & Ph & (60) \end{array}$	224

TABLE XVIIIB. METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED POLYCYCLIC RING

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
C1N2/C6			
C ₈			
N	I DUE DOCI	N CHO (66)	210
	2. Na ₂ CO ₃ (aq)		582
H H		H CHINME2	
∧ N Cl		H CHO	210
	1. DMF, $POCl_3$ 2. K ₂ CO ₂ (sq)		210
₩ ⁻ N H	2. R/2003 (uq)	W N CHO H	
C ₁₈ -C ₂₁			
N		N CHO Ar	
N OAr	DMF, POCl ₃	$\begin{array}{c} 2\text{-naphthyl} (70) \\ N \text{ OAr} & 3 \text{ pbCONHC.H} (67) \end{array}$	210
H H		Н	
C3NO/C6			
0		+	
N	ClCH=NMe ₂ ⁺ Cl ⁻ ,	$N = NMe_2 Cl^- $ (82)	211
	DMF, 60°, 6 h	NMe ₂	
	DMF, POCl ₃	(60) + (30)	583
		O MHc2 O OH	
HO. A N		HO N CHO (75)	591
	1. DMF, POCl ₃ 2. KOH (aq)		564
	2. 1011 (44)	∞ 0 сон	
C,			
MeO	1. DMF, POCl ₃	MeO CHO (80)	584
	2. KOH (aq)	ОСН	
C _{i0}			
Et		\sim N CHO	
N+ I	1. CICH=NMe ₂ +Cl ⁻ ,	$ \begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	211
	2. H ₂ O	СНО	
	-	$\stackrel{\text{Et}}{\wedge}$ $\stackrel{\text{R}}{\wedge}$	
	1. CICH=NMe2 ⁺ CI ⁻ , CHCl ₃ ,	-0 -0 -0 -0 -0 -0 -0 -0	211
	60°, 6 h	$EI - N$ I^- CHO (23)	
	2. K_2CO_3 , H_2O		
C ₁₅ -C ₂₁		~	
N X-Ar		N X-Ar X Ar	
	DMF, POCl ₃	$CH_2 Ph \qquad (-)$	585 584
V ⁻ 0		$ C_{HO}$ (CH_{2}) ₂ Ph (90) O 2-naphthyl (—)	587
		CH_2 2-naphthyl (—)	585
		$(CH_2)_2$ 1-naphthyl (—)	586
		$(CH_2)_2$ 2-naphthyl () O 3-PhCONHC ₂ H ₄ ()	586 587
0			
		М СНОН	
	DMF, POCl ₃	(64)	497
		« <u>`</u>	
~ 0			

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁ NS/C ₆			
Benzo[d]thiazoles			
C ₈	CICH=NMe₂ ⁺ CI [−] , DMF, 60°, 6 h	$ \underbrace{ \begin{array}{c} & & \\ &$	211
	1. DMF, POCl ₃ 2. KOH (aq)	S ^{CHO} (70)	212
_	1. MFA, POCl ₃ 2. Na ₂ CO ₃ (aq)	(60)	212
C_{10} Et $N + I^-$	1. CICH=NMe2 ⁺ CI ⁻ , DMF, 60°, 6 h 2. H ₂ O	$ \begin{array}{c} $	211
	1. ClCH=NMe2⁺Cl ⁻ , CHCl ₃ , 60°, 6 h 2. K ₂ CO ₃ , H ₂ O	+ $K = H$ (23) + I, R = CHO (43)	211
	DMF, POCl ₃	I , $R = H$ (87)	29
	H2NCOMe, POCl3	$ \begin{array}{c} Ft \\ N \\ S \\ Et^{-N} \\ Et^{-N} \\ H, R = Me (52) \end{array} $	29
	H ₂ NCOEt, POCi ₃	$\mathbf{\Pi}, \ \mathbf{R} = \mathbf{Et} (40)$	29
	H ₂ NCOBu- <i>t</i> , POCl ₃	$\mathbf{II}, \ \mathbf{R} = t - \mathbf{Bu} (44)$	29
	H ₂ NCOPh, POCl ₃	$\mathbf{II}, \ \mathbf{R} = \mathbf{Ph} \ (42)$	29
C_{10} C_{16} R \rightarrow $N + Br^{-}$	DMF, POCl3	$\begin{array}{c} \begin{array}{c} R \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	225
Benzo[d]isothiazoles		PhCO (0) (53)	
C ₈ C ₃ NSe/C ₆	1. DMF, POCI ₃ 2. Na ₂ CO ₃ (aq)	(85)	212
C ₆ N Se	ClCH=NMe2⁺Cl⁻, DMF, 60°, 6 h	$ \begin{array}{c} \overset{h}{\underset{Se}{\overset{h}}} \overset{h}{\underset{NMe_{2}}{\overset{CI}{\overset{I}}} \\ (71) \end{array} $	211
$\overbrace{Sc}^{\text{Et}}$	1. CICH=NMe2 ⁺ CI [−] DMF, 60°, 6 h 2. H ₂ O	Se CHO (70)	211

_

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C4N/C6	1. CICH=NM¢2*CI⁻, CHCl3, 60° 2. K2CO3, H2O	$ \begin{array}{c} $	211
	DMF, POCl ₃	(80) Me	213
CI	DMF, POCl ₃ (1.3 eq), 100°	CI OHC (2) + (2) + (2-8) Me (2-8) Me (2-8) Me (2-8) Me (2-8) Me (2-8) Me (2-8)	227
	DMF, POCh; (3 eq)	$Cl \qquad Cl \qquad Cl \qquad Me \qquad O \qquad Me \qquad O \qquad Me \qquad Cl \qquad HO \qquad CHO \qquad (10)$ $+ \qquad \qquad$	227
N Me	Et2NCHO, POCl3	$\begin{array}{c} Me \\ OHC & \begin{pmatrix} \\ N \\ Me \\ \end{pmatrix} & \begin{pmatrix} \\ \\ Me \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	227
C ₁₃ -C ₁₄ R N Me	DMF, POCl ₃	$R \rightarrow CHO \qquad R \rightarrow CHO \qquad R \rightarrow CHO \qquad H (55) \qquad H (55) \qquad He ()$	588 588 588, 227

TABLE XVIIIB. METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED POLYCYCLIC RING (Continued)					
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.		
C_{19}	R ¹ R ² NCHO, POCl ₃	$ \begin{array}{c} $	589		
C₅/C ₇	Ph(Me)NCHO, POCl ₃	(4) + OHC $N $ $Bn $ $(4) + Bn $ (79) $Bn $ (79)	589		
	Me ₂ N NMe ₂ R ClO ₄ -	R R R R R R R R R R R R R R R R R R R	214		
Ga	R Me ₂ N ClO ₄ - NMe ₂	$ \begin{array}{c} & \\ \hline \\$	214		
C16	DMF, PCl ₅	$\overset{+}{}\overset{+}{}\overset{-}{}\overset{+}{}}{}\overset{+}{}}{}\overset{+}{}}{}\overset{+}{}}{}}{}}{}}{}}$	223		
Pr-i	DMF, POCl ₃	OHC \rightarrow $Pr-i$ (76) Me ₂ N	226		
$C_4 N_2/C_6$ C_9 N_{NH_2}	1. DMF, POCl ₃ 2. Na ₂ CO ₃ (aq)	(77)	215		
C9-C19	1. DMF, POCl ₃ 2. NaSH (aq)	(63)	215		
	DMF, POCl ₃	$ \begin{array}{c} $	216 590 216 216		
	1. DMF, POCl ₃ 2. NaOH (aq)	$ \begin{array}{ccccc} N & X & R & X \\ & & H & S & (51) \\ & & CHO & Me & S & (59) \\ & & Me & Q & (51) \end{array} $	216 590 216 216		
$R = O_2 \\ S \\ H \\ H$	1. DMF, POCl ₃ 2. NaOH (aq)	$\begin{array}{c c} R \\ N \\ N \\ CHO \\ CHO \\ CHO \\ \end{array} \begin{array}{c} Ar \\ \hline 2-thiazoyl \\ 2-thiazoyl \\ 2-thiazoyl \\ 2-pyrimidyl \\ S \\ 2-pyrimidyl \\ O \\ (71) \\ \end{array}$	591 592 591 592		
		2-pyridyl S (68)	591		

TABL	E XVIIIB. METHYL AND	METHYLENE GROUPS ACTIVA	TED BY A FULLY CONJUGATED POLYCYCLIC RING (Continued	
	Substrate	Conditions	Product(s) and Yield(s) (%)	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
----------------------------------	--	--	--	------------
C ₁₀	Me +N N N	DMF, POCl ₃	H CHO N (-)	215
C ₁₀ -C ₁₁	$ \bigvee_{O}^{NH_2} \bigvee_{O_2H}^{NH_2} $	DMF. POCl3	$R \xrightarrow{N} N \xrightarrow{N} Me \qquad \frac{R}{H} (48)$	231
c ₁₁		_	OMe (56)	593
				510
C ₁₃ -C ₂₀	N	<i>N</i> -formylpiperidine, POCl ₃	N CHO	510
R _N		CICH=NMe2 ⁺ CI	$\begin{array}{c} R \\ N \\ O \\ O$	321
C ₁₅	0		0	232
	N ^{Ph}	1. DMF, POCl ₃ 2. NaOH (aq), heat	N CHOH (68)	215
C ₁₆	NHPh N	1. DMF, POCl ₃ 2. Na ₂ CO ₃ (aq)	$ \begin{array}{c} $	215
	N R	DMF, POCl ₃	$ \begin{array}{c c} & R \\ & OBn \\ & N-CHPh \\ & CHO \\ & O \end{array} $	594 595
	N OBn	1. DMF. POCl ₃ 2. NaOH	(75) N CHOH CHO	594
C-N/C	N O Ph	DMF, POCl ₃	$ \begin{array}{c} $	594
C ₁₀		ClCH=NMe₂⁺Cl⁻, DMF, 60°, 6 h	(87) N CHNMe ₂ * NMe ₂ CI	211
		DMF, POCl ₃	CHO ()	498

TABLE XVIIIB. METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED POLYCYCLIC RING (Continued)

TABLE XVIIIB. METHYI	AND METHYLENE GROUPS ACTI	VATED BY A FULLY CONJUGATED POLYCYCLIC RING (Continue	d)
Substrate	Conditions	+	Keis.
	CICH=NMe₂*CI⁻, DMF, 60°, 6 h	(93)	211
	DMF, POCl ₃		498
O NH2	1. DMF, POCl ₃ 2. KOH (aq)	$() \qquad \qquad$	578
	DMF, POCl ₃	CHO (97)	596
R = Me	DMF, POCl ₃	$\begin{array}{c} 2I^{-} \\ \\ N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	597
R R = Et	CICH=NMc∍ ⁺ CI [−] , DMF, 60°, 6 h	$ \begin{array}{c} \mathbf{R} \\ \mathbf{I} \\ \mathbf$	211
	DMF, POCl ₃		29
Er	I. CICH=NMe2 ⁺ CI [−] , CHCl ₃ , 60°, 6 h 2. K ₂ CO ₃ , H ₂ O	$\dot{\mathbf{E}}\mathbf{t}$ II $\dot{\mathbf{E}}\mathbf{t}$ II (32)	211
C ₁₂		CHNMe ₂	
+ N Et	CICH=NMe2 ⁺ Cl⁻, DMF, 60°, 6 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	211
	DMF, POCl ₃	$ \begin{array}{c} $	29
Cr0/Cc	1. CICH=NMe₂ ⁺ Cl [−] , CHCl ₃ , 60°, 6 h 2. K₂CO ₃ , H₂O	$ \begin{array}{c} $	211
	DMA, POCl ₃	CI CCI COCH ₃	217
C_{16}	DMF, POCl3	$Me_{2}N \qquad NMe_{2} \qquad \qquad$	219

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
ClO ₄ - OPh	Me2NCOPh, POCl3	$ \begin{array}{c} $	219
s5/C6	1-Me-2-pyrrolidonc, POCl ₃	Me_{N}^{+} CIO_{4}^{-} (95) Ph	219
CIO_4^-	DMF, POCl ₃	$Me_{2}N^{\dagger} \qquad Me_{2}N^{\bullet} \qquad (78)$	219
OH NOH NO ₂	DMF, POCl ₃	(90)	598
NOH OH	DMF, POCl ₃	$ \begin{array}{c} $	584
OH NOH	DMF, POCl ₃	CHOH N (85)	584
$C_{12}-C_{19}$ NHCOMe OH R^2	DMF, POCl ₃	$ \begin{array}{c} $	584, 599 599 599 599
C ₁₄ NHCOMe OH CO ₂ Me	DMF, POCl ₃	OHC CHOH (92) CO ₂ H	599
C ₁₈ NO ₂ Ts	DMF, POCl ₃	$ \begin{array}{c} \text{NO}_2 \text{CHNMe}_2 \\ \text{Ts} \end{array} $ (62)	218

TABLE XVIIIB. METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED POLYCYCLIC RING (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$C_{5}O/C_{6}/C_{6}$ C_{17} CIO_{4}^{-}	DMF, POCI3	$CIO_4^- (70)$	219
$C_{16}C_{16}C_{7}$ C_{16} Clo_{4}	DMF, PCl5	*Me ₂ ClO ₄ - (96)	223

REFERENCES

¹ Jones, G.; Stanforth, S. P. Org. React. 1997, 49, 1.

² Jutz, C. in Advances in Organic Chemistry: Methods and Results, Taylor, E. C., Boehme, H.; Viehe, H. G. Eds., Vol. 9, Interscience, New York, **1976**, p. 225.

³ Marson, C. M. Tetrahedron 1992, 48, 3659.

^{3a}Balbi, A. Farmaco **1995**, 50, 439; Chem Abstr. **1995**, 123, 313809j.

- ^{3b}Seybold, G. J. Prakt. Chem. Chem. Ztg. 1996, 338, 392.
- ⁴ Wizinger, R. J. Prakt. Chem. 1939, 154, 25.
- ⁵ Jutz, C.; Müller, W. Chem. Ber. 1967, 100, 1536.
- ⁶ Jutz, C. Ind. Chim. Belge 1967, 32, 127; Chem. Abstr. 1969, 70, 67312.
- ⁷ Wolter, G.; Wolf, F.; Guenther, E. Z. Chem. 1967, 7, 346.
- ⁸ Traas, P. C.; Boelens, H.; Takken, H. J. Recl. Trav. Chim. Pays-Bas 1976, 95, 57.
- ⁹ Seus, E. J. J. Org. Chem. 1965, 30, 2818.
- ¹⁰ Cuzaux, L.; Faher, M.; Tisnes, P. J. Chem. Res. (S) 1990, 264.
- ¹¹ Witiak, D. T.; Williams, D. R.; Kakodkar, S. V.; Hite, G.; Shen, M-S.; J. Org. Chem. 1974, 39, 1242.
- ¹² Sudalai, A.; Rao, G. S. K. Indian J. Chem., Sect. B 1989, 28B, 219.
- ¹³ Sreenivasulu, M.; Rao, M. S. C.; Rao, G. S. K. Indian J. Chem., Sect. B 1987, 26B, 173.
- ¹⁴ Reddy, M. P.; Rao, G. S. K. Synthesis 1980, 815.
- ¹⁵ Hartmann, H. J. Prakt. Chem. 1970, 312, 1194.
- ¹⁶ Jutz, C.; Heinicke, R. Chem. Ber. 1969, 102, 623.
- ¹⁷ Grimwade, M. J.; Lester, M. G. Tetrahedron 1969, 25, 4535.
- ¹⁸ Arnold, Z. Collect. Czech. Chem. Commun. **1960**, 25, 1313.
- ¹⁹ Reddy, M. P.; Rao, G. S. K. Indian J. Chem., Sect. B 1982, 21B, 757.
- ²⁰ Zhong, P.; Jin, J.; Li, X. Lichan Huaxue Yu Gongye 1988, 8, 25; Chem. Abstr. 1990, 112, 77555y.
- ²¹ Traas, P. C.; Takken, H. J.; Boelens, H. Tetrahedron Lett. 1977, 2129.
- ²² Laurent, H.; Wiechert, R. Chem. Ber. 1968, 101, 2393.
- ²³ Asao, T.; Kuroda, S.; Kato, K. Chem. Lett. 1978, 41.
- ²⁴ Johnson, B. F. G.; Lewis, J.; McArdle, P.; Randall, G. L. P. J. Chem. Soc., Dalton Trans. 1972, 456.
- ²⁵ Kienzle, F.; Minder, R. E. Helv. Chim. Acta 1975, 58, 27.
- ²⁶ Knorr, R.; Loew, P.; Hassel, P.; Bronberger, H. J. Org. Chem. 1984, 49, 1288.
- ²⁷ Domagala, J. M.; Peterson, P. J. Heterocycl. Chem. 1989, 26, 1147.
- ²⁸ Ziegenbein, W. Angew. Chem., Int. Ed. Engl. 1965, 4, 358.
- ²⁹ Makin, S. M.; Pomogaev, A. I. Zh. Org. Khim. 1982, 18, 2173 (Engl. Transl. p. 1916); Chem. Abstr. 1983, 98, 127677e.
- ³⁰ Muraoka, M.; Yamamoto, T.; Enomoto, K.; Takeshima, T. J. Chem. Soc., Perkin Trans 1 1989, 1241.
- ³¹ Adams, D. R.; Dominguez, J.; Russo, V. L.; Morante de Rekowski, N. Gazz. Chim. Ital. 1989, 119, 281.
- ³² Arnold, Z.; Žemlička, J. Collect. Czech. Chem. Commun. 1960, 25, 1318.
- ³³ Arnold, Z.; Holý, A. Collect. Czech. Chem. Commun. 1963, 28, 869.
- ³⁴ Sciaky, R.; Pallini, U.; Consonni, A. Gazz. Chim. Ital. 1966, 96, 1284.
- ³⁵ Sciaky, R.; Pallini, U. Tetrahedron Lett. 1964, 1839.
- ³⁶ Arnold, Z. Collect. Czech. Chem. Commun. 1965, 30, 2783.
- ³⁷ Arnold, Z. Czech. Patent 97 162, 1960; Chem. Abstr. 1962, 56, 3466c.
- ³⁸ Holý, A.; Arnold, Z. Collect. Czech. Chem. Commun. 1965, 30, 53.
- ³⁹ Arnold, Z.; Holý, A. Collect. Czech. Chem. Commun. 1963, 28, 2040.
- ⁴⁰ Arnold, Z. Collect. Czech. Chem. Commun. 1962, 27, 2993.
- ⁴¹ Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.-i.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
- ⁴² Meth-Cohn, O.; Westwood, K. T. J. Chem. Soc., Perkin Trans. 1 1984, 1173.

- ⁴³ Müller, H.-R.; Seefelder, M. Justus Liebigs Ann. Chem. 1969, 728, 88.
- 44 Comins, D. L.; Herrick, J. Heterocycles 1987, 26, 2159.
- ⁴⁵ Comins, D. L.; Mantlo, N. B. J. Org. Chem. 1986, 51, 5456.
- ⁴⁶ Makin, S. M.; Shavrygina, O. A.; Berezhnaya, M. I.; Kolobova, T. P. Zh. Org. Khim. 1972, 8, 1394 (Engl. Transl. p. 1415); Chem. Abstr. 1972, 77, 139495y.
- ⁴⁷ Reichardt, C.; Ferwanah, A.-R.; Pressler, W.; Yun, K.-Y. Justus Liebigs Ann. Chem. 1984, 649.
- ⁴⁸ Makin, S. M.; Pomogaev, A. I. Zh. Org. Khim. **1981**, 17, 2263 (Engl. Transl. p. 2020); Chem. Abstr. **1982**, 96, 70416w.
- ⁴⁹ Reddy, C. P.; Tanimoto, S. Synthesis **1987**, 575.
- ⁵⁰ Ramesh, N. G.; Balasubramanian, K. K. Tetrahedron Lett. 1991, 32, 3875.
- ⁵¹ Lester, M. G.; Petrow, V.; Stephenson, O. Tetrahedron 1964, 20, 1407.
- ⁵² Burn, D.; Cooley, G.; Ducker, J. W.; Ellis, B.; Kirk, D. N.; Petrow, V. *Tetrahedron Lett.* 1964. 733.
- ⁵³ Raju, B.; Rao, G. S. K. Synthesis 1985, 779.
- ⁵⁴ Normant, H.; Martin, G. J. Bull. Soc. Chim. Fr. 1963, 1646.
- ⁵⁵ Makin, S. M.; Kruglikova, R. I.; Lonina, N. N. Zh. Org. Khim. **1986**, 22, 702 (Engl. Transl. p. 627); Chem. Abstr., **1987**, 106, 175852p.
- ^{55a}Harada, K., Choshi, T., Sugino, E., Sato, K., Hibino, S. Heterocycles 1996, 42, 213.
- ⁵⁶ Weissenfels, M.; Pulst, M.; Greif, D.; Werner, T. Z. Chem. 1990, 30, 19.
- ⁵⁷ Belanger, P. C.; Dufresne, C.; Scheigetz, J.; Young, R. N.; Springer, J. P.; Dmitrienko, G. I. *Can. J. Chem.* **1982**, *60*, 1019.
- ⁵⁸ Popper, T. L.; Faro, H. P.; Carlon, F. E.; Herzog, H. L. J. Med. Chem. 1972, 15, 555.
- ⁵⁹ Burn, D.; Cooley, G.; Davies, M. T.; Hiscock, A. K.; Kirk, D. N.; Petrow, V.; Williamson, D. M. Tetrahedron 1965, 21, 569.
- ⁶⁰ Sciaky, R.; Mancini, F. Tetrahedron Lett. 1965, 137.
- ⁶¹ Parham, W. E.; Heberling, J. J. Am. Chem. Soc. 1955, 77, 1175.
- ⁶² Kreitsberga, Ya. N.; Neiland, O. Ya. *Khim. Geterotsikl. Soedin*, **1989**, 898 (Engl. Transl. p. 746); *Chem. Abstr.* **1990**, *112*, 178736p.
- ^{62a}Harada, K.; Choshi, T.; Sugino, E.; Sato, K.; Hibino, S. Heterocycles, 1996, 42, 213.
- 62b Parham, W. E.; Traynelis, V. J. J. Am. Chem. Soc. 1954, 76, 4690.
- 63 Arnold, Z.; Žemlička, J. Collect. Czech. Chem. Commun. 1959, 24, 786.
- ⁶⁴ Arnold, Z.; Žemlička, J. Chem. Listy 1958, 52, 458; Chem. Abstr. 1959, 53, 4164.
- ⁶⁵ Šauliová, J; Arnold, Z. Coll. Czech. Chem. Commun., 1975, 40, 1022
- ⁶⁶ Jauer, E. A.; Foerster, E.; Hirsch, B. J. Signalaufzeichnungsmaterialien 1975, 3, 155; Chem. Abstr. 1975, 83, 81180x.
- ⁶⁷ Barton, D. H. R.; Dressaire, G.; Willis, B. J.; Barrett, A. G. M.; Pfeffer, M. J. Chem. Soc., Perkin Trans. 1 1982, 665.
- ⁶⁸ Makin, S. M.; Shavrygina, O. A.; Berezhnaya, M. I.; Kirillova, G. V. Zh. Org. Khim. 1972, 8. 674 (Engl. Transl. p. 682); Chem. Abstr. 1972, 77, 63332v.
- ⁶⁹ Arnold, Z.; Holý, A. Collect. Czech. Chem. Commun. 1965, 30, 47.
- ⁷⁰ Arnold, Z. Collect. Czech. Chem. Commun. 1960, 25, 1308.
- ⁷¹ Žemlička, J.; Arnold, Z. Collect. Czech. Chem. Commun. 1961, 26, 2852.
- ⁷² Youssefyeh, R. D. Tetrahedron Lett. 1964, 2161.
- ⁷³ Consonni, A.; Mancini, F.; Pallini, U.; Patelli, B.; Sciaky, R. Gazz. Chim. Ital. 1970, 100, 244.
- ⁷⁴ Arnold, Z. Collect. Czech. Chem. Commun. 1961, 26, 3051.
- ⁷⁵ Ziegenbein, W.; Franke, W. Angew. Chem. 1959, 71, 573.
- ⁷⁶ Bestmann, H. J.; Lienert, J.; Mott, L. Justus Liebigs Ann. Chem. 1968, 718, 24.
- ⁷⁷ Nolte, C.; Schäfer, G.; Reichardt, C. Justus Liebigs Ann. Chem. 1991, 111.
- ⁷⁸ Arnold, Z.; Žemlička, J. Czech. Patent 91 565, 1959; Chem. Abstr. 1962, 56, 3358i.
- ⁷⁹ Arnold, Z.; Žemlička, J. Collect. Czech. Chem. Commun. 1959, 24, 2385.
- ⁸⁰ Nikolajewski, H. E.; Daehne, S.; Hirsch, B. Chem. Ber. 1967, 100, 2616.
- ⁸¹ Makin, S. M.; Boiko, I. I.; Shavrygina, O. A. Zh. Org. Khim. **1977**, 13, 1189 (Engl. Transl. p. 1093); Chem. Abstr. **1977**, 87, 102034c.
- ⁸² Gagan, J. M. F.; Lane, A. G.; Lloyd, D. J. Chem. Soc. C 1970, 2484.
- ⁸³ Bodendorf, K.; Mayer, R. Chem. Ber. 1965, 98, 3554.

- ⁸⁴ Schelhorn, H.; Hauptmann, S.; Frischleder, H. Z. Chem. 1973, 13, 97.
- ⁸⁵ Dermugin, V. S.; Shvedov, V. I.; Litvinov, V. P. Izv. Akad. Nauk SSSR, Ser. Khim. 1985, 2549 (Engl. Transl. p. 2762); Chem. Abstr. 1986, 105, 23990y.
- ⁸⁶ Alvernhe, G.; Greif, D.; Langlois, B.; Laurent, A.; Le Dréan, I.; Pulst, M.; Semli, A.; Weissenfels, M. Bull. Soc. Chim. Fr. 1994, 131, 167.
- ⁸⁷ Greif, D.; Riedel, D.; Feindt, A.; Pulst, M. J. Prakt. Chem. 1995, 337, 34.
- ⁸⁸/Liu, Z.; Lu, J.; Zhang, H. Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1 072 674 (1993); Chem. Abstr. 1994, 120, 134028v.
- ⁸⁹ Venugopal, M.; Balasundaram, B.; Perumal, P. T. Synth. Commun. 1993, 23, 2593.
- ^{89a}Megati, S.; Rao, K. G. S. Tetrahedron Lett. **1995**, 36, 5819.
- ⁹⁰ Shvedov, V. I.; Fedorova, I. N. Zh. Org. Khim. 1991, 27, 247 (Engl. Transl. p. 210); Chem. Abstr., 1991, 115, 158150b.
- ⁹¹ Roy, B. C.; Kar, G. K.; Ray, J. K. Synth. Commun. 1993, 23, 1959.
- 92 Arnold, Z.; Holý, A. Collect. Czech. Chem. Commun. 1961, 26, 3059.
- 93 Arnold, Z.; Holý, A. Collect. Czech. Chem. Commun. 1962, 27, 2886.
- ^{93a}Majo, V. J.; Perumal, P. T. J. Org. Chem. 1998, 63, 7136.
- ^{93b}Majo, V. J.; Perumal, P. T. Tetrahedron Lett. 1997, 38, 6889.
- ^{93c}Amaresh, R. R.; Perumal, P. T. Tetrahedron 1998, 56, 14327.
- 93d Amaresh, R. R.; Perumal, P. T. Tetrahedron Lett. 1998, 39, 3837.
- ⁹⁴ Beaton, C. M.; Chapman, N. B.; Clarke, K.; Willis, J. M. J. Chem. Soc., Perkin Trans. 1 1976, 2355.
- ⁹⁵ Fringuelli, F.; Serena, B.; Taticchi, A. J. Chem. Soc., Perkin Trans. 2 1980, 971.
- ⁹⁶ Simionescu, C.; Comanita, E.; Vata, M.; Daranga, M. Angew. Makromol. Chem. 1977, 62, 135.
- ⁹⁷ Suvorov, N. N.; Kamenskii, A. B.; Smushkevich, Yu. I.; Livshits, A. I. Zh. Org. Khim. 1977, 13, 197 (Engl. Transl. p. 181); Chem. Abstr. 1977, 86, 139745r.
- ⁹⁸ Dorofeenko, G. N.; Krasnikov, V. V.; Pyshchev, A. I. Khim. Geterotsikl. Soedin 1977, 599 (Engl. Trans. p. 480); Chem. Abstr. 1977, 87, 85121j.
- ⁹⁹ Flitsch, W.; Koszinowski, J.; Witthake, P. Chem. Ber. 1979, 112, 2465.
- ¹⁰⁰ Harnisch, H. Justus Liebigs Ann. Chem. 1972, 765, 8.
- ¹⁰¹ Nohara, A.; Umetani, T.; Sanno, Y. Tetrahedron 1974, 30, 3553.
- ¹⁰² Nohara, A.; Umetani, T.; Sanno, Y. Tetrahedron Lett. 1973, 1995.
- ¹⁰³ Cascaval, A. Justus Liebigs Ann. Chem. **1980**, 669.
- ¹⁰⁴ Cremins, P. J.; Saengchantara, S. T.; Wallace, T. W. Tetrahedron 1987, 43, 3075.
- ¹⁰⁵ Reynolds, G. A.; VanAllan, J. A. J. Heterocycl. Chem. 1969, 6, 375.
- ¹⁰⁶ Klutchko, S.; Kaminsky, D.; Von Strandmann, M. U. S. Patent 4 008 252 (1977); Chem. Abstr. 1977, 87, 5808a.
- ¹⁰⁷ Kaminsky, D. U. S. Patent 3 936 488 (1976); Chem. Abstr. 1976, 84, 180039k.
- ¹⁰⁸ Kaminsky, D.; Klutchko, S.; Von Strandmann, M. U. S. Patent 3 937 828 (1976); Chem. Abstr. 1976, 84, 164807d.
- ¹⁰⁹ Kaminsky, D. U. S. Patent 3 936 563 (1976); Chem. Abstr. 1976, 84, 135474n.
- ¹¹⁰ Kaminsky, D. U. S. Patent 3 898 218 (1975); Chem. Abstr. 1976, 84, 17388q.
- ¹¹¹ Kaminsky, D.; Klutchko, S.; Von Strandmann, M. U. S. Patent 3 887 585 (1975); Chem. Abstr. 1975, 83, 178816x.
- ¹¹² Kaminsky, D. U. S. Patent 3 879 426 (1975); Chem. Abstr., 1975, 83, 79081x.
- ^{112a}Vlasov, V. M.; Jakobson, G. G. *Izv. Nauk SSSR, Ser. Khim.* **1969**, 893 (Engl. Transl. p. 812); *Chem. Abstr.* **1969**, 71, 30322q.
- ^{112b}Amaresh, R. R., Perumal, P. T. Synth. Commun. 1997, 27, 337.
- ^{112c}Amaresh, R. R., Perumal, P. T. Ind. J. Chem., Sect. B. 1997, 36B, 541.
- ^{112d}Sezer, Ö., Dabak, K., Anac, O., Akar, A. Helv. Chim. Acta 1997, 80, 960.
- ¹¹³ Paquette, L. A.; Johnson, B. A.; Hinga, F. M. Org. Synth. 1966, 46, 18.
- ¹¹⁴ Gangjee, A.; Ohemeng, K. A. J. Heterocycl. Chem. 1985, 22, 1153.
- ¹¹⁵ Huet, F. Synthesis 1985, 496.
- ¹¹⁶ Elguero, J.; Shimizu, B. An. Quim., Ser. C 1988, 84, 191; Chem. Abstr. 1989, 111, 153691m.
- ¹¹⁷ Elguero, J.; Shimizu, B. An. Quim., Ser. C 1988, 84, 176; Chem. Abstr. 1989, 111, 39307r.

- ¹¹⁸ Reynolds, G. A.; Drexhage, K. H. J. Org. Chem. 1977, 42, 885.
- ¹¹⁹ Karlsson, J. O.; Frejd, T. J. Org. Chem. 1983, 48, 1921.
- ¹²⁰ Sciaky, R.; Mancini, F. Gazz. Chim. Ital., 1967, 97, 421.
- ^{120a}Sciaky, R.; Pallini, U. Gazz. Chim. Ital. 1966, 96, 1241.
- ¹²¹ Raju, B.; Rao, G. S. K. Indian J. Chem., Sect. B 1987, 26B, 177.
- ¹²² Katritzky, A. R.; Marson, C. M.; Palenik, G.; Koziol, A. E.; Luce, H.; Karelson, M.; Chen B. C; Brey, W. *Tetrahedron* 1988, 44, 3209.
- ¹²³ Katritzky, A. R.; Marson, C. M. J. Org. Chem. 1987, 52, 2726.
- ¹²⁴ Katritzky, A. R.; Marson, C. M. Tetrahedron Lett. 1985, 26, 4715.
- ¹²⁵ Donkor, I. O.; Gangjee, A.; Kisliuk, R. L.; Gaumont, Y. J. Heterocycl. Chem. 1991, 28, 1651.
- ¹²⁶ Ziegenbein, W.; Lang, W. Chem. Ber. 1960, 93, 2743.
- ¹²⁷ Weissenfels, M.; Schurig, H.; Huehsam, G. Z. Chem. 1966, 6, 471.
- ¹²⁸ Cagniant, P.; Kirsch, G.; Perin, P. C. R. Hebd. Seances Acad. Sci., Ser. C 1974, 279, 851.
- ¹²⁹ Görlitzer, K.; Vogt, R. Arch. Pharm. (Weinheim, Ger.) 1990, 323, 841.
- ¹³⁰ Ransohoff, J. E. B.; Staab, H. A. Tetrahedron Lett. 1985, 26, 6179.
- ¹³¹ Remers, W. A.; Weiss, M. J. J. Am. Chem. Soc. 1965, 87, 5262.
- ¹³⁵ Strakova, I. A.; Strakov, A. Ya.; Gudrinicce, E. Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1972 627; Chem. Abstr. 1973, 78, 29667u.
- ¹³³ Opmane, M.; Strakov, A. Ya.; Gudriniece, E. Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1976 701; Chem. Abstr. 1977, 86, 171322m.
- ¹³⁴ Kalisher, G.; Scheyer, H.; Keller, K. U. S. Patent 1 717 567 (1929); Chem. Abstr. 1929, 23 3933.
- ^{134a}Prinz, H.; Wiegrebe, W.; Müller, K. J. Org. Chem. **1996**, 61, 2861.
- ^{E34b}Müller, K., Sellmer, A., Prinz, H. Eur. J. Med. Chem. 1997, 32, 895.
- ¹³⁵ Ipach, I.; Lerche, H.; Mayring, L.; Severin, T. Chem. Ber. 1979, 112, 2565.
- ¹³⁶ Nagarajan, K.; Rodrigues, P. J.; Nethaji, M. Tetrahedron Lett. 1992, 33, 7229.
- ¹³⁷ Nagarajan, K.; Rodrigues, P. J. Indian J. Chem., Sect. B 1994, 33B, 1115.
- ¹³⁸ Bernard, M.; Hulley, E.; Molenda, H.; Stochla, K.; Wrzeciono, U. Pharmazie 1986. 41, 560.
- ¹³⁹ Kira, M. A.; Aboul-Enein, M. N.; Korkor, M. I. J. Heterocycl. Chem. 1970, 7, 25.
- ¹⁴⁰ Brehme, R. Chem. Ber. **1990**, 123, 2039.
- ¹⁴¹ Brehme, R.; Nikolajewski, H.-E. Tetrahedron Lett. 1982, 23, 1131.
- ¹⁴² Patel, H.; Fernandes, P. S. Indian J. Chem., Sect. B 1988, 27B, 1154.
- ¹⁴³ Awad, I. M. A.; Hassan, K. M. J. Chin. Chem. Soc. (Taipei) **1990**, 37, 599; Chem. Abstr. **1991** 114, 122153v.
- ¹⁴⁴ Awad, I. M. A.; Hassan, K. M. Phosphorus, Sulfur, and Silicon 1990, 47, 311.
- ^{144a}Ahmed, A. S.; Boruah, R. C. Tetrahedron Lett. **1996**, 37, 8231.
- ¹⁴⁵ Halbritter, K.; Kermer, W. D.; Reichardt, C. Angew. Chem., Int. Ed. Engl. 1972, 11, 62.
- ¹⁴⁶ Arnold, Z. Collect. Czech. Chem. Commun. 1965, 30, 2125.
- ¹⁴⁷ Coppola, G. M.; Hardtmann, G. E.; Huegi, B. S. J. Heterocycl. Chem. 1974 11, 51.
- ¹⁴⁸ Kučera, J.; Arnold, Z. Collect. Czech. Chem. Commun. 1967, 32, 3792.
- ¹⁴⁹ Arnold, Z.; Šauliová, J.; Krnchňák, V. Collect. Czech. Chem. Commun. 1973, 38, 2633.
- ^{149a}Majo, V. J.; Perumal, P. T. J. Org. Chem. **1996**, 61, 6523.
- ¹⁵⁰ Belgaonkar, V. H.; Usgaonkar, R. N. Tetrahedron Lett. 1975, 3849.
- ¹⁵¹ Lloyd, D.; Reichardt, C.; Struthers, M. Justus Liebigs Ann. Chem. 1986, 1368.
- ¹⁵² Raju, B.; Rao, G. S. K. Indian J. Chem., Sect. B 1987, 26B, 175.
- ¹⁵³ Raju, B.; Rao, G. S. K. Synthesis 1987, 197.
- ¹⁵⁴ Shionozaki, Y.; Yamada, S.; Mukai, H.; Obikawa, T. Jpn. Kokai Tokkyo Koho JP 61 024 57 (1986); Chem. Abstr. **1986**, 105, 143706g.
- ¹⁵⁵ Deval, S. D.; Deodhar, K. D. Indian J. Chem., Sect. B 1985, 24B, 1161.
- ¹⁵⁶ Bredereck, H.; Bredereck, K. Chem. Ber. 1961, 94, 2278.
- ¹⁵⁷ Kato, T.; Chiba, T. Yakugaku Zasshi 1969, 89, 1464; Chem. Abstr. 1970, 72, 12532z.
- ¹⁵⁸ Jones, C. F.; Taylor, D. A.; Bowyer, D. P. Tetrahedron 1974, 30, 957.
- ¹⁵⁹ El-Kassaby, M. A.; Hassan, M. A.; Shiba, S. A.; Abou-El-Regal, M. M. Indian J. Chem. Sect. B 1991, 30B, 662.

- ¹⁶⁰ Stojanovic, F. M.; Arnold, Z. Collect. Czech. Chem. Commun. 1967, 32, 2155.
- ¹⁶¹ Eilingsfeld, H.; Seefelder, M.; Weindinger, H. Chem. Ber. 1963, 96, 2899.
- ¹⁶² Morita, K.; Kobayashi, S.; Shimadzu, H.; Ochiai, M. Tetrahedron Lett. 1970, 861.
- ¹⁶³ Meth-Cohn, O.; Taylor, D. L. Tetrahedron Lett. 1993, 34, 3629.
- ¹⁶⁴ Meth-Cohn, O.; Narine, B. Tetrahedron Lett. 1978, 2045.
- ¹⁶⁵ Meth-Cohn, O.; Narine, B.; Tarnowski, B. J. Chem. Soc., Perkin Trans. 1 1981, 1531.
- ¹⁶⁶ Meth-Cohn, O.; Narine, B.; Tarnowski, B. J. Chem. Soc., Perkin Trans. 1 1981, 1520.
- ¹⁶⁷ Meth-Cohn, O.; Narine, B.; Tarnowski, B. Tetrahedron Lett. 1979, 3111.
- ¹⁶⁸ Chupp, J. P.; Metz, S. J. Heterocycl. Chem. 1979, 16, 65.
- ¹⁶⁹ Pawar, R. A.; Bajare, P. B.; Mundade, S. B. J. Indian Chem. Soc. 1990, 67, 685.
- ¹⁷⁰ Simay, A.; Takács, K.; Tóth, L. Acta Chim. Acad. Sci. Hung. 1982, 109, 175; Chem. Abstr. 1982, 96, 217756t.
- ¹⁷¹ Meth-Cohn, O.; Rhouati, S.; Tarnowski, B.; Robinson, A. J. Chem. Soc., Perkin Trans. 1 1981, 1537.
- ¹⁷² Blackburn, T. P.; Cox, B.; Guildford, A. J.; Le Count, D. J.; Middlemiss, D. N.; Pearce, R. J.; Thornber, C. W. J. Med. Chem. 1987, 30, 2252.
- ¹⁷³ Le Count, D. J.; Pearce, R. J.; Marson, A. P. Synthesis 1984, 349.
- ^{173a}Bergman, J.; Stålhandske, C. Tetrahedron 1996, 52, 753.
- ¹⁷⁴ Auberson, Y. P.; Winkler, T. Synthesis 1994, 470.
- ^{174a}Selvi, S.; Perumal, P. T. Tetrahedron Lett. 1997, 38, 6263.
- ¹⁷⁵ Tokmakov, G. P.; Grandberg, I. I. Khim. Dikarbonil'nykh Soedin., Tezisy Dokl. Vses. Konf., 4th, 1975, **1976**, 165; Chem. Abstr. **1977**, 87, 53119y.
- ¹⁷⁶ Frolov, S. I.; Negrebetskii, V. V.; Nuridzhanyan, K. A. Zh. Org. Khim. 1992, 28, 1069 (Engl. Transl. p. 834); Chem. Abstr. 1993, 118, 191457s.
- ¹⁷⁷ Pathak, R. D.; Jindal, D. P. Indian J. Chem., Sect. B 1994, 33B, 269.
- ¹⁷⁸ Aki, O.; Nakagawa, Y. Chem. Pharm. Bull. 1972, 20, 1325.
- ¹⁷⁹ Aki, O.; Nakagawa, Y. Jpn. Kokai Tokkyo Koho JP 73 022 476 (1973); Chem. Abstr. 1973, 79, 18735j.
- ¹⁸⁰ Mazharuddin, M.; Thyagarajan, G. Tetrahedron Lett. 1971, 307.
- ¹⁸¹ Chandramohan, M. R.; Seshadri, S. Indian J. Chem. 1974, 12, 940.
- ¹⁸² Bartmann, W.; Konz, E.; Rueger, W. Synthesis 1988, 680.
- ¹⁸³ Kvitko, I. Y.; Panfilova, E. A. Khim. Geterotsikl. Soedin., 1973, 507 (Engl. Transl. p. 467); Chem. Abstr. 1973, 79, 31775s.
- ¹⁸⁴ Weissenfels, M.; Kaubisch, S. Z. Chem. 1982, 22, 23.
- ¹⁸⁵ Weissenfels, M.; Kaubisch, S. Z. Chem. 1981, 21, 259.
- ¹⁸⁶ Guzman, A.; Romero, M.; Maddox, M. L.; Muchowski, J. M. J. Org. Chem. 1990, 55, 5793.
- ¹⁸⁷ Horn, U.; Mutterer, F.; Weis, C. D. Helv. Chim. Acta 1976, 59, 211.
- ¹⁸⁸ Higashiyama, K.; Toyama, M.; Otomasu, H. Chem. Pharm. Bull. 1986, 34, 3015.
- ¹⁸⁹ Jutz, C.; Müller, W. Angew. Chem., Int. Ed. Engl. 1966, 5, 1042.
- ¹⁹⁰ Ikawa, K.; Takami, F.; Fukui, Y.; Tokuyama, K. Tetrahedron Lett. 1969, 3279.
- ¹⁹¹ Cossey, A. L.; Harris, R. L. N.; Huppatz, J. L.; Philips, J. N. Aust. J. Chem. 1976, 29, 1039.
- ¹⁹² Cossey, A. L.; Harris, R. L. N.; Huppatz, J. L.; Philips, J. N. Angew. Chem., Int. Ed. Engl. 1974, 13, 809.
- ¹⁹³ Harris, R. L. N.; Huppatz, J. L. Angew. Chem., Int. Ed. Engl. 1977, 16, 779.
- ¹⁹⁴ Jutz, C.; Wagner, M. Angew. Chem., Int. Ed. Engl. 1974, 13, 737.
- ¹⁹⁵ Mikitenko, E. K.; Romanov, N. N. Khim. Geterotsikl. Soedin. **1992** (Engl. Transl. p. 591); 698; Chem. Abstr. **1993**, 118, 149441g.
- ¹⁹⁶ Sreenivasulu, M.; Rao, G. S. K. Indian J. Chem., Sect. B 1989, 28B, 584.
- ¹⁹⁷ Aadil, M.; Kirsch, G. Synth. Commun. 1993, 23, 2587.
- ¹⁹⁸ Hirota, T.; Koyama, T.; Nanba, T.; Yamato, M.; Matsumura, T. Chem. Pharm. Bull. **1978**, 26, 245.
- ¹⁹⁹ Haider, N.; Heinisch, G.; Offenberger, S. Pharmazie 1989, 44, 598.
- ²⁰⁰ Caramella, P.; Paternoster, M.; Vita Finzi, P. Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Natur.,
- Rend. 1971, 51, 537; Chem. Abstr. 1972, 77, 61862u.

- ²⁰¹ Albright, J. D.; Benz, E.; Lanzilotti, A. E.; Goldman, A. E. J. Chem. Soc., Chem. Commun. 1965, 413.
- ²⁰² Schulz, H. J.; Liebscher, J.; Luger, P.; Quian, M.; Mulzer, J. J. Heterocycl. Chem. 1992, 29, 1125.
- ²⁰³ Mikhaleva, M. A.; Kizner, T. A.; Mamaev, V. P. Khim. Geterotsikl. Soedin. 1990, 804 (Engl. Transl. p. 671); Chem. Abstr. 1991, 114, 62052z.
- ²⁰⁴ Ochiai, M. Kagaku no Ryoiki 1965, 19, 900; Chem. Abstr. 1967, 67, 32076d.
- ²⁰⁵ Hansen, H. V.; Caputo, J. A.; Meltzer, R. I. J. Org. Chem. **1966**, 31, 3845.
- ²⁰⁶ Arnold, Z. Collect. Czech. Chem. Commun. 1963, 28, 863.
- ²⁰⁷ Zbarskii, V. L.; Shutov, G. M.; Zhilin, V. F.; Orlova, E. Yu. Zh. Org. Khim. 1968, 4, 1970 (Engl. Transl. p. 1902); Chem. Abstr. 1970, 67, 73500f.
- ²⁰⁸ Duguay, G.; Reid, D. H.; Wade, K. O.; Webster, R. G. J. Chem. Soc. C 1971, 2829.
- ²⁰⁹ Brown, D. M.; Giner-Sorolla, A. J. Chem. Soc. C 1971, 128.
- ²¹⁰ Naik, H. A.; Purnaprajna, V.; Seshadri, S. Indian J. Chem., Sect. B 1977, 15B, 338.
- ²¹¹ Ciernik, J. Collect. Czech. Chem. Commun. 1972, 37, 2273.
- ²¹² Carrington, D. E. L.; Clarke, K.; Hughes, C. G.; Scrowston, R. M. J. Chem. Soc., Perkin Trans. J 1972, 3006.
- ²¹³ Bastianelli, C.; Cipiciani, A.; Clementi, S.; Giulietti, G. J. Heterocycl. Chem. 1981, 18, 1275.
- ²¹⁴ Jutz, C.; Schweiger, E. Chem. Ber. 1974, 107, 2383.
- ²¹⁵ Pandit, R. S.; Seshadri, S. Indian J. Chem. 1973, 11, 532.
- ²¹⁶ Awad, I. M. A. Indian J. Chem., Sect. B 1991, 30B, 89.
- ²¹⁷ Dean, F. M.; Al-Sattar, M.; Smith, D. A. J. Chem. Soc., Chem. Commun. 1983, 535.
- ²¹⁸ Makosza, M.; Wrobel, Z. Rev. Roum. Chim. 1991, 36, 563; Chem. Abstr. 1992, 117, 26036a.
- ²¹⁹ Reynolds, G. A.; VanAllan, J. A. J. Org. Chem. **1969**, 34, 2736.
- ²²⁰ Dingwall, J. G.; Reid, D. H.; Wade, K. J. Chem. Soc. C 1969, 913.
- ²²¹ Tóth, G.; Szöllösy, Á.; Hermecz, I.; Horváth, Á.; Mészáros, Z. J. Chem. Soc., Perkin Trans. 2 1985, 1881.
- ²²² Nechayuk, I. I.; Shibaeva, N. V.; Borodaev, S. V.; Pyshchev, A. I.; Lukyanov, S. M. Khim. Geterotsikl. Soedin. **1990**, 134 (Engl. Transl. p. 117); Chem. Abstr. **1990**, 113, 78318f.
- ²²³ Jutz, C. Chem. Ber. 1964, 97, 2050.
- ²²⁴ Mikitenko, E. K.; Romanov, N. N. *Khim. Geterotsikl. Soedin.* **1992**, 692 (Engl. Transl. p. 586); *Chem. Abstr.* **1993**, *118*, 149440f.
- ²²⁵ Briks, Yu. L.; Romanov, N. N. Khim. Geterotsikl. Soedin. 1991, 549 (Engl. Transl. p. 438); Chem. Abstr. 1991, 115, 159044g.
- ²²⁶ Satoh, K.; Yamaguchi, M.; Ogura, I. Nippon Kagaku Kaishi 1982, 1199; Chem. Abstr. 1983, 98, 107574r.
- ²²⁷ Murakami, Y.; Ishii, H. Chem. Pharm. Bull. 1981, 29, 711.
- ²²⁸ Sizova, O. S.; Britikova, N. E.; Novitskii, K. Yu.; Shcherbakova, L. I.; Pershin, G. N. Khim. Farm. Zh. 1980, 14, 63; Chem. Abstr. 1980, 93, 239357d.
- ²²⁹ Klutchko, S.; Hansen, V.; Meltzer, R. I. J. Org. Chem. 1965, 30, 3454.
- ²³⁰ Kasturi, T. R.; Arumugam, S.; Mathew, L.; Jayaram, S. K.; Dastidar, P.; Guru Row, T. N. *Te-trahedron* **1992**, *48*, 6499.
- ²³⁴ Meth-Cohn, O.; Taljaard, H. C. Tetrahedron Lett. 1983, 24, 4607.
- ²³² Reddy, M. P.; Rao, G. S. K. J. Chem. Soc., Perkin Trans. 1 1981, 2662.
- ²³³ Koblik, A. V.; Suzdalev, K. F. Zh. Org. Khim. 1989, 25, 171 (Engl. Transl. p. 155); Chem. Abstr. 1989, 111, 194516b.
- ²³⁴ Zaschke, H.; Arndt, S.; Wagner, V.; Schubert, H. Z. Chem. 1977, 17, 293.
- ²³⁵ Jutz, C.; Müller, W.; Müller, E. Chem. Ber. 1966, 99, 2479.
- ²³⁶ Katritzky, A. R.; Shcherbakova, I. V.; Tack, R. D.; Steel, P. J. Can. J. Chem. 1992, 70, 2040.
- ²³⁷ Raju, B.; Rao, G. S. K. Indian J. Chem., Sect. B 1987, 26B, 892.
- ²³⁸ Schmidle, C. J.; Barnett, P. G. J. Am. Chem. Soc. 1956, 78, 3209.
- ²³⁹ Gertsev, V. V. Zh. Vses. Khim. O-va. 1982, 27, 341; Chem. Abstr. 1982, 97, 162750z.
- ²⁴⁰ I. G. Farbenindustrie A.-G. Brit. Patent 504 125 (1939); Chem. Abstr. 1939, 33, 7313.
- ²⁴¹ Wizinger, R.; Coenen, M. L.; Bellefontaine, A. Ger. Patent 865 404 (1953); Chem. Abstr. 1958, 52, 18322h.
- ²⁴² Liebscher, J.; Bechstein, U. Z. Chem. 1984, 24, 56.

- ²⁴³ Quang, Y. V.; Cadiot, P.; Willemart, A. C. R. Hebd. Seances Acad. Sci., Ser. C 1959, 248, 2356.
- ²⁴⁴ Wizinger, R.; Kölliker, P. Helv. Chim. Acta 1955, 38, 372.
- ²⁴⁵ Dallacker, F.; Glombitza, K.-W.; Lipp, M. Justus Liebigs Ann. Chem. 1961, 643, 67.
- ²⁴⁶ Gopalan, B.; Rajagopalan, K.; Swaminathan, S.; Balasubramanian, K. K. Synthesis 1976, 752.
 ²⁴⁷ Dauphin, G. Synthesis 1979, 799.
- ²⁴⁸ Zimmer, O.; Vollenberg, W.; Schneider, J. Eur. Pat. Appl. EP 524 517 (1993); Chem. Abstr. 1993, 118, 254561u.
- ²⁴⁹ Dallacker, F.; Maier, R. D.; Morcinck, R.; Rabie, A.; Van Loo, R. Chem. Ber. **1980**, 113, 1320.
- ²⁵⁰ Narasimhan, N. S.; Mukhopadhyay, T. Tetrahedron Lett. **1979**, 1341.
- ²⁵¹ Naidu, M. V.; Rao, G. S. K. Synthesis 1979, 708.
- ²⁵² Reddy, M. P.; Rao, G. S. K. Tetrahedron Lett. 1981, 22, 3549.
- ²⁵³ Rao, M. V.; Bhatt, M. V. Indian J. Chem., Sect. B 1981, 20B, 487.
- ^{253a}Rao, A. V. R.; Yadov, J. S.; Reddy, K. B.; Mchendale, A. R. J. Chem. Soc., Chem. Commun. 1984, 453.
- ²⁵⁴ Rao, A. V. R.; Deshpande, V. H.; Sathaye, K. M.; Jaweed, S. M. Indian J. Chem., Sect. B 1985, 24B, 697.
- ²⁵⁵ Reddy, P. A.; Rao, G. S. K. Indian J. Chem., Sect. B 1980, 19B, 753.
- ²⁵⁶ Ashok, K.; Rao, G. S. K. Indian J. Chem., Sect. B 1993, 32B, 1013.
- ²⁵⁷ Narasimhan, N. S.; Bapat, C. P. J. Chem. Soc., Perkin Trans. 1 1984, 1435.
- ²⁵⁸ Guthrie, R. W.; Kaplan, G. L.; Mennona, F. A.; Tilley, J. W.; Kierstead, R. W.; O'Donnell, M.;
- Crowley, H.; Yaremko, B.; Welton, A. F. J. Med. Chem. 1990, 33, 2856.
- ²⁵⁹ Reddy, M. P.; Rao, G. S. K. J. Org. Chem. **1981**, 46, 5371.
- ²⁶⁰ Kazembe, T. C. G.; Taylor, D. A. Tetrahedron **1980**, 36, 2125.
- ²⁶¹ Velusamy, T. P.; Rao, G. S. K. Indian J. Chem., Sect. B 1981, 20B, 351.
- ²⁶² Beccalli, E. M.; Marchesini, A., Pilati, T. *Tetrahedron* **1989**, *45*, 7485.
- ²⁶³ Lorenz, H.; Wizinger, R. Helv. Chim. Acta **1945**, 28, 600.
- ²⁶⁴ Traas, P. C.; Boelens, H. Recl. Trav. Chim. Pays-Bas 1973, 92, 985.
- ²⁶⁵ Goltz, M.; Murata, I. Bull. Chem. Soc. Jpn. 1988, 61, 3767.
- ²⁶⁶ Reference deleted.
- ²⁶⁷ Sugaya, T.; Kato, N.; Tomioka, S.; Tamaoki, K. Jpn. Kakai Tokkyo Koho JP 02 233 676 (1990); Chem. Abstr. **1991**, 114, 122085z.
- ²⁶⁸ Wizinger, R. J. Prakt. Chem. **1939**, 154, 1.
- ²⁶⁹ Cossey, A. L.; Gunter, M. J.; Mander, L. N. Tetrahedron Lett. 1980, 21, 3309.
- ²⁷⁰ Lee, G. T.; Amedio Jr., J. C.; Underwood, R.; Prasad, K.; Repic, O. J. Org. Chem. 1992, 57, 3250.
- ²⁷¹ Ito, Y.; Kato, H.; Yasuda, S.; Ogawa, N.; Suzuki, T.; Shunichiro, S. Jpn. Kakai Tokkyo Koho JP 05 170 696 (1993); Chem. Abstr. 1993, 119, 225694e.
- ²⁷² Dauphin, G.; Planat, D. Tetrahedron Lett. 1976, 4065.
- ²⁷³ Sciaky, R.; Pallini, U.; Patelli, B. Gazz. Chim. Ital. 1966, 96, 1268.
- ²⁷⁴ Roy, K.; Mukherjee, A.; Bhaduri, A. P. Indian J. Chem., Sect. B 1992, 31B, 608.
- ²⁷⁵ Xie, H.; Lee, D. A.; Wallace, D. M.; Senge, M. O.; Smith, K. M. J. Org. Chem. **1996**, 61, 8058.
- ²⁷⁶ Lee, D. A.; Smith. K. M. J. Chem. Soc., Perkin Trans. 1 1997, 1215.
- ²⁷⁷ Scitz, G. Pharm. Zentralh., **1968**, 107, 363; Chem. Abstr. **1968**, 69, 76702a.
- ²⁷⁸ Sreenivasulu, M.; Rao, G. S. K. Indian J. Chem., Sect. B 1987, 26B, 1187.
- ²⁷⁹ Oda, R.; Shono, T.; Nishida, K. Nippon Kagaku Zasshi **1961**, 82, 1422; Chem. Abstr. **1963**, 59, 5047h.
- ²⁸⁰ Hafner, K.; Vöpel, K.-H. Angew. Chem. 1959, 71, 672.
- ²⁸¹ Jutz, C.; Amschler, H. Chem. Ber. **1964**, 97, 3331.
- ²⁸² Hafner, K.; Vöpel, K. H.; Ploss, G.; König, C. Justus Liebigs Ann. Chem. 1963, 661, 52.
- ²⁸³ Sreenivasulu, M.; Rao, G. S. K. Indian J. Chem., Sect. B 1987, 26B, 581.
- ²⁸⁴ Rao, M. S. C.; Rao, G. S. K. Indian J. Chem., Sect. B 1988, 27B, 660.
- ²⁸⁵ Traas, P. C.; Boelens, H.; Takken, H. J. Synth. Commun. **1976**, 6, 489.
- ²⁸⁶ Rao, M. S. C.; Rao, G. S. K. Indian J. Chem., Sect. B **1988**, 27B, 213.
- ²⁸⁷ Rao, M. S. C.; Rao, G. S. K. Synthesis **1987**, 231.
- ²⁸⁸ Sell, C. S.; Hart, B. R. Chem. Ind. (London) 1979, 59.

- ²⁸⁹ Zimmerman, H. E.; Kriel, D. J. J. Org. Chem. **1982**, 47, 2060.
- ²⁹⁰ Stevenson, R.; Dahl, T.; Bhacca, N. S. J. Org. Chem. **1971**, 36, 3243.
- ²⁹¹ Crenshaw, R. R.; Partyka, R. A. J. Heterocycl. Chem. 1970, 7, 871.
- ²⁹² Krasnaya, Zh. A.; Stytsenko, T. S.; Bogdanov, V. S. Izv. Akad. Nauk SSSR, Ser. Khim. 1988, 106 (Engl. Transl. p. 96); Chem. Abstr. 1988, 109, 148858a.
- ²⁹³ Kučera, J.; Arnold, Z. Collect. Czech. Chem. Commun. 1967, 32, 1704.
- ²⁹⁴ Shono, T.; Matsumura, Y.; Tsubata, K., Sugihara, Y. Tetrahedron Lett. 1982, 23, 1201.
- ²⁹⁵ Arnold, Z. Collect. Czech. Chem. Commun. 1973, 38, 1168.
- ²⁹⁶ Reichardt, C.; Schagerer, K. Justus Liebigs Ann. Chem. 1982, 530.
- ²⁹⁷ Reichardt, C.; Schagerer, K. Angew. Chem., Int. Ed. Engl. 1973, 12, 323.
- ²⁹⁸ Duhamel, L.; Ple, G.; Commare, P. C. R. Hebd. Seances Acad. Sci., Ser. C 1974, 278, 1113.
- ²⁹⁹ Žemlička, J.; Arnold, Z. Collect. Czech. Chem. Commun. 1961, 26, 2838.
- ³⁰⁰ Meth-Cohn, O.; Taylor, D. L. Tetrahedron 1995, 51, 12869.
- ³⁰¹ Yanagi, K.; Nishiyama, T. Nippon Kagaku Kaishi 1978, 404; Chem. Abstr. 1978, 89, 23907c.
- ³⁰² Thiruvikraman, S. V.; Sakagami, Y.; Katayama, M.; Marumo, S. Tetrahedron Lett. **1988**, 29, 2339.
- ³⁰³ Muraoka, M.; Yamamoto, T. J. Chem. Soc., Chem. Commun. 1985, 1299.
- ³⁰⁴ Reznikov, V. A.; Vishnivetskaya, L. A.; Volodarskii, L. B. Khim. Geterotsikl. Soedin. 1988, 620 (Engl. Transl. p. 504); Chem. Abstr. 1989, 110, 135142h.
- ³⁰⁵ Aubert, T.; Farnier, M.; Meunier, I.; Guilard, R. J. Chem. Soc., Perkin Trans. 1 1989, 2095.
- ³⁰⁶ Somei, M.; Hashiba, K.; Yamada, F.; Maekawa, T.; Kimata, T.; Kaneko, C. Chem. Lett. 1978, 1245.
- ³⁰⁷ Somei, M.; Yamada, F.; Kaneko, C. Chem. Lett. 1979, 123.
- ³⁰⁸ Dyke, S. F.; Thorns, J. F.; Hedges, S. H.; Wiggins, D. W. Tetrahedron 1979, 35, 1861.
- ³⁰⁹ Natsume, M.; Kumadaki, S.; Kanda, Y.; Kiuchi, K. Tetrahedron Lett. 1973, 2335.
- ³¹⁰ Seefelder, M.; Müller, H. R. Ger. Offen. DE 1 905 833 (1970); Chem. Abstr. 1970, 73, 98642r.
- ³¹¹ Ben Hassine-Coniac, N.; Hazebroucq, G.; Gardent, J. Bull. Soc. Chim. Fr. 1971, 3985.
- ³¹² Coniac, N.; Hazebroucq, G.; Gardent, J. C. R. Hebd. Seances Acad. Sci., Ser. C 1969, 268, 2031.
- ³¹³ Kurasawa, Y.; Takada, A. *Heterocycles* **1980**, *14*, 281.
- ³¹⁴ Kurasawa, Y.; Takada, A. Chem. Pharm. Bull. 1981, 29, 2871.
- ³¹⁵ Lantzsch, R. Eur. Pat. Appl. EP 546 418 (1993); Chem. Abstr. 1993, 119, 1601332.
- ³¹⁶ Doehner Jr, R. F. U. S. Patent 4 656 283 (1987); Chem Abstr. 1987, 107, 134222k.
- ³¹⁷ Roh, N.; Kochendörfer, G. Ger. Patent 677 207 (1939); Chem. Abstr. 1939, 33, 6880.
- ³¹⁸ Wolff, P. Ger. Offen. 615 130 (1935); Chem. Abstr. 1935, 29, 6248.
- ³¹⁹ Fritz, H. Chem. Ber. 1959, 92, 1809.
- ³²⁰ Fritz, H.; Krekel, A.; Meyer, H. Justus Liebigs Ann. Chem. 1963, 664, 188.
- ³²¹ Fernandez, M.; Heredia, M. L.; de la Cuesta, E.; Avendano, C. Tetrahedron 1998, 54, 2777.
- ³²² Risaliti, A.; Marchetti, L. Boll. Sc. Fac. Chim. Ind. Bologna 1964, 22, 61; Chem. Abstr. 1964, 61, 10619g.
- ³²³ Ghosh, C. K.; Sahana, S.; Patra, A. Tetrahedron 1993, 49, 4127.
- ³²⁴ Yamashkin, S. A.; Boriskina, N. Ya. Khim. Geterotsikl. Soedin. 1989, 228 (Engl. Transl. p. 187); Chem. Abstr. 1990, 112, 76985b.
- ³²⁵ Maulding, D. R. J. Heterocycl. Chem. **1988**, 25, 1777.
- ³²⁶ Meth-Cohn, O.; Westwood, K. T. J. Chem. Soc., Perkin Trans. 1 1983, 2089.
- ³²⁷ Knorr, R.; Ruf, F.; Hoegerl, J.; Hilpert, M.; Hassel, P. Chem. Ber. 1985, 118, 4743.
- ³²⁸Ngoc Tram Le Quang Thuan; Gardent, J. C. R. Hebd. Seances Acad. Sci., Ser. C 1968, 267, 1848.
- $\frac{329}{9}$ Ngoc Tram Le Quang Thuan; Gardent, J. C. R. Hebd. Seances Acad. Sci., Ser. C **1969**, 268, 86. ³³⁰ Yoshida, K.; Nomura, S.; Ban, Y. Tetrahedron **1985**, 41, 5495.
- ³³¹ Cardwell, K.; Hewitt, B.; Ladlow, M.; Magnus, P. J. Am. Chem. Soc. 1988, 110, 2242.
- ³³² Ladlow, M.; Cairns, P. M.; Magnus, P. J. Chem. Soc., Chem. Commun. 1986, 1756.
- ³³³ Gottlieb, H. E.; Braverman, S.; Levinger, S. J. Org. Chem. **1990**, 55, 3655.
- ³³⁴ Hafner, K.; Häfner, K. H.; König, C.; Kreuder, M.; Ploss, G.; Schulz, G.; Sturm, E.; Vöpel, K. H. Angew Chem. 1963, 75, 35.

- ³³⁵ Hafner, K.; Kreuder, M. Angew. Chem. **1961**, 73, 657.
- ³³⁶ Mannschreck, A.; Kölle, U. Chem. Ber. 1969, 102, 243.
- ³³⁷ Hartke, K.; Salamon, G. Chem. Ber. 1970, 103, 147.
- ³³⁸ Arnold, Z.; Holý, A. Collect. Czech. Chem. Commun. 1965, 30, 40.
- ³³⁹ Dale, J.; Eriksen, O. I. Acta Chem. Scand., Ser. B 1988, 42, 242.
- ³⁴⁰ Hasan, H.; Radeglia, R.; Fanghänel, E. J. Prakt. Chem. 1990, 332, 666.
- ³⁴¹ Jutz, C.; Kirchlechner, R.; Müller, W. Angew. Chem. Int. Ed. Engl. 1965, 4, 980.
- ³⁴² Heber, D.; Ivanov, I. C.; Karagiosov, S. K. J. Heterocycl. Chem. 1995, 32, 505.
- ³⁴³ Comins, D. L.; Myoung, Y. C. J. Org. Chem. 1990, 55, 292.
- ³⁴⁴ Kuznetsov, N. V.; Krasavtsev, I. I. Ukr. Khim. Zh. 1976, 42, 1063; Chem. Abstr. 1977, 86, 43631z.
- ³⁴⁵ Eistert, B.; Haupter, F. Chem. Ber. 1959, 92, 1921.
- ³⁴⁶ Menicagli, R.; Malanga, C.; Guidi, M.; Lardicci, L. Tetrahedron 1987, 43, 171.
- ³⁴⁷ Miura, T.; Tanaka, A. Jpn. Kokai Tokkyo Koho JP 62 207 237 (1987); Chem. Abstr. 1988, 108, 149910c.
- ³⁴⁸ Ferwanah, A.; Pressler, W.; Reichardt, C. Tetrahedron Lett. 1973, 3979.
- ³⁴⁹ Dave, V.; Whitehurst, J. S. J. Chem. Soc., Perkin Trans. 1 1973, 393.
- ³⁵⁰ Katritzky, A. R.; Marson, C. M.; Wang, Z. J. Org. Chem. **1987**, 52, 2730.
- ³⁵¹ Reichardt, C.; Wuerthwein, E. U. Synthesis 1973, 604.
- ³⁵² Suzdalev, K. F.; Koblik, A. V. Khim. Geterotsikl. Soedin. 1990, 603 (Engl. Transl. p. 509); Chem. Abstr. 1991, 114, 23761k.
- ³⁵³ Venugopal, M.; Umarani, R.; Perumal, P. T.; Rajadurai, S. Tetrahedron Lett. 1991, 32, 3235.
- ³⁵⁴ Jensen, S. R.; Kirk, O.; Nielsen, B. J. Tetrahedron 1987, 43, 1949.
- ³⁵⁵ Koblik, A. V.; Suzdalev, K. F. Zh. Org. Khim 1989, 25, 1342 (Engl. Transl. p. 1206); Chem. Abstr. 1990, 112, 76874q.
- ³⁵⁶ Weinges, K.; Ziegler, H. J. Justus Liebigs Ann. Chem. 1990, 715.
- ³⁵⁷ Martin, G. J.; Gouesnard, J. P. Bull. Soc. Chim. Fr. 1969, 2501.
- ³⁵⁸ Makin, S. M.; Pomogaev, A. I. Zh. Org. Khim. 1982, 18, 2176 (Engl. Transl. p. 1918); Chem. Abstr. 1983, 98, 73808c.
- ³⁵⁹ Burn, D.; Cooley, G.; Davies, M. T.; Ducker, J. W.; Ellis, B.; Feather, P.; Hiscock, A. K.; Kirk, D. N.; Leftwick, A. P.; Petrow, V.; Williamson, D. M. *Tetrahedron* **1964**, *20*, 597.
- ³⁶⁰ Grinenko, G. S.; Maksimov, V. I.; Leigel'man, F. Ya., Kadatskii, G. M.; Vorontsova, I. G.; Romanova, O. B.; Bokova, T. N.; Mikhailova, L. N. U. S. S. R. Patent SU 433 138 (1974); Chem. Abstr. 1974, 81, 105820t.
- ³⁶¹ Tchernatinsky, C. PCT Int. Appl. WO 8 501 504 (1985); Chem. Abstr. 1986, 104, 6076s.
- ³⁶² Sollman, P. B.; Craig, C. R. S. African Patent ZA 6 707 319 (1968); Chem. Abstr. **1969**, 71, 81653f.
- ³⁶³ Bratoeff, E.; Ligon, S. Rev. Latinam. Quim. 1979, 10, 174; Chem. Abstr. 1980, 93, 8374r.
- ³⁶⁴ Piasco, A.; Nasraoui, M. N. PCT Int. Appl. WO 8 903 839 (1989); Chem. Abstr. 1989, 111, 214812a.
- ^{364a}Tchernatinsky, C.; Nasraoui, N. M. PCT Int. Appl. WO 9 012 027 (1990); Chem. Abstr. 1991, 114, 185849x.
- ³⁶⁵ Burn, D.; Yardley, J. P.; Petrow, V. Tetrahedron 1969, 25, 1155.
- ³⁶⁶ Anner, G.; Kalvoda, J. Ger. Offen. DE 2 048 231 (1971); Chem. Abstr. 1971, 75, 36489d.
- ^{366a}Graber, R. P.; Aedo, D. N. Span. Patent ES 547 158 (1986); Chem. Abstr. 1989, 110, 115187y.
- ³⁶⁷ Anner, G.; Kalvoda, J. Ger. Offen. DE 2 048 812 (1971); Chem. Abstr. 1971, 75, 36491y.
- ³⁶⁸ Suzuki, K.; Yoshida, Y.; Inada, H.; Kigami, A.; Sano, T. Jpn. Kokai Tokkyo Koho JP 1 031 781 (1989); Chem. Abstr. **1989**, 111, 97256j.
- ³⁶⁹ Grelan Pharmaceutical Co., Ltd. Jpn. Kokai Tokkyo Koho JP 80 149 282 (1980); Chem. Abstr. 1981, 94, 156756c.
- ³⁷⁰ Pulst, M.; Hollborn, B.; Kropfgans, F.; Weissenfels, M. Z. Chem. 1987, 27, 35.
- ³⁷¹ Misaki, Y.; Matsumura, Y.; Sugimoto, T.; Yoshida, Z.-I. Tetrahedron Lett. 1989, 30, 5289.
- ³⁷² Bredereck, H.; Herlinger, H.; Renner, J. Chem. Ber. 1960, 93, 230.
- ³⁷³ Arnold, Z.; Šorm, F. Collect. Czech. Chem. Commun. 1958, 23, 452.

- ³⁷⁵ Miura, T.; Tanaka, A. Jpn. Kokai Tokkyo Koho JP 62 207 237 (1987); Chem. Abstr. **1988**, 108, 149911d.
- ³⁷⁶ Woerffel, U.; Horstmann, H. Ger. Offen. DE 1 445 028 (1970); Chem. Abstr. **1970**, 73, 3926z. ³⁷⁷ Reference deleted.
- ³⁷⁸ Wang, S. S. M. U. S. Patent 4 489 011 (1984); Chem. Abstr. 1985, 102, 166365x.
- ³⁷⁹ Lipinski, C. A.; Stam, J. G.; Pereira, J. N.; Ackerman, N. R.; Hess, H. J. J. Med. Chem. 1980. 23, 1026.
- ³⁸⁰ Asokan, C. V.; Mathews, A. Tetrahedron Lett. **1994**, 35, 2585.
- ³⁸¹ Kanitz, A., Hartmann, H., Czerney, P. J. Prakt. Chem. 1998, 340, 34.
- ³⁸² Sciaky, R.; Pallini, U. Gazz. Chim. Ital. 1966, 96, 1254.
- ³⁸³ Kreiser, W.; Neef, G. Justus Liebigs Ann. Chem. 1974, 1279.
- ³⁸⁴ Engel, C. R.; Dionne, G. Can. J. Chem. 1978, 56, 424.
- ³⁸⁵ Bertin, D.; Nédélec, L.; Mathieu, J. C. R. Hebd. Seances Acad. Sci., Ser. C 1961, 253, 1219.
- ³⁸⁶ Arnold, Z.; Žemlička, J. Proc. Chem. Soc. **1958**, 227.
- ³⁸⁷ Chakraborty, A.; Ray, J. K. Synth. Commun. 1995, 25, 1869.
- ³⁸⁸ Giles, P. R.; Marson, C. M. Tetrahedron 1991, 47, 1303.
- ³⁸⁹ Giles, P. R.; Marson, C. M. Tetrahedron Lett. 1990, 31, 5227.
- ³⁹⁰ Nikolajewski, H. E.; Dähne, S.; Leupold, D.; Hirsch, B. Tetrahedron 1968, 24, 6685.
- ³⁹¹ Weissenfels, M.; Pulst, M.; Haase, M.; Pawlowski, U.; Uhlig, H. F. Z. Chem. 1977, 17, 56.
- ³⁹² Sreenivasulu, M.; Rao, G. S. K. Indian J. Chem., Sect. B 1989, 28B, 494.
- ³⁹³ Pashkevich, K. I.; Bobrov, M. B.; Saloutin, V. I.; Rudaya, M. N.; *Izv. Akad. Nauk SSR*, Ser. Khim. **1988**, 1811 (Engl. Transl. p. 1617; Chem. Abstr. **1989**, 110, 172667d.
- ³⁹⁴ Alvernhe, G.; Langlois, B.; Laurent, A.; Le Drean, I.; Selmi, A.; Weissenfels, M. Tetrahedron Lett. 1991, 32, 643.
- ³⁹⁵ Laurent, A. J.; Lesniak, S. Tetrahedron Lett. **1992**, 33, 3311.
- ³⁹⁶ Volodina, M. A.; Terent'ev, A. P.; Roshchupkina, L. G.; Mishina, V. G. Zh. Obshch. Khim. 1964, 34, 469 (Engl. Transl. p. 472); Chem. Abstr. 1964, 60, 13241c.
- ³⁹⁷ Katritzky, A. R.; Wang, Z.; Marson, C. M.; Offerman, R. J.; Koziol, A. E.; Palenik, G. J. *Chem. Ber.* **1988**, *121*, 999.
- ³⁹⁸ Pulst, M.; Hollborn, B.; Weissenfels, M. J. Prakt. Chem. 1979, 321, 671.
- ³⁹⁹ Suma, S., Asokan, C. V. Synth. Commun. 1996, 26, 847.
- ⁴⁰⁰ Harnisch, H. Ger. Offen. DE 2 122 314 (1972); Chem. Abstr. 1973, 78, 59787a.
- ⁴⁰¹ Dietrich, U.; Feindt, A.; Pulst, M.; Weissenfels, M.; Grief, D.; Cao, W. J. Prakt. Chem. 1994, 336, 434.
- 402 Holý, A.; Krupička, J.; Arnold, Z. Collect. Czech. Chem. Commun. 1965, 30, 4127.
- ⁴⁰³ Liebscher, J.; Neumann, B.; Hartmann, H. J. Prakt. Chem. 1983, 325, 915.
- ^{403a}Mazilu, I.; Tataru, L.; Lixandru, T.; Simionescu, G. Bull. Pol. Acad. Sci. Chim. 1986, 34, 1; Chem. Abstr. 1986, 105, 134372t.
- ⁴⁰⁴ Bodendorf, K.; Kloss, P. Angew. Chem. **1963**, 75, 139.
- ⁴⁰⁵ Rappoport, Z.; Gazit, A. J. Org. Chem. 1985, 50, 3184.
- 406 Traas, P. C.; Boelens, H.; Takken, H. J. Recl. Trav. Chim. Pays-Bas 1976, 95, 308.
- ⁴⁰⁷ Schnierle, F.; Reinhard, H.; Dieter, N.; Lippacher, E.; Von Dobeneck, H. Justus Liebigs Ann. Chem. 1968, 715, 90.
- ⁴⁰⁸ Andrieux, J.; Battioni, J.-P.; Giraud, M.; Mohlo, D. Bull. Soc. Chim. Fr. 1973, 2093.
- ⁴⁰⁹ Weissenfels, M.; Pulst, M.; Greif, D.; Hoffman, R.; Laurent, A.; Mison, P. Z. Chem. 1988, 28, 247.
- ⁴¹⁰ Josemin, K. N. N.; Asokan, C. V. Tetrahedron Lett. 1997, 38, 8391.
- ⁴¹¹ Koyama, T.; Hirota, T.; Shinohara, Y.; Matsumoto, S.; Ohmori, S.; Yamato, M. Chem. Pharm. Bull. 1975, 23, 2029.
- ⁴¹² Högberg, T.; Vora, M.; Drake, S. D.; Mitscher, L. A.; Chu, D. T. W. Acta Chem. Scand., Ser. B 1984, B38, 359.
- ⁴¹³ Jones, A. M.; Simpson, A. J.; Stanforth, S. P. J. Heterocycl. Chem. 1990, 27, 1843.
- ⁴¹⁴ Prim, D., Joseph, D., Kirsch, G. Justus Liebigs Ann. Chem. 1996, 239.

654

³⁷⁴ Reference deleted.

- ⁴¹⁵ Royles, B. J. L.; Smith, D. M. J. Chem. Soc., Perkin Trans. 1 1994, 355.
- ⁴¹⁶ Coates, R. M.; Muskopf, J. W.; Senter, P. A. J. Org. Chem. 1985, 50, 3541.
- ⁴¹⁷ Ramesh, D.; Kar, G. K.; Chatterjee, B. G.; Ray, J. K. J. Org. Chem. 1988, 53, 212.
- ⁴¹⁸ Donkor, I. O.; Gangjee, A.; Duah, F. K. J. Heterocycl. Chem. **1990**, 27, 765.
- ⁴¹⁹ Clarke, K.; Gregory, D. N.; Scrowston, D. N. J. Chem. Soc., Perkin Trans. 1 1973, 2956.
- ⁴²⁰ Thiemann, T.; Gehrcke, B.; de Meijere, A. Synlett **1993**, 483.
- ⁴²¹ Evans, S. L.; Lloyd, H. A.; LeBeau, D.; Sokoloski, E. B. Org. Prep. Proced. Int. 1990, 22, 764.
- ⁴²² Venugopal, M.; Perumal, P. T. Org. Prep. Proced. Int. **1991**, 23, 749.
- ⁴²³ Koyama, T.; Toda, M.; Hirota, T.; Katsuse, Y.; Yamato, M. Yakugaku Zasshi 1970, 90, 11; Chem. Abstr. 1970, 72, 90225r.
- ⁴²⁴ Koyama, T.; Toda, M.; Hirota, T.; Hashimoto, M.; Yamato, M. Yakugaku Zasshi 1969, 89, 1688; Chem. Abstr. 1970, 72, 54964x.
- ⁴²⁵ Koyama, T.; Hirota, T.; Toda, M.; Iwai, K.; Minami, M.; Yamato, M. Yakugaku Zasshi 1969, 89, 1334; Chem. Abstr. 1970, 72, 43603c.
- ⁴²⁶ Jenneskens, L. W.; Krul, A. H. P.; Kraakman, P. A.; Moene, W.; de Wolf, W. H.; Bickelhaupt, F. J. Org. Chem. 1986, 51, 2162.
- ⁴²⁷ Koyama, T.; Toda, M.; Hirota, T.; Yamato, M. Yakugaku Zasshi 1970, 90, 8; Chem. Abstr. 1970, 72, 90403x.
- ⁴²⁸ Koyama, T.; Hirota, T.; Itô, I.; Toda, M.; Yamato, M. Tetrahedron Lett. **1968**, 4631.
- ⁴²⁹ Hayashi, T.; Takido, T.; Tasaka, H.; Tomizawa, N.; Itabashi, K. Nippon Kagaku Kaishi, 1991, 50; Chem. Abstr. 1991, 114, 206945t.
- ⁴³⁰ Bodendorf, K.; Mayer, R. Chem. Ber. **1965**, 98, 3565.
- ⁴³¹ Ray, J. K.; Kar, G. K.; Chatterjee, B. G. Tetrahedron **1984**, 40, 2959.
- 432 Eiden, F.; Schünemann, J. Arch. Pharm. (Weinheim, Ger.) 1983, 316, 201.
- ⁴³³ Brown, P. E.; Marcus, W. Y.; Anastasis, P. J. Chem. Soc., Perkin Trans. 1 1985, 1127.
- ⁴³⁴ Sekar, M., Prasad, K. J. R. Ind. J. Chem., Sect. B 1998, 37B, 314.
- ⁴³⁴aEszenyi, T.; Timár, T. Synth. Commun. **1990**, 20, 3219.
- 435 Grinev, A. N.; Nikolaeva, I. N. Arm. Khim. Zh. 1975, 28, 1007; Chem. Abstr. 1976, 85, 21002x.
- ⁴³⁶ Heber, D.; Berghaus, T. J. Heterocycl. Chem. **1994**, 31, 1353.
- 437 Nordmann, H. G.; Kröhnke, F. Angew. Chem., Int. Ed. Engl. 1969, 8, 756.
- ⁴³⁸ Zhang, G.; Shi, Z.; Xue, Y. Yingyong Huaxue 1994, 11, 112; Chem. Abstr. 1995, 122, 31049q.
- ⁴³⁹ Zhang, G.; Shi, Z.; Xue, Y.; Zhang, P. *Huaxue Shijie* **1991**, *32*, 12; *Chem. Abstr.* **1991**, *115*, 161551p.
- ⁴⁴⁰ Ramesh, D.; Chatterjee, B. G.; Ray, J. K. Indian J. Chem., Sect. B 1986, 25B, 964.
- ⁴⁴¹ Koyama, T.; Katsuse, Y.; Toda, M.; Hirota, T.; Yamato, M. Yakugaku Zasshi 1970, 90, 1207; Chem. Abstr. 1971, 74, 3574d.
- 442 Simionescu, C.; Pastravanu, M. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1972, 20, 505.
- ⁴⁴³ Kovtunenko, V. A.; Greif, D.; Ishchenko, V. V.; Weissenfels, M. Ukr. Khim. Zh. 1988, 54, 775;
 Chem. Abstr. 1989, 110, 192631r.
- 444 Kagal, S. A.; Nair, P. M; Venkataraman, K. Tetrahedron Lett. 1962, 593.
- ⁴⁴⁵ Pivovarenko, V. G.; Khilya, V. P.; Vasil'ev, S. A. Khim. Prir. Soedin. 1989, 639 (Engl. Transl. p. 542); Chem. Abstr. 1990, 113, 5988q.
- ⁴⁴⁶ Jiang, X.; Smith, K. M. J. Chem. Soc., Perkin Trans. 1 **1996**, 1601.
- ⁴⁴⁷ Rimbault, C. G. Brit. Pat. Appl. GB 2 145 719 (1985); Chem. Abstr. 1986, 104, 88354t.
- ⁴⁴⁸ Weissenfels, M.; Pulst, M.; Schneider, P. Z. Chem. **1973**, 13, 175.
- ⁴⁴⁹ Al-awar, R. S.; Joseph, S. P.; Comins, D. L. J. Org. Chem. **1993**, 58, 7732.
- ⁴⁵⁰ Elliot, I. W.; Evans, S. L.; Kennedy, L. T.; Parrish, A. E. Org. Prep. Proced. Int. 1989, 21, 368.
- ⁴⁵¹ Anjaneyulu, A. S. R.; Rani, G. S.; Mallavadhani, U. V.; Murthy, Y. L. N. Indian J. Chem., Sect. B 1994, 33B, 847.
- ⁴⁵² Schmitt, J.; Panouse, J. J.; Hallot, A.; Cornu, P.-J.; Pluchet, H.; Comoy, P. Bull. Soc. Chim. Fr. 1964, 2753.
- ⁴⁵³ Schmitt, J.; Panouse, J. J.; Cornu, P.-J.; Pluchet, H.; Hallot, A.; Comoy, P. Bull. Soc. Chim. Fr. 1964, 2760.
- ⁴⁵⁴ Moersch, G. W.; Neuklis, W. A. J. Chem. Soc. 1965, 788.

- ⁴⁵⁵ Thiemann, T., Thiemann, C., Sasaki, S., Vill, V., Mataka, S., Tashiro, M. J. Chem. Res. (S) 1997, 248.
- ⁴⁵⁶ Toyama, T.; Hirota, T.; Ito, I.; Toda, M.; Yamato, M. Yakugaku Zasshi 1969, 89, 1492; Chem. Abstr. 1970, 72, 55204m.
- ⁴⁵⁷ Reference deleted.
- ⁴⁵⁸ Siddiqui, A. U.; Rao, V. U. M.; Maimirani, M.; Siddiqui, A. H. J. Heterocycl. Chem. 1995, 32, 353.
- 459 Katritzky, A. R.; Marson, C. M. J. Am. Chem. Soc. 1983, 105, 3279.
- 460 Hergenrother, P. M.; Sykes, G. F.; Young, P. R. J. Heterocycl. Chem. 1976, 13, 993.
- ⁴⁶¹ Laurent, H.; Schulz, G.; Wiechert, R. Chem. Ber. 1966, 99, 3057.
- ⁴⁶² Bellini, A. M.; Rocchi, R.; Benassi, C. A. Gazz. Chim. Ital. 1969, 99, 1243.
- ⁴⁶⁷ Liu, K.; Zhang, Z.; Li, P.; et al. Faming Zhuanli Shenqing Gongkai Shuomingshu CN 87 100
 641 (1988); Chem. Abstr. 1989, 111, 40841s.
- ⁴⁶⁴ Smith, K. M.; Goff, D. A.; Simpson, D. J. J. Am. Chem. Soc. 1985, 107, 4946.
- ⁴⁶⁵ Pandey, R. K., Constantine, S., Goff, D. A., Kozyrev, A. N., Dougherty, T. J., Smith, K. M. Bioorg. Med. Chem. Lett. 1996, 6, 105.
- 466 Huang, F.; Marvel, C. S. J. Polym. Sci., Polym. Chem. Ed. 1976, 14, 2785.
- ⁴⁶⁷ Kellman, R.; Marvel, C. S. J. Polym. Sci., Polym. Chem. Ed. 1976, 14, 2033.
- ⁴⁶⁸ Ishii, T.; Tomitani, K.; Shimotori, H.; Tanaka, Y.; Ishikawa, K. Jpn. Kokai Tokkyo Koho JP 01 168 673 (1989); Chem. Abstr. 1990, 112, 35852n.
- ⁴⁶⁹ Ishii, T.; Tomitani, K.; Shimotori, H.; Tanaka, Y.; Ishikawa, K. Jpn. Kokai Tokkyo Koho JP 01
 168 674 (1989); Chem. Abstr. 1990, 112, 35853p.
- ⁴⁷⁰ Ishii, T.; Tomitani, K.; Shimotori, H.; Tanaka, Y.; Ishikawa, K. Jpn. Kokai Tokkyo Koho JP 01 168 672 (1989); Chem. Abstr. 1990, 112, 35851m.
- ⁴⁷¹ Rainer, G.; Hein, H. Ger. Offen. DE 2 612 155 (1976); Chem. Abstr. 1976, 86, 72631e.
- ⁴⁷² Balasundaram, B.; Venugopal, M.; Perumal, P. T. Tetrahedron Lett. 1993, 34, 4249.
- ⁴⁷³ Hafner, K.; Schulz, G.; Wagner, K. Justus Liebigs Ann. Chem. 1964, 678, 39.
- ⁴⁷⁴ Reznikov, V. A.; Volodarskii, L. B. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1982, 1437 (Engl. Transl. p. 1287); Chem. Abstr. 1982, 97, 109929p.
- ⁴⁷⁵ Kira, M. A.; Abdel-Rahman, M. O.; Gadalla, K. Z. Tetrahedron Lett. **1969**, 109.
- ⁴⁷⁶ Kira, M. A.; Nofal, Z.; Gadella, K. Z. Tetrahedron Lett. 1970, 4215.
- ⁴⁷⁷ Brehme, R.; Stroede, B.; Becker, H.; Heimann, U.; Schubert, F.; Nikolajewski, H. E.; Gruendemann, E. Ger. (East) Patent DD 200 800 (1983); Chem. Abstr. 1984, 100, 6082h.
- ⁴⁷⁸ Barnela, S. B.; Pandit, R. S.; Seshadri, S. Indian J. Chem., Sect. B 1976, 14B, 665.
- ⁴⁷⁹ Pawar, R. A.; Borse, A. P. J. Indian Chem. Soc. 1989, 66, 203.
- ^{479a}Awad, I. M. A. Phosphorous, Sulfur, **1993**, 78, 237.
- ⁴⁸⁰ Awad, I. M. A. Monatsh. Chem. **1990**, 121, 1023.
- ⁴⁸¹ Chodankar, N. K.; Sequeira, S.; Seshadri, S. Dyes Pigm. **1986**, 7, 231; Chem. Abstr. **1986**, 105, 62194m.
- ⁴⁸² Awad, I. M. A.; Hassan, K. M. Collect. Czech. Chem. Commun. 1989, 54, 706.
- ^{482a}Awad, I. M. A. Phosphorous, Sulfur and Silicon, 1992, 72, 81.
- ⁴⁸³ Radwan, S. M. Collect. Czech. Chem. Commun. **1992**, 57, 1553.
- ⁴⁸⁴ Prabhu, V. S.; Seshadri, S. Indian J. Chem., Sect. B 1985, 24B, 137.
- ⁴⁸⁵ Schroeder, J.; Schellhammer, C. W. Ger. Offen. DE 2 131 788 (1973); Chem. Abstr. 1973, 78, 99057u.
- ⁴⁸⁶ Reichardt, C.; Halbritter, K. Justus Liebigs Ann. Chem. 1970, 737, 99.
- ⁴⁸⁷ Curtis, N. J.; Hammershi, A.; Nicolas, L. M.; Sargeson, A. M.; Watson, K. J. Acta Chem. Scand., Ser. A 1987, A41, 36.
- ⁴⁸⁸ Jackson, W. G.; Sargeson, A. M.; Tucker, P. A.; Watson, A. D. J. Am. Chem. Soc. 1981, 103, 533.
- ⁴⁸⁹ Meth-Cohn, O. Synthesis **1986**, 76.
- ⁴⁹⁰ Jackson, A.; Meth-Cohn, O. J. Chem. Soc., Chem. Commun. **1995**, 1319.
- ⁴⁹¹ Král, V.; Semenov, V. V.; Kanischev, M. I.; Arnold, Z. Stud. Org. Chem., Chem. Heterocycl. Compd., Kovác, J.; Zálupsky, P. Eds **1988**, 35, 358.

656

- ⁴⁹² Král, V.; Semenov, V. V.; Kanischev, M. I.; Arnold, Z.; Shevelev, S. A.; Fainzil'berg, A. A. Collect. Czech. Chem. Commun. 1988, 53, 1519.
- ⁴⁹³ Lloyd, D.; Tucker, K. S.; Marshall, D. R. J. Chem. Soc., Perkin Trans. 1 1981, 726.
- ⁴⁹⁴ Morrow, N.; Ramsden, C. A.; Sarjent, B. J.; Wallett, C. D. Tetrahedron 1998, 54, 9603.
- ⁴⁹⁵ Bailey, D. M.; Kumar, V. U. S. Patent 4 888 352 (1989); Chem. Abstr. 1990, 112, 216925j.
- 496 Sabbioni, G.; Tannenbaum, S. R.; Shuker, D. E. G. J. Org. Chem. 1986, 51, 3244.
- ⁴⁹⁷ Padmanabhan, S.; Seshadri, S. Indian J. Chem., Sect. B **1985**, 24B, 1111.
- ⁴⁹⁸ Gómez-Parra, V.; del Carmen-Gómez, M.; Sánchez, F.; Stefani, V. Arch. Pharm. (Weinheim, Ger.) 1992, 325, 483.
- ⁴⁹⁹ De Munno, A.; Bertini, V.; Lucchesini, F. Chim. Ind. (Milan) 1976, 58, 880; Chem. Abstr. 1977, 87, 5850h.
- ⁵⁰⁰ Hardtmann, G. E. U. S. Patent 3 767 650 (1973); Chem. Abstr. 1974, 80, 3261y.
- ⁵⁰¹ Hardtmann, G. E. U. S. Patent 3 890 350 (1975); Chem. Abstr. 1975, 83, 78861q.
- ⁵⁰² Balasubrahmanyam, S. N.; Radhakrishna, A. S. J. Chem. Soc., Perkin Trans. 2 1977, 1388.
- ⁵⁰³ Müller, I.; Hemmerling, W.; Wingen, R. Ger. Offen. DE 3842062; Chem. Abstr. 1991, 114, 61678w.
- ⁵⁰⁴ Sasaki, M.; Takeuchi, K.; Takatsu, H. Jpn. Kokai Tokkyo Koho JP 63 280 063 (1988); Chem. Abstr. 1989, 110, 223265f.
- ⁵⁰⁵ Sasaki, M.; Takeuchi, K.; Takatsu, H. Jpn. Kokai Tokkyo Koho JP 63 253 065 (1988); Chem. Abstr. 1989, 110, 145145a.
- ⁵⁰⁶ Sasaki, M.; Takeuchi, K.; Takatsu, H. Jpn. Kokai Tokkyo Koho JP 63 250 365 (1988); Chem. Abstr. 1989, 110, 145136y.
- ⁵⁰⁷ Osawa, M.; Takehara, S.; Shoji, T.; Fujisawa, N.; Kuriyama, T.; Nakamura, K. Jpn. Kokai Tokkyo Koho JP 02 209 873 (1990); Chem. Abstr. **1991**, 114, 72420q.
- ⁵⁰⁸ Kvitko, I. Ya.; Smirnova, V. A.; El'tsov, A. V. Khim. Geterotsikl. Soedin 1980, 36 (Engl. Transl. p. 28); Chem. Abstr. 1980, 92, 215325v.
- ⁵⁰⁹ Belgaonkar, V. H.; Usgaonkar, R. N. Chem. Ind. (London) 1976, 954.
- ⁵¹⁰ Meth-Cohn, O. S. Afr. J. Chem. 1987, 40, 189; Chem. Abstr. 1988, 108, 94359x.
- ⁵¹¹ Chodankar, N. K.; Seshadri, S. Dyes Pigm. 1985, 6, 313; Chem. Abstr. 1985, 103, 179649p.
- ⁵¹² Hirota, T.; Katsuta, K.; Kawanishi, K.; Namba, T.; Sasaki, K.; Hayakawa, S. Chem. Pharm. Bull. 1985, 33, 30.
- ⁵¹³ Gracza, T., Landl, M., Vegh, D. Chem. Pap. 1994, 48, 410; Chem. Abstr. 1995, 123, 313850r.
 ⁵¹⁴ Kozhina, N. D., Krapivin, G. D.; Zavodnik, V. E., Gracza, T.; Vegh, D.; Chernousenko, L. A.; Badovskaya, L. A. Khim. Geterotsikl. Soedin 1995, 135 (Engl. Transl. p. 122); Chem. Abstr. 1995, 123, 143764w.
- ⁵¹⁵ Kato, T.; Chiba, T.; Okada, T. Chem. Pharm. Bull. 1979, 27, 1186.
- ⁵¹⁶ Flitsch, W.; Lauterwein, J.; Leimkühler, M.; Leaver, D.; Lewinski, U.; Mattes, R.; Temme, R.; Wibbeling, B. Justus Liebigs Ann. Chem. 1990, 627.
- ⁵¹⁷ Flitsch, W.; Lewinski, U.; Temme, R.; Wibbeling, B. Justus Liebigs Ann. Chem. 1990, 623.
- ⁵¹⁸ Flitsch, W.; Lauterwein, J.; Temme, R.; Wibbeling, B. Tetrahedron Lett. 1988, 29, 3391.
- ⁵¹⁹ Ochiai, M.; Marumoto, R.; Kobayashi, S.; Shimazu, M.; Morita, K. Tetrahedron 1968, 24, 5731.
- ⁵²⁰ Morita, K.; Ochiai, M.; Marumoto, R. Chem. Ind. (London) 1968, 1117.
- ⁵²¹ Holý, A.; Arnold, Z. Collect. Czech. Chem. Commun. 1973, 38, 1371.
- 522 Boyd, G. V.; Lindley, P. F.; Nicolaou, G. A., J. Chem. Soc., Chem. Commun. 1984, 1105.
- ⁵²³ Tokmakov, G. P.; Zemlyanova, T. G.; Grandberg, I. I. Khim. Geterotsikl. Soedin. 1984, 56 (Engl. Transl. p. 47); Chem. Abstr. 1984, 100, 209658y.
- ⁵²⁴ Bredereck, H.; Gompper, R.; Klemm, K. Chem. Ber. 1959, 92, 1456.
- ⁵²⁵ Bredereck, H.; Gompper, R.; Klemm, K. Angew. Chem. 1959, 71, 32.
- 526 Akaboshi, S.; Kutsuma, T. Yakugaku Zasshi 1969, 89, 1029; Chem. Abstr. 1970, 72, 3330e.
- 527 Akaboshi, S.; Kutsuma, T. Yakugaku Zasshi 1969, 89, 1035; Chem. Abstr. 1970, 72, 3331f.
- ⁵²⁸ Griffiths, G. J. Chimia **1997**, 51, 283.
- ⁵²⁹ Liebscher, J.; Knoll, A.; Hartmann, H.; Anders, S. Collect. Czech. Chem. Commun. 1987, 52, 761.

- ⁵³⁰ Wright, T. L. U. S. Patent 4 540 786 (1985); Chem. Abstr. 1986, 104, 68762w.
- 531 Wright, T. L. Eur. Pat. Appl. EP 120 484 (1984); Chem. Abstr. 1985, 102, 113500f.
- 532 Jain, S. M.; Pawar, R. A. Indian J. Chem. 1975, 13, 304.
- ⁵³³ Chandramohan, M. R.; Sardessai, M. S.; Shah, S. R.; Seshadri, S. Indian J. Chem. 1969, 7, 1006.
- ⁵³⁴ Gatti, R.; Cavrini, V.; Roveri, P.; Matteuzzi, D.; Brigidi, P. Eur. J. Med. Chem. Chim. Ther.
 1984, 19, 468; Chem. Abstr. 1985, 102, 131983v.
- 535 Hayes, R.; Smalley, R. K. J. Chem. Res. (S) 1988, 14.
- ⁵³⁶ Alonso, M. Á.; del Mar Blanco, M.; Avendaño, C.; Menéndez, J. C. Heterocycles 1993, 36, 2315.
- ^{536a}Harris, R. N. L.; Huppatz, J. L.; Teitei, T. Aust. J. Chem. 1979, 32, 669.
- ⁵³⁷ Cristea, I. *Heterocyclic Commun.* **1996**, *5*, 549.
- ⁵³⁸ Adams, D. R.; Adams, C. Synth. Commun. 1990, 20, 469.
- ⁵³⁹ Kaneko, S.; Ohashi, M.; Miura, T.; Koga, M. Jpn. Kokai Tokkyo Koho JP 04 018 075 (1992); Chem. Abstr. **1992**, 116, 257381e.
- ⁵⁴⁰ Schulte, K. E.; Bergenthal, D. Arch. Pharm. (Weinheim, Ger.) 1979, 312, 265.
- ⁵⁴¹ Kidwai, M.; Negi, N. Monatsh. Chem. 1997, 128, 85.
- ⁵⁴² Proshkina, V. N.; Solomko, Z. F.; Bozhanova, N. Ya. *Khim. Geterotsikl. Soedin.* **1988**, 1288 (Engl. Transl. p. 1071); Chem. Abstr. **1989**, 111, 39322s.
- ⁵⁴³ Liebscher, J.; Paetzel, M.; Kelboro, Y. F. Synthesis 1989, 672.
- ⁵⁴⁴ Verdecia, Y.; Suarez, M.; Morales, A.; Rodriguez, E.; Ochoa, E.; Gonzalez, L.; Martin, N.; Quinteiro, M.; Seoane, C. J. Chem. Soc., Perkin Trans. 1 **1996**, 947.
- 545 Chandramohan, M. R.; Seshadri, S. Indian J. Chem. 1973, 11, 1108.
- 546 Combs, D. W. Bioorg. Med. Chem. Lett. 1993, 3, 1663.
- ⁵⁴⁷ Mukherjee, A.; Akhtar, M. S.; Sharma, V. L.; Seth, M.; Bhaduri, A. P.; Agnihotri, A.; Mehrotra, P. K.; Kamboj, V. P. J. Med. Chem. 1989, 32, 2297.
- ⁵⁴⁸ Messerschmitt, T.; Von Specht, U.; Von Dobeneck, H. Justus Liebigs Ann. Chem. 1971, 751, 50.
- ⁵⁴⁹ Meth-Cohn, O.; Goon, S. J. Chem. Soc., Perkin Trans. 1 1997, 85.
- ⁵⁵⁰ Singh, H.; Paul, D. Indian J. Chem. 1974, 12, 1210.
- ⁵⁵¹ Kurfürst, A.; Šebek, P. Stud. Org. Chem., Chem. Heterocycl. Compd., Kovác, J.; Zálupsky, P. Eds. 1987, 35, 371.
- 552 Heaney, H.; Shuvaibar, K. E.; Slawin, A. M. Z. Tetrahedron Lett. 1996, 37, 4275.
- ⁵⁵³ Mittelbach, M.; Junek, H. J. Heterocycl. Chem. 1982, 19, 1021.
- ⁵⁵⁴ Porai-Koshits, B. A.; Kvitko, I. Ya. Zh. Obshch. Khim. 1962, 4050 (Engl. Transl. p. 3976); Chem. Abstr. 1963, 58, 13934f.
- ⁵⁵⁵ Cossey, A. L.; Harris, R. L. N.; Huppatz, J. L.; Philips, J. N. Angew. Chem., Int. Ed. Engl. 1972, 11, 1099.
- ⁵⁵⁶ Cossey, A. L.; Harris, R. L. N.; Huppatz, J. L.; Philips, J. N. Angew. Chem., Int. Ed. Engl. 1972, 11, 1098.
- ⁵⁵⁷ Reference deleted.
- ⁵⁵⁸ Paulmier, C.; Outurquin, F. J. Chem. Res. (S) 1977, 318.
- ⁵⁵⁹ Cossey, A. L.; Harris, R. L. N.; Huppatz, J. L.; Philips, J. N. Angew. Chem., Int. Ed. Engl. **1972**, 11, 1100.
- ⁵⁶⁰ Hirota, T.; Koyama, T.; Nanba, T.; Yamato, M. Chem. Pharm. Bull. 1977, 25, 2838.
- ⁵⁶¹ Koyama, T.; Hirota, T.; Shinohara, Y.; Yamato, M.; Ohmori, S. *Chem. Pharm. Bull.* **1975**, 23, 497.
- ⁵⁶² Hirota, T.; Sasaki, K.; Tashima, Y.; Nakayama, T. J. Heterocycl. Chem. 1991, 28, 263.
- ⁵⁶³ Koyama, T.; Hirota, T.; Matsumura, T.; Yamato, M. Yakugaku Zasshi 1972, 92, 1233; Chem. Abstr. 1973, 78, 4210b.
- ⁵⁶⁴ Sasaki, K.; Tashima, Y.; Nakayama, T.; Hirota, T. J. Heterocycl. Chem. 1991, 28, 269.
- ⁵⁶⁵ Bergstrom, D. E.; Inoue, I.; Leonard, N. J. J. Org. Chem. 1972, 37, 3902.
- ⁵⁶⁶ Bredereck, H.; Simchen, G. Angew. Chem., Int. Ed. Engl. 1963, 2, 738.
- ⁵⁶⁷ Bredereck, H.; Simchen, G.; Speh, P. Justus Liebigs Ann. Chem. 1970, 737, 46.
- ⁵⁶⁸ Campbell, H. F. U. S. Patent 4 432 979 (1984); Chem. Abstr. 1984, 100, 191747q.

- ⁵⁶⁹ Kato, T.; Yamanaka, H.; Hiranuma, H. Yakugaku Zasshi, **1970**, 90, 870; Chem. Abstr. **1970**, 73, 77194f.
- ⁵⁷⁰ Britikova, N. E.; Novitskii, K. Yu. *Khim. Geterotsikl. Soedin.*, **1977**, 1672 (Engl. Transl. p. 1338); *Chem. Abstr.* **1977**, 88, 105263h.
- ⁵⁷¹ Koyama, T.; Hirota, T.; Basho, C.; Watanabe, Y.; Kitauchi, Y.; Satoh, Y.; Ohmori, S.; Yamato, M. Chem. Pharm. Bull. 1976, 24, 1459.
- 572 Sizova, O. S.; Glushkov, R. G. Khim-Farm. Zh. 1984, 18, 717; Chem. Abstr. 1985, 102, 24571n.
- ⁵⁷³ Horváth, Á.; Hermecz, I.; Vasvári-Debreczy, L.; Simon, K.; Pongor-Csákvári, M.; Mészáros, Z.; Tóth, G. J. Chem. Soc., Perkin Trans. 1 1983, 369.
- ⁵⁷⁴ Horváth, Á.; Hermecz, I.; Podányi, B.; Mészáros, Z. J. Heterocyl. Chem. 1985, 22, 593.
- ⁵⁷⁵ Hermecz, I.; Kokosi, J.; Horváth, Á.; Podányi, B.; Vasvári-Debreczy, L.; Szasz, G.; Mészáros, Z. J. Heterocycl. Chem. 1987, 24, 1045.
- ⁵⁷⁶ Hermecz, I.; Horváth, Á.; Mészáros, Z.; Pongor-Csákvári, M.; Tóth, G.; Szöllösy, Á. J. Chem. Soc., Perkin Trans. 2 1985, 1873.
- ⁵⁷⁷ Nicdrich, H.; Heyne, H.-U.; Schrötter, E.; Jänsch, H.-J.; Heidrich, H.-J.; Faust, G.; Lohmann, D. Pharmazie 1986, 41, 173.
- ⁵⁷⁸ Clark, B. A. J.; Parrick, J.; West, P. J.; Kelly, A. H. J. Chem. Soc. C 1970, 498.
- ⁵⁷⁹ Khedija, H.; Strzelecka, H.; Simalty, M. Bull. Soc. Chim. Fr. 1973, 218.
- ⁵⁸⁰ Zbarskii, V. L.; Borisenko, A. A.; Orlova, E. Yu. Zh. Org. Khim. 1970, 6, 520 (Engl. Transl. p. 518); Chem. Abstr. 1970, 72, 132198s.
- ⁵⁸¹ Permachem Asia, Ltd., Jpn. Kokai Tokkyo Koho JP 82 007 466 (1982); Chem. Abstr. 1982, 96, 217695x.
- ⁵⁸² Bahar, M. H.; Sabata, B. K. Indian J. Chem., Sect. B 1981, 20B, 328.
- 583 Chandramohan, M. R.; Seshadri, S. Indian J. Chem. 1972, 10, 573.
- ⁵⁸⁴ Jayanth, M. R.; Naik, H. A.; Tatke, D. R.; Seshadri, S. Indian J. Chem. 1973, 11, 1112.
- ⁵⁸⁵ Bhumgara, S. K.; Seshadri, S. Indian J. Chem., Sect. B 1985, 24B, 703.
- ⁵⁸⁶ Bhumgara, S. K.; Seshadri, S. Indian J. Chem., Sect. B 1987, 26B, 171.
- ⁵⁸⁷ Shekar, P. C.; Seshadri, S. Indian J. Chem., Sect. B 1985, 24B, 477.
- ⁵⁸⁸ Bruck, P. J. Chem. Soc. D 1970, 1690.
- ⁵⁸⁹ Murakami, Y.; Yokoyama, Y.; Miura, T.; Nozawa, S.; Takeda, E.; Suzuki, H. *Heterocycles* **1988**, 27, 2341.
- ⁵⁹⁰ Awad, I. M. A.; Hassan, K. M. Collect. Czech. Chem. Commun. 1990, 55, 2715.
- ⁵⁹¹ Awad, I. M. A. Bull. Chem. Soc. Jpn. **1993**, 66, 167.
- ⁵⁹² Awad, I. M. A. Org. Prep. Proced. Int. 1993, 25, 347.
- ⁵⁹³ Shakhidoyatov, Kh. M.; Oripov, E.; Irisbaev, A.; Kadyrov, Ch. Sh. Khim. Prir. Soedin. 1976, 825 (Engl. Transl. p. 746); Chem. Abstr. 1977, 86, 106520k.
- ⁵⁹⁴ Barnela, S. B.; Seshadri, S. Indian J. Chem., Sect. B 1986, 25B, 709.
- ⁵⁹⁵ Barnela, S. B.; Seshadri, S. Indian J. Chem., Sect. B 1984, 23B, 161.
- ⁵⁹⁶ Glushkov, R. G.; Davydova, N. K.; Marchenko, N. B. Khim. Farm. Zh. 1987, 21, 985 (Engl. Transl. p. 684); Chem. Abstr. 1988, 108, 167347d.
- ⁵⁹⁷ Shelepin, N. E.; Loseva, N. S.; Nivorozhkin, L. E.; Minkin, V. I. Khim. Geterotsikl. Soedin.
 1971, 733 (Engl. Trans. p. 684); Chem. Abstr. **1972**, 76, 25034w.
- ⁵⁹⁸ Jayant, M. R.; Seshadri, S. Dyes Pigm. 1987, 8, 399; Chem. Abstr. 1988, 108, 23309v.
- ⁵⁹⁹ Seshadri, S.; Jayant, M. R.; Krishnan, R.; Shekar, P. C. Dyes Pigm. **1987**, 8, 405; Chem. Abstr. **1988**, 108, 23310p.

Volume 1 (1942)

- 1. The Reformatsky Reaction: Ralph L. Shriner
- 2. The Arndt-Eistert Reaction: W. E. Bachmann and W. S. Struve
- 3. Chloromethylation of Aromatic Compounds: Reynold C. Fuson and C. H. McKeever
- 4. The Amination of Heterocyclic Bases by Alkali Amides: Marlin T. Leffler
- 5. The Bucherer Reaction: Nathan L. Drake
- 6. The Elbs Reaction: Louis F. Fieser
- 7. The Clemmensen Reduction: Elmore L. Martin
- 8. The Perkin Reaction and Related Reactions: John R. Johnson
- 9. The Acetoacetic Ester Condensation and Certain Related Reactions: Charles R. Hauser and Boyd E. Hudson, Jr.
- 10. The Mannich Reaction: F. F. Blicke
- 11. The Fries Reaction: A. H. Blatt
- 12. The Jacobson Reaction: Lee Irvin Smith

Volume 2 (1944)

- 1. The Claisen Rearrangement: D. Stanley Tarbell
- 2. The Preparation of Aliphatic Fluorine Compounds: Albert L. Henne
- 3. The Cannizzaro Reaction: T. A. Geissman
- 4. The Formation of Cyclic Ketones by Intramolecular Acylation: William S. Johnson
- 5. Reduction with Aluminum Alkoxides (The Meerwein-Ponndorf-Verley Reduction): A. L. Wilds

661

- 6. The Preparation of Unsymmetrical Biaryls by the Diazo Reaction and the Nitrosoacetylamine Reaction: Werner E. Bachmann and Roger A. Hoffman
- 7. Replacement of the Aromatic Primary Amino Group by Hydrogen: Nathan Kornblum
- 8. Periodic Acid Oxidation: Ernest L. Jackson
- 9. The Resolution of Alcohols: A. W. Ingersoll
- 10. The Preparation of Aromatic Arsonic and Arsinic Acids by the Bart, Béchamp, and Rosenmund Reactions: Cliff S. Hamilton and Jack F. Morgan

Volume 3 (1946)

- 1. The Alkylation of Aromatic Compounds by the Friedel-Crafts Method: Charles C. Price
- 2. The Willgerodt Reaction: Marvin Carmack and M. A. Spielman
- 3. Preparation of Ketenes and Ketene Dimers: W. E. Hanford and John C. Sauer
- 4. Direct Sulfonation of Aromatic Hydrocarbons and Their Halogen Derivatives: C. M. Suter and Arthur W. Weston
- 5. Azlactones: H. E. Carter
- 6. Substitution and Addition Reactions of Thiocyanogen: John L. Wood
- 7. The Hofmann Reaction: Everett L. Wallis and John F. Lane
- 8. The Schmidt Reaction: Hans Wolff
- 9. The Curtius Reaction: Peter A. S. Smith

Volume 4 (1948)

- 1. The Diels-Alder Reaction with Maleic Anhydride: Milton C. Kloetzel
- 2. The Diels-Alder Reaction: Ethylenic and Acetylenic Dienophiles: H. L. Holmes
- 3. The Preparation of Amines by Reductive Alkylation: William S. Emerson
- 4. The Acyloins: S. M. McElvain
- 5. The Synthesis of Benzoins: Walter S. Ide and Johannes S. Buck
- 6. Synthesis of Benzoquinones by Oxidation: James Cason
- 7. The Rosenmund Reduction of Acid Chlorides to Aldehydes: Erich Mosettig and Ralph Mozingo
- 8. The Wolff-Kishner Reduction: David Todd

662

Volume 5 (1949)

- 1. The Synthesis of Acetylenes: Thomas L. Jacobs
- 2. Cyanoethylation: Herman L. Bruson
- 3. The Diels-Alder Reaction: Quinones and Other Cyclenones: Lewis L. Butz and Anton W. Rytina
- 4. Preparation of Aromatic Fluorine Compounds from Diazonium Fluoborates: The Schiemann Reaction: Arthur Roe
- 5. The Friedel and Crafts Reaction with Aliphatic Dibasic Acid Anhydrides: Ernst Berliner
- 6. The Gattermann-Koch Reaction: Nathan N. Crounse
- 7. The Leuckart Reaction: Maurice L. Moore
- 8. Selenium Dioxide Oxidation: Norman Rabjohn
- 9. The Hoesch Synthesis: Paul E. Spoerri and Adrien S. DuBois
- 10. The Darzens Glycidic Ester Condensation: Melvin S. Newman and Barney J. Magerlein

Volume 6 (1951)

- 1. The Stobbe Condensation: William S. Johnson and Guido H. Daub
- 2. The Preparation of 3,4-Dihydroisoquinolines and Related Compounds by the Bischler-Napieralski Reaction: Wilson M. Whaley and Tutucorin R. Govindachari
- 3. The Pictet-Spengler Synthesis of Tetrahydroisoquinolines and Related Compounds: Wilson M. Whaley and Tutucorin R. Govindachari
- 4. The Synthesis of Isoquinolines by the Pomeranz-Fritsch Reaction: Walter J. Gensler
- 5. The Oppenauer Oxidation: Carl Djerassi
- 6. The Synthesis of Phosphonic and Phosphinic Acids: Gennady M. Kosolapoff
- 7. The Halogen-Metal Interconversion Reaction with Organolithium Compounds: Reuben G. Jones and Henry Gilman
- 8. The Preparation of Thiazoles: Richard H. Wiley, D. C. England, and Lyell C. Behr
- 9. The Preparation of Thiophenes and Tetrahydrothiophenes: Donald E. Wolf and Karl Folkers
- 10. Reductions by Lithium Aluminum Hydride: Weldon G. Brown

Volume 7 (1953)

664

- 1. The Pechmann Reaction: Suresh Sethna and Ragini Phadke
- 2. The Skraup Synthesis of Quinolines: R. H. F. Manske and Marshall Kulka
- 3. Carbon-Carbon Alkylations with Amines and Ammonium Salts: James H. Brewster and Ernest L. Eliel
- 4. The von Braun Cyanogen Bromide Reaction: Howard A. Hageman
- 5. Hydrogenolysis of Benzyl Groups Attached to Oxygen, Nitrogen, or Sulfur: Walter H. Hartung and Robert Simonoff
- 6. The Nitrosation of Aliphatic Carbon Atoms: Oscar Touster
- 7. Epoxidation and Hydroxylation of Ethylenic Compounds with Organic Peracids: Daniel Swern

Volume 8 (1954)

- 1. Catalytic Hydrogenation of Esters to Alcohols: Homer Adkins
- 2. The Synthesis of Ketones from Acid Halides and Organometallic Compounds of Magnesium, Zinc, and Cadmium: David A. Shirley
- 3. The Acylation of Ketones to Form β -Diketones or β -Keto Aldehydes: Charles R. Hauser, Frederic W. Swamer, and Joe T. Adams
- 4. The Sommelet Reaction: S. J. Augyal
- 5. The Synthesis of Aldehydes from Carboxylic Acids: Erich Mosettig
- 6. **The Metalation Reaction with Organolithium Compounds**: Henry Gilman and John W. Morton, Jr.
- 7. β-Lactones: Harold E. Zaugg
- 8. The Reaction of Diazomethane and Its Derivatives with Aldehydes and Ketones: C. David Gutsche

Volume 9 (1957)

- 1. The Cleavage of Non-enolizable Ketones with Sodium Amide: K. E. Hamlin and Arthur W. Weston
- 2. The Gattermann Synthesis of Aldehydes: William E. Truce
- 3. The Baeyer-Villiger Oxidation of Aldehydes and Ketones: C. H. Hassall
- 4. The Alkylation of Esters and Nitriles: Arthur C. Cope, H. L. Holmes, and Herbert O. House

- 5. The Reaction of Halogens with Silver Salts of Carboxylic Acids: C. V. Wilson
- 6. The Synthesis of β -Lactams: John C. Sheehan and Elias J. Corey
- 7. The Pschorr Synthesis and Related Diazonium Ring Closure Reactions: DeLos F. DeTar

Volume 10 (1959)

- 1. The Coupling of Diazonium Salts with Aliphatic Carbon Atoms: Stanley J. Parmerter
- 2. The Japp-Klingemann Reaction: Robert R. Phillips
- 3. The Michael Reaction: Ernst D. Bergmann, David Ginsburg, and Raphael Pappo

Volume 11 (1960)

- 1. The Beckmann Rearrangement: L. Guy Donaruma and Walter Z. Heldt
- 2. The Demjanov and Tiffeneau-Demjanov Ring Expansions: Peter A. S. Smith and Donald R. Baer
- 3. Arylation of Unsaturated Compounds by Diazonium Salts: Christian S. Rondestvedt, Jr.
- 4. The Favorskii Rearrangement of Haloketones: Andrew S. Kende
- 5. Olefins from Amines: The Hofmann Elimination Reaction and Amine Oxide Pyrolysis: Arthur C. Cope and Elmer R. Trumbull

Volume 12 (1962)

- 1. Cyclobutane Derivatives from Thermal Cycloaddition Reactions: John D. Roberts and Clay M. Sharts
- 2. The Preparation of Olefins by the Pyrolysis of Xanthates. The Chugaev Reaction: Harold R. Nace
- 3. The Synthesis of Aliphatic and Alicyclic Nitro Compounds: Nathan Kornblum
- 4. Synthesis of Peptides with Mixed Anhydrides: Noel F. Albertson
- 5. Desulfurization with Raney Nickel: George R. Pettit and Eugene E. van Tamelen

Volume 13 (1963)

1. Hydration of Olefins, Dienes, and Acetylenes via Hydroboration: George Zweifel and Herbert C. Brown

- 2. Halocyclopropanes from Halocarbenes: William E. Parham and Edward E. Schweizer
- 3. Free Radical Addition to Olefins to Form Carbon-Carbon Bonds: Cheves Walling and Earl S. Huyser
- 4. Formation of Carbon-Heteroatom Bonds by Free Radical Chain Additions to Carbon-Carbon Multiple Bonds: F. W. Stacey and J. F. Harris, Jr.

Volume 14 (1965)

- 1. The Chapman Rearrangement: J. W. Schulenberg and S. Archer
- 2. α-Amidoalkylations at Carbon: Harold E. Zaugg and William B. Martin
- 3. The Wittig Reaction: Adalbert Maercker

Volume 15 (1967)

- 1. The Dieckmann Condensation: John P. Schaefer and Jordan J. Bloomfield
- 2. The Knoevenagel Condensation: G. Jones

Volume 16 (1968)

1. The Aldol Condensation: Arnold T. Nielsen and William J. Houlihan

Volume 17 (1969)

- 1. The Synthesis of Substituted Ferrocenes and Other π -Cyclopentadienyl-Transition Metal Compounds: Donald E. Bublitz and Kenneth L. Rinehart, Jr.
- 2. The γ -Alkylation and γ -Arylation of Dianions of β -Dicarbonyl Compounds: Thomas M. Harris and Constance M. Harris
- 3. The Ritter Reaction: L. I. Krimen and Donald J. Cota

Volume 18 (1970)

- 1. Preparation of Ketones from the Reaction of Organolithium Reagents with Carboxylic Acids: Margaret J. Jorgenson
- 2. The Smiles and Related Rearrangements of Aromatic Systems: W. E. Truce. Eunice M. Kreider, and William W. Brand
- 3. The Reactions of Diazoacetic Esters with Alkenes, Alkynes, Heterocyclic, and Aromatic Compounds: Vinod Dave and E. W. Warnhoff
- 4. The Base-Promoted Rearrangements of Quaternary Ammonium Salts: Stanley H. Pine

Volume 19 (1972)

- 1. Conjugate Addition Reactions of Organocopper Reagents: Gary H. Posner
- Formation of Carbon-Carbon Bonds via π-Allylnickel Compounds: Martin F. Semmelhack
- 3. The Thiele-Winter Acetoxylation of Quinones: J. F. W. McOmie and J. M. Blatchly
- 4. Oxidative Decarboxylation of Acids by Lead Tetraacetate: Roger A. Sheldon and Jay K. Kochi

Volume 20 (1973)

- Cyclopropanes from Unsaturated Compounds, Methylene Iodide, and Zinc-Copper Couple: H. E. Simmons, T. L. Cairns, Susan A. Vladuchick, and Connie M. Hoiness
- 2. Sensitized Photooxygenation of Olefins: R. W. Denny and A. Nickon
- 3. The Synthesis of 5-Hydroxyindoles by the Nenitzescu Reaction: George R. Allen, Jr.
- 4. The Zinin Reaction of Nitroarenes: H. K. Porter

Volume 21 (1974)

- 1. Fluorination with Sulfur Tetrafluoride: G. A. Boswell, Jr., W. C. Ripka, R. M. Scribner, and C. W. Tullock
- 2. Modern Methods to Prepare Monofluoroaliphatic Compounds: Clay M. Sharts and William A. Sheppard

Volume 22 (1975)

- 1. The Claisen and Cope Rearrangements: Sara Jane Rhoads and N. Rebecca Raulins
- 2. Substitution Reactions Using Organocopper Reagents: Gary H. Posner
- 3. Clemmensen Reduction of Ketones in Anhydrous Organic Solvents: E. Vedejs
- 4. The Reformatsky Reaction: Michael W. Rathke

Volume 23 (1976)

- 1. Reduction and Related Reactions of α,β -Unsaturated Compounds with Metals in Liquid Ammonia: Drury Caine
- 2. The Acyloin Condensation: Jordan J. Bloomfield, Dennis C. Owsley, and Janice M. Nelke
- 3. Alkenes from Tosylhydrazones: Robert H. Shapiro

Volume 24 (1976)

668

- 1. Homogeneous Hydrogenation Catalysts in Organic Solvents: Arthur J. Birch and David H. Williamson
- 2. Ester Cleavages via S_N2-Type Dealkylation: John E. McMurry
- 3. Arylation of Unsaturated Compounds by Diazonium Salts (The Meerwein Arylation Reaction): Christian S. Rondestvedt, Jr.
- 4. Selenium Dioxide Oxidation: Norman Rabjohn

Volume 25 (1977)

- 1. The Ramberg-Bäcklund Rearrangement: Leo A. Paquette
- 2. Synthetic Applications of Phosphoryl-Stabilized Anions: William S. Wadsworth, Jr.
- 3. **Hydrocyanation of Conjugated Carbonyl Compounds**: Wataru Nagata and Mitsuru Yoshioka

Volume 26 (1979)

- 1. Heteroatom-Facilitated Lithiations: Heinz W. Gschwend and Herman R. Rodriguez
- 2. Intramolecular Reactions of Diazocarbonyl Compounds: Steven D. Burke and Paul A. Grieco

Volume 27 (1982)

- 1. Allylic and Benzylic Carbanions Substituted by Heteroatoms: Jean-François Biellmann and Jean-Bernard Ducep
- 2. Palladium-Catalyzed Vinylation of Organic Halides: Richard F. Heck

Volume 28 (1982)

- 1. The Reimer-Tiemann Reaction: Hans Wynberg and Egbert W. Meijer
- 2. The Friedländer Synthesis of Quinolines: Chia-Chung Cheng and Shou-Jen Yan
- 3. The Directed Aldol Reaction: Teruaki Mukaiyama

Volume 29 (1983)

1. Replacement of Alcoholic Hydroxy Groups by Halogens and Other Nucleophiles via Oxyphosphonium Intermediates: Bertrand R. Castro

- 2. Reductive Dehalogenation of Polyhalo Ketones with Low-Valent Metals and Related Reducing Agents: Ryoji Noyori and Yoshihiro Hayakawa
- 3. Base-Promoted Isomerizations of Epoxides: Jack K. Crandall and Marcel Apparu

Volume 30 (1984)

- 1. **Photocyclization of Stilbenes and Related Molecules**: Frank B. Mallory and Clelia W. Mallory
- 2. Olefin Synthesis via Deoxygenation of Vicinal Diols: Eric Block

Volume 31 (1984)

1. Addition and Substitution Reactions of Nitrile-Stabilized Carbanions: Siméon Arseniyadis, Keith S. Kyler, and David S. Watt

Volume 32 (1984)

- 1. The Intramolecular Diels-Alder Reaction: Engelbert Ciganek
- 2. Synthesis Using Alkyne-Derived Alkenyl- and Alkynylaluminum Compounds: George Zweifel and Joseph A. Miller

Volume 33 (1985)

- 1. Formation of Carbon-Carbon and Carbon-Heteroatom Bonds via Organoboranes and Organoborates: Ei-Ichi Negishi and Michael J. Idacavage
- 2. The Vinylcyclopropane-Cyclopentene Rearrangement: Tomáš Hudlický, Toni M. Kutchan, and Saiyid M. Naqvi

Volume 34 (1985)

- 1. Reductions by Metal Alkoxyaluminum Hydrides: Jaroslav Málek
- 2. Fluorination by Sulfur Tetrafluoride: Chia-Lin J. Wang

Volume 35 (1988)

- 1. The Beckmann Reactions: Rearrangements, Elimination-Additions, Fragmentations, and Rearrangement-Cyclizations: Robert E. Gawley
- 2. The Persulfate Oxidation of Phenols and Arylamines (The Elbs and the Boyland-Sims Oxidations): E. J. Behrman
- 3. Fluorination with Diethylaminosulfur Trifluoride and Related Aminofluorosulfuranes: Miloš Hudlický

Volume 36 (1988)

- 1. The [3 + 2] Nitrone-Olefin Cycloaddition Reaction: Pat N. Confalone and Edward M. Huie
- 2. Phosphorus Addition at sp² Carbon: Robert Engel
- 3. Reduction by Metal Alkoxyaluminum Hydrides. Part II. Carboxylic Acids and Derivatives, Nitrogen Compounds, and Sulfur Compounds: Jaroslav Málek

Volume 37 (1989)

- 1. Chiral Synthons by Ester Hydrolysis Catalyzed by Pig Liver Esterase: Masaji Ohno and Masami Otsuka
- 2. The Electrophilic Substitution of Allylsilanes and Vinylsilanes: Ian Fleming, Jacques Dunoguès, and Roger Smithers

Volume 38 (1990)

- 1. The Peterson Olefination Reaction: David J. Ager
- Tandem Vicinal Difunctionalization: β-Addition to α,β-Unsaturated Carbonyl Substrates Followed by α-Functionalization: Marc J. Chapdelaine and Martin Hulce
- 3. The Nef Reaction: Harold W. Pinnick

Volume 39 (1990)

- 1. Lithioalkenes from Arenesulfonylhydrazones: A. Richard Chamberlin and Steven H. Bloom
- 2. The Polonovski Reaction: David Grierson
- 3. Oxidation of Alcohols to Carbonyl Compounds via Alkoxysulfonium Ylides: The Moffatt, Swern, and Related Oxidations: Thomas T. Tidwell

Volume 40 (1991)

- 1. The Pauson-Khand Cycloaddition Reaction for Synthesis of Cyclopentenones: Neil E. Schore
- 2. Reduction with Diimide: Daniel J. Pasto and Richard T. Taylor
- 3. The Pummerer Reaction of Sulfinyl Compounds: Ottorino DeLucchi, Umberto Miotti, and Giorgio Modena
- 4. The Catalyzed Nucleophilic Addition of Aldehydes to Electrophilic Double Bonds: Hermann Stetter and Heinrich Kuhlmann

Volume 41 (1992)

- 1. **Divinylcyclopropane-Cycloheptadiene Rearrangement**: Tomáš Hudlický, Rulin Fan, Josephine W. Reed, and Kumar G. Gadamasetti
- 2. Organocopper Reagents: Substitution, Conjugate Addition, Carbo/Metallocupration, and Other Reactions: Bruce H. Lipshutz and Saumitra Sengupta

Volume 42 (1992)

- 1. The Birch Reduction of Aromatic Compounds: Peter W. Rabideau and Zbigniew Marcinow
- 2. The Mitsunobu Reaction: David L. Hughes

Volume 43 (1993)

- 1. Carbonyl Methylenation and Alkylidenation Using Titanium-Based Reagents: Stanley H. Pine
- 2. Anion-Assisted Sigmatropic Rearrangements: Stephen R. Wilson
- 3. The Baeyer-Villiger Oxidation of Ketones and Aldehydes: Grant R. Krow

Volume 44 (1993)

- 1. Preparation of α,β-Unsaturated Carbonyl Compounds and Nitriles by Selenoxide Elimination: Hans J. Reich and Susan Wollowitz
- 2. Enone Olefin [2 + 2] Photochemical Cyclizations: Michael T. Crimmins and Tracy L. Reinhold

Volume 45 (1994)

- 1. The Nazarov Cyclization: Karl L. Habermas, Scott E. Denmark, and Todd K. Jones
- 2. Ketene Cycloadditions: John A. Hyatt and Peter W. Raynolds

Volume 46 (1994)

- 1. Tin(II) Enolates in the Aldol, Michael, and Related Reactions: Teruaki Mukaiyama and Shū Kobayashi
- 2. The [2,3]-Wittig Reaction: Takeshi Nakai and Koichi Mikami
- 3. Reductions with Samarium(II) Iodide: Gary A. Molander

Volume 47 (1995)

- 1. Lateral Lithiation Reactions Promoted by Heteroatomic Substituents: Robin D. Clark and Alam Jahangir
- 2. The Intramolecular Michael Reaction: R. Daniel Little, Mohammad R. Masjedizadeh, Olof Wallquist (in part), and Jim I. McLoughlin (in part)

Volume 48 (1996)

- 1. Asymmetric Epoxidation of Allylic Alcohols: The Katsuki-Sharpless Epoxidation Reaction: Tsutomu Katsuki and Victor S. Martin
- 2. **Radical Cyclization Reactions**: B. Giese, B. Kopping, T. Göbel, J. Dickhaut, G. Thoma, K. J. Kulicke, and F. Trach

Volume 49 (1997)

- 1. The Vilsmeier Reaction of Fully Conjugated Carbocycles and Heterocycles: Gurnos Jones and Stephen P. Stanforth
- 2. [6 + 4] Cycloaddition Reactions: James H. Rigby
- 3. Carbon-Carbon Bond-Forming Reactions Promoted by Trivalent Manganese: Gagik G. Melikyan

Volume 50 (1997)

1. The Stille Reaction: Vittorio Farina, Venkat Krishnamurthy, and William J. Scott

Volume 51 (1997)

- 1. Asymmetric Aldol Reactions Using Boron Enolates: Cameron J. Cowden and Ian Paterson
- The Catalyzed α-Hydroxylation and α-Aminoalkylation of Activated Olefins (The Morita-Baylis-Hillman Reaction): Engelbert Ciganek
- 3. [4 + 3] Cycloaddition Reactions: James H. Rigby and F. Christopher Pigge

Volume 52 (1998)

- 1. The Retro-Diels-Alder Reaction. Part I. C-C Dienophiles: Bruce Rickborn
- 2. Enantioselective Reduction of Ketones: Shinichi Itsuno

Volume 53 (1998)

- 1. The Oxidation of Alcohols by Modified Oxochromium(VI)-Amine Reagents: Frederick A. Luzzio
- 2. The Retro-Diels-Alder Reaction. Part II. Dienophiles with One or More Heteroatoms: Bruce Rickborn

Volume 54 (1999)

- 1. Aromatic Substitution by the $S_{RN}1$ Reaction: Roberto Rossi, Adriana B. Pierini, and Ana N. Santiago
- 2. Oxidation of Carbonyl Compounds with Organohypervalent Iodine Reagents: Robert M. Moriarty and Om Prakash

Volume 55 (1999)

1. Synthesis of Nucleosides: Helmut Vorbrüggen and Carmen Ruh-Pohlenz